Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1111/1365-2745.12052
Volltext Shareable Link
Titel (primär) An improved model to predict the effects of changing biodiversity levels on ecosystem function
Autor Connolly, J.; Bell, T.; Bolger, T.; Brophy, C.; Carnus, T.; Finn, J.A.; Kirwan, L.; Isbell, F.; Levine, J.; Lüscher, A.; Picasso, V.; Roscher, C.; Sebastia, M.T.; Suter, M.; Weigelt, A.
Quelle Journal of Ecology
Erscheinungsjahr 2013
Department BZF
Band/Volume 101
Heft 2
Seite von 344
Seite bis 355
Sprache englisch
Keywords biodiversity; complementarity; diversity manipulations; ecosystem function; ecosystem services; evenness and richness; Generalised Diversity-Interactions models; saturation; species loss and extinctions; stability; transgressive overyielding
UFZ Querschnittsthemen RU1;
Abstract 1. The development of models of the relationship between biodiversity and ecosystem function
(BEF) has advanced rapidly over the last 20 years, incorporating insights gained through extensive
experimental work. We propose Generalised Diversity-Interactions models that include many of the
features of existing models and have several novel features. Generalised Diversity-Interactions models
characterise the contribution of two species to ecosystem function as being proportional to the
product of their relative abundances raised to the power of a coefficient h.
2. A value of h < 1 corresponds to a stronger than expected contribution of species’ pairs to ecosystem
functioning, particularly at low relative abundance of species.
3. Varying the value of h has profound consequences for community-level properties of BEF relationships,
including: (i) saturation properties of the BEF relationship; (ii) the stability of ecosystem
function across communities; (iii) the likelihood of transgressive overyielding.
4. For low values of h, loss of species can have a much greater impact on ecosystem functioning
than loss of community evenness.
5. Generalised Diversity-Interactions models serve to unify the modelling of BEF relationships as
they include several other current models as special cases.
6. Generalised Diversity-Interactions models were applied to seven data sets and three functions:
total biomass (five grassland experiments), community respiration (one bacterial experiment) and
nitrate leaching (one earthworm experiment). They described all the nonrandom structure in the data
in six experiments, and most of it in the seventh experiment and so fit as well or better than competing
BEF models for these data. They were significantly better than Diversity-Interactions models in
five experiments.
7. Synthesis. We show that Generalized Diversity-Interactions models quantitatively integrate several
methods that separately address effects of species richness, evenness and composition on ecosystem
function. They describe empirical data at least as well as alternative models and improve the ability
to quantitatively test among several theoretical and practical hypotheses about the effects of
biodiversity levels on ecosystem function. They improve our understanding of important aspects
of the relationship between biodiversity (evenness and richness) and ecosystem function (BEF),
which include saturation, effects of species loss, the stability of ecosystem function and the incidence
of transgressive overyielding.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=13530
Connolly, J., Bell, T., Bolger, T., Brophy, C., Carnus, T., Finn, J.A., Kirwan, L., Isbell, F., Levine, J., Lüscher, A., Picasso, V., Roscher, C., Sebastia, M.T., Suter, M., Weigelt, A. (2013):
An improved model to predict the effects of changing biodiversity levels on ecosystem function
J. Ecol. 101 (2), 344 - 355 10.1111/1365-2745.12052