Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Titel (primär) Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene
Autor Dorer, C.; Vogt, C.; Kleinsteuber, S.; Stams, A.J.M.; Richnow, H.-H.;
Journal / Serie Environmental Science & Technology
Erscheinungsjahr 2014
Department ISOBIO; UMB;
Band/Volume 48
Heft 16
Sprache englisch;
POF III (gesamt) T41;
UFZ Querschnittsthemen RU3;
Abstract This study applied one- and two-dimensional compound-specific isotope analysis (CSIA) for the elements carbon and hydrogen to assess different means of microbial ethylbenzene activation. Cultures incubated under nitrate-reducing conditions showed significant carbon and highly pronounced hydrogen isotope fractionation of comparable magnitudes, leading to nearly identical slopes in dual-isotope plots. The results imply that Georgfuchsia toluolica G5G6 and an enrichment culture dominated by an Azoarcus species activate ethylbenzene by anaerobic hydroxylation catalyzed by ethylbenzene dehydrogenase, similar to Aromatoleum aromaticum EbN1. The isotope enrichment pattern in dual plots from two strictly anaerobic enrichment cultures differed considerably from those for benzylic hydroxylation, indicating an alternative anaerobic activation step, most likely fumarate addition. Large hydrogen fractionation was quantified using a recently developed Rayleigh-based approach considering hydrogen atoms at reactive sites. Data from nine investigated microbial cultures clearly suggest that two-dimensional CSIA in combination with the magnitude of hydrogen isotope fractionation is a valuable tool to distinguish ethylbenzene degradation and may be of practical use for monitoring natural or technological remediation processes at field sites.
ID 15215
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=15215
Dorer, C., Vogt, C., Kleinsteuber, S., Stams, A.J.M., Richnow, H.-H. (2014):
Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene
Environ. Sci. Technol. 48 (16), 9122 - 9132