<< zurück

Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Titel (primär) Role of envelope N-linked glycosylation in Ross River virus virulence and transmission
Autor Nelson, M.A.; Herrero, L.J.; Jeffery, J.A.L.; Hoehn, M.; Rudd, P.A.; Supramaniam, A.; Kay, B.H.; Ryan, P.A.; Mahalingam, S.;
Journal / Serie Journal of General Virology
Erscheinungsjahr 2016
Department NSF;
Band/Volume 97
Heft 5
Sprache englisch;
POF III (gesamt) T12;
UFZ Querschnittsthemen RU1
Abstract With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous work with Ross River virus (RRV) demonstrated that alphaviral -linked glycosylation contributes to type I IFN (IFN-αβ) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral -linked glycans , assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, . A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector , whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector.
ID 17536
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=17536
Nelson, M.A., Herrero, L.J., Jeffery, J.A.L., Hoehn, M., Rudd, P.A., Supramaniam, A., Kay, B.H., Ryan, P.A., Mahalingam, S. (2016):
Role of envelope N-linked glycosylation in Ross River virus virulence and transmission
J. Gen. Virol. 97 (5), 1094 - 1106