Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Volltext Shareable Link
Titel (primär) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n -alkane hydrocarbons
Autor de Carvalho, C.C.C.R.; Wick, L.Y.; Heipieper, H.J.;
Journal / Serie Applied Microbiology and Biotechnology
Erscheinungsjahr 2009
Department UMB; UBT;
Band/Volume 82
Heft 2
Sprache englisch;
Keywords Cell adhesion; Surface properties; Fatty acids; Surface tension; Cell charge
Abstract Rhodococcus erythropolis was found to utilize C5 to C16 n-alkane hydrocarbons as sole source of carbon and energy when growing as planktonic or biofilm cells attached to polystyrene surfaces. Growth rates on even numbered were two- to threefold increased relatively to odd-numbered n-alkanes and depended on the chain length of the n-alkanes. C10-, C12-, C14-, and C16-n-alkanes gave rise to two- to fourfold increased maximal growth rates relative to C5- to C9-hydrocarbons. In reaction to the extremely poor water solubility of the n-alkanes, both planktonic and biofilm cells exhibited distinct adaptive changes. These included the production of surface active compounds and substrate-specific modifications of the physicochemical cell surface properties as expressed by the microbial adhesion to hydrocarbon- and contact angle-based hydrophobicity, as well as the zeta potential of the cells. By contrast, n-alkane-specific alterations of the cellular membrane composition were less distinct. The specificity of the observed autecological changes suggest that R. erythropolis cells may be used in the development and application of sound biocatalytic processes using n-alkanes as substrates or substrate reservoirs or for target-specific bioremediation of oils and combustibles, respectively.
ID 125
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=125
de Carvalho, C.C.C.R., Wick, L.Y., Heipieper, H.J. (2009):
Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n -alkane hydrocarbons
Appl. Microbiol. Biotechnol. 82 (2), 311 - 320