Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1016/j.rse.2024.114579
Lizenz creative commons licence
Titel (primär) A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment
Autor Fan, D.; Zhao, T.; Jiang, X.; García-García, A. ORCID logo ; Schmidt, T.; Samaniego, L. ORCID logo ; Attinger, S.; Wu, H.; Jiang, Y.; Shi, J.; Fan, L.; Tang, B.-H.; Wagner, W.; Dorigo, W.; Gruber, A.; Mattia, F.; Balenzano, A.; Brocca, L.; Jagdhuber, T.; Wigneron, J.-P.; Montzka, C.; Peng, J. ORCID logo
Quelle Remote Sensing of Environment
Erscheinungsjahr 2025
Department CHS; RS
Band/Volume 318
Seite von art. 114579
Sprache englisch
Topic T5 Future Landscapes
Daten-/Softwarelinks https://doi.org/10.1594/PANGAEA.968754
Keywords Soil moisture; SAR; Microwave; Sentinel-1; High resolution
Abstract High spatial resolution of satellite-based soil moisture (SM) data are essential for hydrological, meteorological, ecological, and agricultural studies. Especially, for watershed hydrological simulation and crop water stress analysis, 1-km resolution SM data have attracted considerable attention. In this study, a dual-polarization algorithm (DPA) for SM estimation is proposed to produce a global-scale, 1-km resolution SM dataset (S1-DPA) using the Sentinel-1 synthetic aperture radar (SAR) data. Specifically, a forward model was constructed to simulate the backscatter observed by the Sentinel-1 dual-polarization SAR, and SM retrieval was achieved by minimizing the simulation error for different soil and vegetation states. The produced S1-DPA data products cover the global land surface for the period 2016–2022 and include both ascending and descending data with an observation frequency of 3–6 days for Europe and 6–12 days for the other regions. The validation results show that the S1-DPA reproduces the spatio-temporal variation characteristics of the ground-observed SM, with an unbiased root mean squared difference (ubRMSD) of 0.077 m3/m3. The generated 1-km SM product will facilitate the application of high-resolution SM data in the field of hydrology, meteorology and ecology.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=30311
Fan, D., Zhao, T., Jiang, X., García-García, A., Schmidt, T., Samaniego, L., Attinger, S., Wu, H., Jiang, Y., Shi, J., Fan, L., Tang, B.-H., Wagner, W., Dorigo, W., Gruber, A., Mattia, F., Balenzano, A., Brocca, L., Jagdhuber, T., Wigneron, J.-P., Montzka, C., Peng, J. (2025):
A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment
Remote Sens. Environ. 318 , art. 114579 10.1016/j.rse.2024.114579