Details zur Publikation

Referenztyp Zeitschriften
DOI / URL Link
Titel (primär) Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi
Autor Cajthaml, T.; Kresinová, Z.; Svobodová, K.; Möder, M.;
Journal / Serie Chemosphere
Erscheinungsjahr 2009
Department ANA;
Band/Volume 75
Heft 6
Sprache englisch;
Keywords Biodegradation; Endocrine disrupters; White rot fungi; Nonylphenol; Ethinylestradiol
Abstract Endocrine-disrupting compounds (EDCs) represent a large group of substances of natural and anthropogenic origin. They are widely distributed in the environment and can pose serious risks to aquatic organisms and to public health. In this study, 4-n-nonylphenol, technical 4-nonylphenol, bisphenol A, 17a-ethinylestradiol, and triclosan were biodegraded by eight ligninolytic fungal strains (Irpex lacteus 617/93, Bjerkandera adusta 606/93, Phanerochaete chrysosporium ME 446, Phanerochaete magnoliae CCBAS 134/I, Pleurotus ostreatus 3004 CCBAS 278, Trametes versicolor 167/93, Pycnoporus cinnabarinus CCBAS 595, Dichomitus squalens CCBAS 750). The results show that under the used conditions the fungi were able to degrade the EDCs within 14 d of cultivation with exception of B. adusta and P. chrysosporium in the case of triclosane and bisphenol A, respectively. I. lacteus and P. ostreatus were found to be most efficient EDC degraders with their degradation efficiency exceeding 90% or 80%, respectively, in 7 d. Both fungi degraded technical 4-nonylphenol, bisphenol-A, and 17a-ethinylestradiol below the detection limit within first 3 d of cultivation. In general, estrogenic activities assayed with a recombinant yeast test decreased with advanced degradation. However, in case of I. lacteus, P. ostreatus, and P. chrysosporium the yeast assay showed a residual estrogenic activity (28-85% of initial) in 17a-ethinylestradiol cultures. Estrogenic activity in B. adusta cultures temporally increased during degradation of technical 4-nonylphenol, suggesting a production of endocrine-active intermediates. Attention was paid also to the effects of EDCs on the ligninolytic enzyme activities of the different fungi strains to evaluate their possible stimulation or suppression of activities during the biodegradation processes.
ID 107
dauerhafte UFZ-Verlinkung
Cajthaml, T., Kresinová, Z., Svobodová, K., Möder, M. (2009):
Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi
Chemosphere 75 (6), 745 - 750