Details zur Publikation

Kategorie Textpublikation
Referenztyp Buchkapitel
DOI 10.15439/2022F125
Titel (primär) Prototypical investigation of the use of fuzzy measurement data in a case study in water analysis
Titel (sekundär) Position Papers of the 17th Conference on Computer Science and Intelligence Systems
Autor Penzel, S.; Rudolph, M.; Borsdorf, H. ORCID logo ; Kanoun, O.
Herausgeber Ganzha, M.; Maciaszek, L.; Paprzycki, M.; Ślęzak, D.
Quelle Annals of Computer Science and Information Systems
Erscheinungsjahr 2022
Department MET
Band/Volume 31
Seite von 27
Seite bis 33
Sprache englisch
Topic T5 Future Landscapes
Abstract A common problem when using real data is the fact that the values usually exhibit some degree of uncertainty. Measurement uncertainties therefore represent a major challenge when trying to interpret and draw conclusions from real data. This is especially true in on-site analysis in the environmental sector where the uncertainty in sample plays such a large role. An approach for the modelling and analysis of data for polluted water and the inclusion of measurement uncertainties is presented. This approach is based on fuzzy modelling, in which the uncertainty of the parameters is represented by so-called fuzzy numbers and thus reflect a possible blurred range of these parameter values. The result is a fuzzy pattern classifier, which allows a fuzzy and thus realistic characterization of unknown water samples. The procedure is exemplified using the extinction spectra taken using a UV/Vis spectrometer.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=26664
Penzel, S., Rudolph, M., Borsdorf, H., Kanoun, O. (2022):
Prototypical investigation of the use of fuzzy measurement data in a case study in water analysis
In: Ganzha, M., Maciaszek, L., Paprzycki, M., Ślęzak, D. (eds.)
Position Papers of the 17th Conference on Computer Science and Intelligence Systems
Annals of Computer Science and Information Systems 31
Polish Information Processing Society, Warsaw, p. 27 - 33 10.15439/2022F125