Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1111/ecog.00580
Titel (primär) Using dynamic vegetation models to simulate plant range shifts
Autor Snell, R.S.; Huth, A.; Nabel, J.E.M.S.; Bocedi, G.; Travis, J.M.J.; Gravel, D.; Bugmann, H.; Gutiérrez, A.G.; Hickler, T.; Higgins, S.I.; Reineking, B.; Scherstjanoi, M.; Zurbriggen, N.; Lischke, H.
Quelle Ecography
Erscheinungsjahr 2014
Department OESA
Band/Volume 37
Heft 12
Seite von 1184
Seite bis 1197
Sprache englisch
UFZ Querschnittsthemen RU5;
Abstract Dynamic vegetation models (DVMs) follow a process-based approach to simulate plant population demography, and have been used to address questions about disturbances, plant succession, community composition, and provisioning of ecosystem services under climate change scenarios. Despite their potential, they have seldom been used for studying species range dynamics explicitly. In this perspective paper, we make the case that DVMs should be used to this end and can improve our understanding of the factors that influence species range expansions and contractions. We review the benefits of using process-based, dynamic models, emphasizing how DVMs can be applied specifically to questions about species range dynamics. Subsequently, we provide a critical evaluation of some of the limitations and trade-offs associated with DVMs, and we use those to guide our discussions about future model development. This includes a discussion on which processes are lacking, specifically a mechanistic representation of dispersal, inclusion of the seedling stage, trait variability, and a dynamic representation of reproduction. We also discuss upscaling techniques that offer promising solutions for being able to run these models efficiently over large spatial extents. Our aim is to provide directions for future research efforts and to illustrate the value of the DVM approach.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=14704
Snell, R.S., Huth, A., Nabel, J.E.M.S., Bocedi, G., Travis, J.M.J., Gravel, D., Bugmann, H., Gutiérrez, A.G., Hickler, T., Higgins, S.I., Reineking, B., Scherstjanoi, M., Zurbriggen, N., Lischke, H. (2014):
Using dynamic vegetation models to simulate plant range shifts
Ecography 37 (12), 1184 - 1197 10.1111/ecog.00580