Biodiversity stabilizes ecosystems during climate extremes

International grasslands study finds benefits of multiple species under wet, dry conditions

MINNEAPOLIS/ ST.PAUL/Halle/Leipzig. Can biodiversity help protect ecosystems from extreme conditions? That question is much on the minds of scientists and policy makers as a changing climate brings more wildly swinging conditions at the same time human activities reduce the number of species available to produce food and oxygen and help keep our planet in balance. Now, a study of 46 grasslands in North America and Europe points to a promising answer: Increasing plant diversity decreases the extent to which extremely wet or dry conditions disrupt grassland productivity.

The Jena Experiment (Germany) is one of the longest-running biodiversity experiments in Europe and part of this study. Photo: Christiane Roscher

The Jena Experiment (Germany) is one of the longest-running biodiversity experiments in Europe and part of this study.
Photo: Christiane Roscher


"We’ve long known that biodiversity has a stabilizing effect on productivity over time,” said lead author Forest Isbell, principle investigator on the project and associate director for the University of Minnesota’s Cedar Creek Ecosystem Science Reserve, one of the study sites. “But we haven’t been quite sure whether that’s during extreme events, after them, or both. This research showed that diverse communities are more stable because they exhibit resistance during extreme climate events.”

On the other hand, other species that weren't being targeted actually suffered much more. Ultimately, pesticides don't just stay in one field, but end up in the bordering fields, woods and water. However, the insects living there develop much less re-sistance. "Over time, these species become two to four times more resistant to the pesticide used," stated Professor Matthias Liess, Head of the Department for System Ecotoxicology at the UFZ. Pests, on the other hand, manage to become between ten and a thousand times more resistant.

The study, published in the online edition of the scientific journal Nature October 14, involved more than three dozen researchers from the U.S., Germany, the U.K., Ireland, France, Switzerland, the Netherlands, Czech Republic and Japan. The researchers began by classifying each year of each experiment on a five-point scale from extremely dry to extremely wet. They then measured corresponding productivity — basically, how much above-ground plant material each level of plant biodiversity produced each year.

Combining results across the 46 study sites, the researchers found that the higher the plant biodiversity, the lower the variability in productivity during wet or dry climate events. Overall, productivity of communities with only one or two species changed an average of 50 percent during events, while those with 16 to 32 species changed only half that much. Biodiversity did not, however, seem to strongly influence how quickly a site returned to normal productivity after wet or dry events.

Isbell, who is also an adjunct faculty member in the College of Biological Sciences, says the research team found the results somewhat unexpected. “Many of us were expecting that biodiversity would often promote both resistance during climate events and resilience after climate events,” he says. Instead, resistance to change clearly trumped resilience as the main mechanism through which biodiversity helps to preserve ecosystem stability in times of change.

Nico Eisenhauer, co-principle investigator on the project and professor at the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University, said the study, which was funded by iDiv’s biodiversity synthesis center, “comprehensively shows that mankind is degrading the natural insurance of ecosystems.” The findings, he said, improve our understanding of the role of biodiversity in helping nature weather the storms it faces.

“Researchers have been searching for decades for stabilizing ecosystem features,” he said. “The present results bring the significance of biodiversity home to scientists, land managers and politicians as stabilizing agents of ecosystem services in the face of global change.”

Co-author Dylan Craven, the postdoctoral researcher on the project, based at iDiv and Leipzig University, said, "A remaining challenge is to identify what factors, if not biodiversity, determine ecosystem recovery following extreme climate events." Isbell added, “We also need to understand how biodiversity increases resistance during extreme climate events so we can determine what types of biodiversity are needed to help nature thrive under adverse circumstances.”


Forest Isbell, Dylan Craven, John Connolly, Michel Loreau, Bernhard Schmid, Carl Beierkuhnlein, T. Martijn Bezemer, Catherine Bonin, Helge Bruelheide, Enrica de Luca, Anne Ebeling, John N. Griffin, Qinfeng Guo, Yann Hautier, Andy Hector, Anke Jentsch, Jürgen Kreyling, Vojtěch Lanta, Pete Manning, Sebastian T. Meyer, Akira S. Mori, Shahid Naeem, Pascal A. Niklaus, H. Wayne Polley, Peter B. Reich, Christiane Roscher, Eric W. Seabloom, Melinda D. Smith, Madhav P. Thakur, David Tilman, Benjamin F. Tracy, Wim H. van der Putten, Jasper van Ruijven, Alexandra Weigelt, Wolfgang W. Weisser, Brian Wilsey, Nico Eisenhauer (2015):
Biodiversity increases the resistance of ecosystem productivity to climate extremes. NATURE, Advance Online Publication (AOP). DOI: 10.1038/nature15374

Further informationen

Prof. Nico Eisenhauer
Leiter der iDiv-Forschungsgruppe Experimentelle Interaktionsökologie
Phone: +49 (0)341 97 33167

PD Christiane Roscher
Helmholtz-Zentrum für Umweltforschung (UFZ)
Department Physiologische Diversität
Phone: +49 (0)341 97 33212

Prof. Helge Bruelheide
Stellvertretender Direktor iDiv
Professor für Geobotanik an der Martin-Luther-Universität Halle-Wittenberg
Phone: +49 (0)345 55 26222


Susanne Hufe (UFZ Press office)
Telephone +49 341 235 1630

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bioenergy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt.

The Helmholtz Association contributes to solving major and urgent issues in socie-ty, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).