Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Creative Commons Lizenz creative commons licence
Titel (primär) Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays
Autor Escher, B.; Neale, P.;
Journal / Serie Environmental Toxicology and Chemistry
Erscheinungsjahr 2021
Department ZELLTOX;
Band/Volume 40
Heft 2
Sprache englisch;
POF III (gesamt) F11;
Supplements https://setac.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fetc.4944&file=etc4944-sup-0001-2020_11_13_Table_S1_S2_S3.xlsx
Keywords Cytotoxicity; specific mode of action; environmental quality standard; water quality; reporter gene assay; water pollution
Abstract Effect‐based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. EBTs have been derived for highly specific bioassays, such as hormone‐receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read‐across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. Specificity ratios are the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read‐across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high‐potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log‐normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay indicative of the oxidative stress response and two nuclear receptor assays targeting the peroxisome proliferator activated receptor PPAR⃞ and the arylhydrocarbon receptor AhR. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water.
ID 23936
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=23936
Escher, B., Neale, P. (2021):
Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays
Environ. Toxicol. Chem. 40 (2), 487 - 499