Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1016/j.bioelechem.2015.03.010
Titel (primär) A framework for modeling electroactive microbial biofilms performing direct electron transfer
Autor Korth, B. ORCID logo ; Rosa, L.F.M.; Harnisch, F. ORCID logo ; Picioreanu, C.
Quelle Bioelectrochemistry
Erscheinungsjahr 2015
Department UMB
Band/Volume 106
Seite von 194
Seite bis 206
Sprache englisch
Keywords Model; Bioelectrochemical systems; Electrochemically active microbial biofilms; Extracellular electron transfer; Microbial electrochemical technologies
UFZ Querschnittsthemen RU4;
Abstract A modeling platform for microbial electrodes based on electroactive microbial biofilms performing direct electron transfer (DET) is presented. Microbial catabolism and anabolism were coupled with intracellular and extracellular electron transfer, leading to biofilm growth and current generation. The model includes homogeneous electron transfer from cells to a conductive biofilm component, biofilm matrix conduction, and heterogeneous electron transfer to the electrode. Model results for Geobacter based anodes, both at constant electrode potential and in voltammetric (dynamic electrode potential) conditions, were compared to experimental data from different sources. The model can satisfactorily describe microscale (concentration, pH and redox gradients) and macroscale (electric currents, biofilm thickness) properties of Geobacter biofilms. The concentration of electrochemically accessible redox centers, here denominated as cytochromes, involved in the extracellular electron transfer, plays the key role and may differ between constant potential (300 mM) and dynamic potential (3 mM) conditions. Model results also indicate that the homogeneous and heterogeneous electron transfer rates have to be within the same order of magnitude (1.2 s− 1) for reversible extracellular electron transfer.
dauerhafte UFZ-Verlinkung
Korth, B., Rosa, L.F.M., Harnisch, F., Picioreanu, C. (2015):
A framework for modeling electroactive microbial biofilms performing direct electron transfer
Bioelectrochemistry 106 , 194 - 206 10.1016/j.bioelechem.2015.03.010