Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1111/2041-210X.14288
Lizenz creative commons licence
Titel (primär) Facilitating comparable research in seedling functional ecology
Autor Winkler, D.E.; Garbowski, M.; Kožić, K.; Ladouceur, E.; Larson, J.; Martin, S.; Rosche, C.; Roscher, C.; Slate, M.L.; Korell, L.
Quelle Methods in Ecology and Evolution
Erscheinungsjahr 2024
Department iDiv; PHYDIV; SIE
Band/Volume 15
Heft 3
Seite von 464
Seite bis 476
Sprache englisch
Topic T5 Future Landscapes
Supplements https://besjournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2F2041-210X.14288&file=mee314288-sup-0001-AppendixS1.pdf
https://besjournals.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2F2041-210X.14288&file=mee314288-sup-0002-AppendixS2.xlsx
Keywords functional traits, plant ontogeny; recruitment; seedling; sporophyte
Abstract
  1. Ecologists have worked to ascribe function to the variation found in plant populations, communities and ecosystems across environments for at least the past century. The vast body of research in functional ecology has drastically improved understanding of how individuals respond to their environment, communities are assembled and ecosystems function. However, with limited exceptions, few studies have quantified differences in plant function during the earliest stages of the plant life cycle, and fewer have tested how this early variability shapes populations, communities and ecosystems.
  2. Drawing from the literature and our collective experience, we describe the current state of knowledge in seedling functional ecology and provide examples of how this subdiscipline can enrich our fundamental understanding of plant function across levels of organisation. To inspire progressive work in this area, we also outline key considerations involved in seedling functional research (who, what, when, where and how to measure seedling traits) and identify remaining challenges and gaps in understanding around methodological approaches.
  3. Within this conceptual synthesis, we highlight three critical areas in seedling ecology for future research to target. First, given wide variation in the definition of a ‘seedling’, we provide a standard definition based on seed reserve dependence while emphasising the need to measure ontogenetic variation more clearly both within and following the seedling stage. Second, studies demonstrate that seedlings can be studied in multiple media (e.g. soil, agar, filter paper) and conditions (e.g. field, greenhouse, laboratory). We recommend that researchers select methods based on explicit goals, yet follow standard guidelines to reduce methodological noise across studies. Third, research is critically needed to assess the implications of different methodologies on trait measurement and compatibility across studies.
  4. By highlighting the importance of seedling functional ecology and suggesting pathways to address key challenges, we aim to inspire future research that generates useful and comparable data on seedling functional ecology. This work is critical to explain variation within and among populations, communities and ecosystems and integrate this most vulnerable stage of plant life into ecological frameworks.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=28716
Winkler, D.E., Garbowski, M., Kožić, K., Ladouceur, E., Larson, J., Martin, S., Rosche, C., Roscher, C., Slate, M.L., Korell, L. (2024):
Facilitating comparable research in seedling functional ecology
Methods Ecol. Evol. 15 (3), 464 - 476 10.1111/2041-210X.14288