Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1038/srep32965
Titel (primär) Predicting the synergy of multiple stress effects
Autor Liess, M.; Foit, K.; Knillmann, S.; Schäfer, R.B.; Liess, H.-D.
Quelle Scientific Reports
Erscheinungsjahr 2016
Department OEKOTOX
Band/Volume 6
Seite von art. 32965
Sprache englisch
UFZ Querschnittsthemen RU2;
Abstract Toxicants and other, non-chemical environmental stressors contribute to the global biodiversity crisis. Examples include the loss of bees and the reduction of aquatic biodiversity. Although non-compliance with regulations might be contributing, the widespread existence of these impacts suggests that for example the current approach of pesticide risk assessment fails to protect biodiversity when multiple stressors concurrently affect organisms. To quantify such multiple stress effects, we analysed all applicable aquatic studies and found that the presence of environmental stressors increases individual sensitivity to toxicants (pesticides, trace metals) by a factor of up to 100. To predict this dependence, we developed the “Stress Addition Model” (SAM). With the SAM, we assume that each individual has a general stress capacity towards all types of specific stress that should not be exhausted. Experimental stress levels are transferred into general stress levels of the SAM using the stress-related mortality as a common link. These general stress levels of independent stressors are additive, with the sum determining the total stress exerted on a population. With this approach, we provide a tool that quantitatively predicts the highly synergistic direct effects of independent stressor combinations.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=17874
Liess, M., Foit, K., Knillmann, S., Schäfer, R.B., Liess, H.-D. (2016):
Predicting the synergy of multiple stress effects
Sci. Rep. 6 , art. 32965 10.1038/srep32965