Details zur Publikation |
Kategorie | Textpublikation |
Referenztyp | Zeitschriften |
DOI | 10.1080/10106049.2018.1524514 |
Volltext | Akzeptiertes Manuskript |
Titel (primär) | Mapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics |
Autor | Banzhaf, E.; Kollai, H. ; Kindler, A. |
Quelle | Geocarto International |
Erscheinungsjahr | 2020 |
Department | SUSOZ; BIOENERGIE |
Band/Volume | 35 |
Heft | 6 |
Seite von | 623 |
Seite bis | 640 |
Sprache | englisch |
Daten-/Softwarelinks | https://doi.org/10.1594/PANGAEA.895391 |
Keywords | Object-Based Image Analysis (OBIA); urban remote sensing; urban structure types; image segmentation; human health and well-being |
UFZ Querschnittsthemen | TERENO; |
Abstract | Mapping urban structures is a vital prerequisite for urban planners to enhance their database for a liveable city dedicated to sustainable development. Therefore, it is significant to measure urban grey and green structures at the scale of local districts to understand the urban structure and residential needs for urban ecosystem services. For a detailed analysis we exploit digital orthophotos (DOP), LiDAR data, and vital statistics. We use remote sensing techniques to create an Object-based Image Analysis (OBIA) that differentiates grey and green structures with high precision and at refined scale. This spatial information is linked with allocated population and health-related indicators to identify built-up types with highest population densities and local districts with deficits in the provision of different green structures. Our results show the share of built-up structures and the contribution of green structures to urban ecosystem services, human health and well-being at local district level. |
dauerhafte UFZ-Verlinkung | https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=21433 |
Banzhaf, E., Kollai, H., Kindler, A. (2020): Mapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics Geocarto Int. 35 (6), 623 - 640 10.1080/10106049.2018.1524514 |