Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.3390/agriculture14081230
Lizenz creative commons licence
Titel (primär) Deep learning with a multi-task convolutional neural network to generate a national-scale 3D soil data product: The particle size distribution of the German agricultural soil landscape
Autor Ließ, M.; Sakhaee, A.
Quelle Agriculture-Basel
Erscheinungsjahr 2024
Department BOSYS
Band/Volume 14
Heft 8
Seite von art. 1230
Sprache englisch
Topic T5 Future Landscapes
Daten-/Softwarelinks https://doi.org/10.20387/bonares-ss02-6dys
Supplements https://www.mdpi.com/article/10.3390/agriculture14081230/s1
Keywords soil parameter space; soil texture; predictive mapping; machine learning
Abstract Many soil functions and processes are controlled by the soil particle size distribution. Accordingly, nationwide geoinformation on this soil property is required to enable climate-smart and resilient land management. This study presents a new deep learning approach to simultaneously model the contents of the three particle sizes of sand, silt, and clay and their variations with depth throughout the landscape. The approach allows for the consideration of the natural soil horizon boundaries and the inclusion of the surrounding landscape context of each soil profile to investigate the soil–landscape relation. Applied to the agricultural soil landscape of Germany, the approach generated a three-dimensional continuous data product with a resolution of 100 m in geographic space and a depth resolution of 1 cm. The approach relies on a patch-wise multi-target convolutional neural network (CNN) model. Genetic algorithm optimization was applied for CNN parameter tuning. Overall, the effectiveness of the CNN algorithm in generating multidimensional, multivariate, national-scale soil data products was demonstrated. The predictive performance resulted in a median root mean square error of 17.8 mass-% for the sand, 14.4 mass-% for the silt, and 9.3 mass-% for the clay content in the top ten centimeters. This increased to 20.9, 16.5, and 11.8 mass-% at a 40 cm depth. The generated data product is the first of its kind. However, even though the potential of this deep learning approach to understand and model the complex soil–landscape relation is virtually limitless, its limitations are data driven concerning the approximation of the soil-forming factors and the available soil profile data.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=29519
Ließ, M., Sakhaee, A. (2024):
Deep learning with a multi-task convolutional neural network to generate a national-scale 3D soil data product: The particle size distribution of the German agricultural soil landscape
Agriculture-Basel 14 (8), art. 1230 10.3390/agriculture14081230