Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1111/jvs.12554
Volltext Shareable Link
Titel (primär) Predicting habitat affinities of plant species using commonly measured functional traits
Autor Shipley, B.; Belluau, M.; Kühn, I. ORCID logo ; Soudzilovskaia, N.A.; Bahn, M.; Penuelas, J.; Kattge, J.; Sack, L.; Cavender-Bares, J.; Ozinga, W.A.; Blonder, B.; van Bodegom, P.M.; Manning, P.; Hickler, T.; Sosinski, E.; Pillar, V.D.; Onipchenko, V.G.; Poschlod, P.
Quelle Journal of Vegetation Science
Erscheinungsjahr 2017
Department BZF; iDiv
Band/Volume 28
Heft 5
Seite von 1082
Seite bis 1095
Sprache englisch
Supplements https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjvs.12554&attachmentId=195857692
Keywords Environmental gradients; Habitat affinities; Habitat fertility; Leaf dry matter content; Leaf size; Seed size; Shade; Specific leaf area; Soil moisture; Soil nutrients; Understorey plants; Wetlands
UFZ Querschnittsthemen RU1;
Abstract

Questions

Heinz Ellenberg classically defined “indicator” scores for species representing their typical positions along gradients of key environmental variables, and these have proven very useful for designating ecological distributions. We tested a key tenent of trait-based ecology, i.e. the ability to predict ecological preferences from species’ traits. More specifically, can we predict Ellenberg indicator scores for soil nutrients, soil moisture and irradiance from four well-studied traits: leaf area, leaf dry matter content, specific leaf area (SLA) and seed mass? Can we use such relationships to estimate Ellenberg scores for species never classified by Ellenberg?

Location

Global.

Methods

Cumulative link models were developed to predict Ellenberg nutrients, irradiance and moisture values from Ln-transformed trait values using 922, 981 and 988 species, respectively. We then independently tested these prediction equations using the trait values of 423 and 421 new species that occurred elsewere in Europe, North America and Morocco, and whose habitat affinities we could classify from independent sources as three-level ordinal ranks related to soil moisture and irradiance. The traits were SLA, leaf dry matter content, leaf area and seed mass.

Results

The four functional traits predicted the Ellenberg indicator scores of site fertility, light and moisture with average error rates of <2 Ellenberg ranks out of nine. We then used the trait values of 423 and 421 species, respectively, that occurred (mostly) outside of Germany but whose habitat affinities we could classify as three-level ordinal ranks related to soil moisture and irradiance. The predicted positions of the new species, given the equations derived from the Ellenberg indices, agreed well with their independent habitat classifications, although our equation for Ellenberg irrandiance levels performed poorly on the lower ranks.

Conclusions

These prediction equations, and their eventual extensions, could be used to provide approximate descriptions of habitat affinities of large numbers of species worldwide.

dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=19139
Shipley, B., Belluau, M., Kühn, I., Soudzilovskaia, N.A., Bahn, M., Penuelas, J., Kattge, J., Sack, L., Cavender-Bares, J., Ozinga, W.A., Blonder, B., van Bodegom, P.M., Manning, P., Hickler, T., Sosinski, E., Pillar, V.D., Onipchenko, V.G., Poschlod, P. (2017):
Predicting habitat affinities of plant species using commonly measured functional traits
J. Veg. Sci. 28 (5), 1082 - 1095 10.1111/jvs.12554