Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1002/vzj2.20258
Lizenz creative commons licence
Titel (primär) Quantification of data‐related uncertainty of spatially dense soil moisture patterns on the small catchment scale estimated using unsupervised multiple regression
Autor Paasche, H.; Schröter, I.
Quelle Vadose Zone Journal
Erscheinungsjahr 2023
Department MET
Band/Volume 22
Heft 4
Seite von e20258
Sprache englisch
Topic T5 Future Landscapes
Abstract Multiple regression analysis is a valuable method to reduce information gaps in a sparse soil moisture data set by fusing its information content with those of densely mapped data sets. Regression analysis utilizing uncertain data results in an indeterminate regression model and indeterminate soil moisture predictions when applying the regression model. We employ an unsupervised multiple regression approaches, taking optimally located sparse soil moisture measurements directly as coefficients in a linear regression model. We propagate data uncertainties into our probabilistic soil moisture estimation results by embedding the regression in a Monte Carlo approach. The computed uncertainty defines the quantitative limit for information retrieval from the resultant ensemble of soil moisture maps. This raises doubts on the true presence of some prominent channel-like features of increased soil moisture that are clearly visible in a previously and deterministically derived soil moisture map ignoring the presence of data uncertainty. The approach followed in this work is computationally simple and could be applied routinely to databases of similar size. Insufficient uncertainty communication by the data provider became the biggest obstacle in our efforts and led us to the insight that the geoscientific community may need to revise their standards with regard to uncertainty communication related to measured and processed data.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=23513
Paasche, H., Schröter, I. (2023):
Quantification of data‐related uncertainty of spatially dense soil moisture patterns on the small catchment scale estimated using unsupervised multiple regression
Vadose Zone J. 22 (4), e20258 10.1002/vzj2.20258