Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.5194/hess-29-1277-2025
Lizenz creative commons licence
Titel (primär) Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Autor Acuña Espinoza, E.; Loritz, R.; Kratzert, F.; Klotz, D.; Gauch, M.; Álvarez Chaves, M.; Ehret, U.
Quelle Hydrology and Earth System Sciences
Erscheinungsjahr 2025
Department CER
Band/Volume 29
Heft 5
Seite von 1277
Seite bis 1294
Sprache englisch
Topic T5 Future Landscapes
Daten-/Softwarelinks https://doi.org/10.5065/D6MW2F4D
https://doi.org/10.5281/zenodo.14191623
Abstract Data-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulation. Recently, hybrid models, which combine data-driven methods with process-based approaches, have been proposed to leverage the strengths of both methodologies, aiming to enhance simulation accuracy while maintaining a certain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events, comparing their performance against long short-term memory (LSTM) networks and process-based models. Our results indicate that hybrid models show performance similar to that of the LSTM network for most cases. However, hybrid models reported slightly lower errors in the most extreme cases and were able to produce higher peak discharges.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=30598
Acuña Espinoza, E., Loritz, R., Kratzert, F., Klotz, D., Gauch, M., Álvarez Chaves, M., Ehret, U. (2025):
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Hydrol. Earth Syst. Sci. 29 (5), 1277 - 1294 10.5194/hess-29-1277-2025