Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1111/geb.13527
Lizenz creative commons licence
Titel (primär) Bioclimatic context of species' populations determines community stability
Autor Evans, L.C.; Melero, Y.; Schmucki, R.; Boersch-Supan, P.H.; Brotons, L.; Fontaine, C.; Jiguet, F.; Kuussaari, M.; Massimino, D.; Robinson, R.A.; Roy, D.B.; Schweiger, O.; Settele, J.; Stefanescu, C.; van Turnhout, C.A.M.; Oliver, T.H.
Journal / Serie Global Ecology and Biogeography
Erscheinungsjahr 2022
Department BZF; NSF; iDiv
Band/Volume 31
Heft 8
Seite von 1542
Seite bis 1555
Sprache englisch
Topic T5 Future Landscapes
Keywords asynchrony; biodiversity; biogeography; community stability; diversity–stability; insects; integrated Laplace approximation; long-term monitoring; range position


It is important to understand the factors affecting community stability because ecosystem function is increasingly at risk from biodiversity loss. Here, we evaluate how a key factor, the position of local environmental conditions within the thermal range of the species, influences the stability of butterfly communities at a continental scale.


Spain, UK and Finland.

Time period


Major taxa studied



We tested the following hypotheses about how species responses to temperature anomalies aggregate to influence stability: Hypothesis 1, species have contrasting responses to local temperature anomalies at opposing edges of their thermal range; hypothesis 2, communities with central thermal range positions have higher community stability; and the impacts of thermal range position on community stability are driven by hypothesis 3, population asynchrony, or hypothesis 4, additive population stability. Data were analysed at 876 sites for 157 species.


We found some support for hypothesis 1, because there were interactions between thermal range and response to temperature anomalies such that species at different range edges could provide weak compensatory dynamics. However, responses were nonlinear, suggesting strong declines with extreme anomalies, particularly at the hot range edge. Hypothesis 2 was supported in part, because community stability increased with central thermal range positions and declined at the edges, after accounting for species richness and community abundance. Thermal range position was weakly correlated with asynchrony (hypothesis 3) and population stability (hypothesis 4), although species richness and population abundance had larger impacts.

Main conclusions

Future extreme heat events will be likely to impact species negatively across their thermal range, but might be particularly impactful on populations at the hottest end of the thermal range. Thermal range position influenced community stability because range edge communities were stable. However, the prediction of community stability from thermal range position is challenging because of nonlinear responses to temperature, with small temperature anomalies producing weak compensatory dynamics, but large extreme events synchronizing dynamics.

dauerhafte UFZ-Verlinkung
Evans, L.C., Melero, Y., Schmucki, R., Boersch-Supan, P.H., Brotons, L., Fontaine, C., Jiguet, F., Kuussaari, M., Massimino, D., Robinson, R.A., Roy, D.B., Schweiger, O., Settele, J., Stefanescu, C., van Turnhout, C.A.M., Oliver, T.H. (2022):
Bioclimatic context of species' populations determines community stability
Glob. Ecol. Biogeogr. 31 (8), 1542 - 1555