Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1016/j.resconrec.2024.107451
Titel (primär) High spatial and temporal resolution multi-source anthropogenic heat estimation for China
Autor Qian, J.; Zhang, L.; Schlink, U. ORCID logo ; Meng, Q.; Liu, X.; Janscó, T.
Quelle Resources, Conservation and Recycling
Erscheinungsjahr 2024
Department SUSOZ
Band/Volume 203
Seite von art. 107451
Sprache englisch
Topic T5 Future Landscapes
Daten-/Softwarelinks https://doi.org/10.7910/DVN/VIJFPK
Supplements https://ars.els-cdn.com/content/image/1-s2.0-S0921344924000454-mmc1.docx
Keywords Anthropogenic heat; Machine learning; Model improvement; Spatiotemporal heterogeneity
Abstract Anthropogenic heat (AH) emissions have rapidly increased in recent decades and are now critical for studying urban thermal environments; however, AH datasets composed of multiple heat sources with fine and accurate spatiotemporal characteristics at large scales are lacking. This study obtained annual, monthly, and hourly AH of multiple heat sources in China for 2019 at 500 m resolution. We first corrected the top-down inventory method for China, which is based on official energy consumption data. Then, we considered features such as the national building height, weighted factory density, and weighted road density to better represent the spatial characteristics of multi-source AH. Based on the above data preparation, a stacking framework was employed to integrate multiple machine-learning algorithms to construct an efficient and accurate AH estimation model. Finally, besides the comparative validation, the results were further tested by participating in a short-term climate numerical simulation for both winter and summer. The resulting data showed a reasonable AH composition and the total amount and composition of AH varied notably from region to region. The spatial and temporal characteristics of the AH from different sources differed greatly and were more detailed and accurate than those reported in previous studies. Air temperature simulations in winter were improved by the AH dataset input, but the uncertainties of climate simulations also limit its validity in AH validation. Because of its large spatial extent and detailed spatiotemporal characteristics, the new dataset strongly supports urban climate research and sustainable development.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=28640
Qian, J., Zhang, L., Schlink, U., Meng, Q., Liu, X., Janscó, T. (2024):
High spatial and temporal resolution multi-source anthropogenic heat estimation for China
Resour. Conserv. Recycl. 203 , art. 107451 10.1016/j.resconrec.2024.107451