Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Titel (primär) Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series
Autor Herold, M.; Ptak, T.; Bayer-Raich, M.; Wendel, T.; Grathwohl, P.;
Journal / Serie Journal of Contaminant Hydrology
Erscheinungsjahr 2009
Department HDG;
Band/Volume 106
Heft 1-2
Sprache englisch;
Keywords Integral pumping tests; Conditioning; Plume delineation; Remediation optimisation
Abstract A series of integral pumping tests (IPTs) has been conducted at a former gasworks site to quantify the contaminant mass flow rates and average concentration in groundwater along three control planes across the groundwater flow direction. The measured concentration-time series were analysed numerically with the help of the inversion code CSTREAM and a flow and transport model representing the highly heterogeneous aquifer. Since the control planes cover the entire downstream width of the potentially contaminated area, they allow conclusions to be drawn about the current location and spread of the contaminant plume. Previous evaluations of integral pumping tests could calculate three scenarios concerning the spread of the plume around the IPT well: (i) the plume is located to the right of the pumping well, (ii) to the left, or (iii) is distributed symmetrically around it. To create a more realistic picture of the plume position, a series of direct-push monitoring wells were installed along one control plane. The concentrations found in these wells were included in the numerical analysis to condition the numerical inversion results, and allowed the identification of a more pronounced plume centre and fringe, which supports the development of optimised remediation strategies.
ID 261
dauerhafte UFZ-Verlinkung http://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=261
Herold, M., Ptak, T., Bayer-Raich, M., Wendel, T., Grathwohl, P. (2009):
Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series
J. Contam. Hydrol. 106 (1-2), 29 - 38