Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1016/j.envsoft.2018.01.010
Volltext Autorenversion
Titel (primär) Inverse modelling of snow depths
Autor Schlink, U. ORCID logo ; Hertel, D.
Quelle Environmental Modelling & Software
Erscheinungsjahr 2018
Department SUSOZ
Band/Volume 110
Seite von 62
Seite bis 71
Sprache englisch
Supplements https://ars.els-cdn.com/content/image/1-s2.0-S1364815217301330-mmc1.pdf
https://ars.els-cdn.com/content/image/1-s2.0-S1364815217301330-mmc2.xml
Keywords Bayesian estimation; Operational snow forecasting; Prediction performance; Sub-alpine snow cover; ESCIMO model
UFZ Querschnittsthemen RU6;
Abstract

Operational snow forecasting models contain parameters for which site-specific values are often unknown. As an improvement a Bayesian procedure is suggested that estimates, from past observations, site-specific parameters with confidence intervals. It turned out that simultaneous estimation of all parameters was most accurate. From 2.5 years of daily snow depth observations the estimates were for snow albedo 0.94, 0.89, and 0.56, for snow emissivity 0.88, 0.92, and 0.99, and for snow density (g/cm³) 0.14, 0.05, and 0.11 at the German weather stations Wasserkuppe, Erfurt-Weimar, and Artern, respectively. Using estimated site-specific parameters, ex post snow depth forecasts achieved an index of agreement IA = 0.4–0.8 with past observations; IA = 0.3–0.8 for a 51-years period. They outperformed the precision of predictions based on default parameter values (0.1 < IA<0.3). The developed inverse approach is recommended for parameter estimation and snow forecasting at sub-alpine stations with more or less urban impact and for application in education.

dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=19966
Schlink, U., Hertel, D. (2018):
Inverse modelling of snow depths
Environ. Modell. Softw. 110 , 62 - 71 10.1016/j.envsoft.2018.01.010