Publication Details

Category Text Publication
Reference Category Preprints
DOI 10.1101/2023.12.20.572519
Licence creative commons licence
Title (Primary) Low land-use intensity buffers grasslands against future climate and inter-annual climate variability in a large field experiment
Author Korell, L.; Andrzejak, M.; Berger, S.; Durka, W. ORCID logo ; Haider, S.; Hensen, I.; Herion, Y.; Höfner, J. ORCID logo ; Kindermann, L.; Klotz, S.; Knight, T.M.; Linstädter, A.; Madaj, A.-M.; Merbach, I.; Michalski, S.; Plos, C.; Roscher, C.; Schädler, M.; Welk, E.; Auge, H. ORCID logo
Source Titel bioRxiv
Year 2023
Department BZF; PHYDIV
Language englisch
Topic T5 Future Landscapes
Abstract Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present eight years of data on grassland dynamics from the Global Change Experimental Facility (GCEF) in Central Germany. On large experimental plots, temperature and seasonal patterns of precipitation are manipulated by superimposing regional climate model projections onto background climate variability. Climate manipulation is factorially crossed with agricultural land-use scenarios, including intensively used meadows and extensively used (i.e. low-intensity) meadows and pastures. Inter-annual variation of background climate during our study years was high, including three of the driest years on record for our region. The effects of this temporal variability far exceeded the effects of the experimentally imposed climate change on plant species diversity and productivity, especially in the intensively used, species-poor grasslands. These changes in productivity and diversity in response to alterations in climate were due to immigrant species replacing the target forage cultivars. This shift from forage cultivars to immigrant species may impose additional economic costs in terms of a decreasing fodder value and the need for more frequent management measures. In contrast, the extensively used, species-rich grasslands showed weaker responses to both experimentally manipulated future climate and inter-annual climate variability, suggesting that these diverse grasslands are more resistant to climate change than intensively used, species-poor grasslands. We therefore conclude that an extensive management of agricultural grasslands, together with other measures to increase species diversity, can stabilize primary productivity under climate change.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=28626
Korell, L., Andrzejak, M., Berger, S., Durka, W., Haider, S., Hensen, I., Herion, Y., Höfner, J., Kindermann, L., Klotz, S., Knight, T.M., Linstädter, A., Madaj, A.-M., Merbach, I., Michalski, S., Plos, C., Roscher, C., Schädler, M., Welk, E., Auge, H. (2023):
Low land-use intensity buffers grasslands against future climate and inter-annual climate variability in a large field experiment
bioRxiv 10.1101/2023.12.20.572519