Press release, 14 December 2012

Fertile soil doesn't fall from the sky. The contribution of bacterial remnants to soil fertility has been underestimated until now


Leipzig. Remains of dead bacteria have far greater meaning for soils than previously assumed. Around 40 per cent of the microbial biomass is converted to organic soil components, write researchers from the Helmholtz Centre for Environmental Research (UFZ), the Technische Universität Dresden (Technical University of Dresden) , the University of Stockholm, the Max-Planck-Institut für Entwicklungsbiologie (Max Planck Institute for Developmental Biology) and the Leibniz-Universität Hannover (Leibniz University Hannover) in the professional journal Biogeochemistry. Until now It was assumed that the organic components of the soil were comprised mostly of decomposed plant material which is directly converted to humic substances. In a laboratory experiment and in field testing the researchers have now refuted this thesis. Evidently the easily biologically degradable plant material is initially converted to microbial biomass which then provides the source material to soil organic matter.
Soil organic matter represent the largest fraction of terrestrially bound carbon in the biosphere. The compounds therefore play an important role not only for soil fertility and agricultural yields. They are also one of the key factors controlling the concentration of carbon dioxide in the atmosphere. Climatic change can therefore be slowed down or accelerated, according to the management of the soil resource.

electron micrograph shows bacteria (Hyphomicrobium sp;. Yellow)

The electron micrograph shows bacteria (Hyphomicrobium sp;. Yellow) growing up partly on solid surfaces, floors and sediment grains. During growth whatsoever cells die and deformed or fragmenting cell envelopes remain. Small-scale fragments of these shells (red) then set the microparticulate matrix in soils and sediments.
Photo: Burkhard Schmidt-Brücken, Institute of Material science/TU Dresden
Colored by: Christian Schurig/ UFZ
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0/de/)

In laboratory incubation experiment, the researchers initially labelled model bacteria with the stable isotope 13C and introduced the bacteria to soil deriving from the long-term cultivation experiment "Ewiger Roggenbau" in Halle/Saale. Following the incubation time of 224 days the fate of the carbon of bacterial origin was determined. "As a result we found fragments of bacterial cell walls in sizes of up to 500 x 500 nanometres throughout our soil samples. Such fragments have also been observed in other studies, but have never been identified or quantified", declares Professor Matthias Kästner of the UFZ. The accumulation of the bacterial cell wall fragments appears to be supported by peptides and proteins from the liquid interior of the cells, which remain to a greater extent in the soil than other cell components. These materials enable the formation of a film of organic molecules on the mineral components of the soil, on which the carbon from the dead bacteria is accumulated and stabilised. When the fragments of the bacterial cell walls dry out, they may lose their rubber-like properties and can harden like glass. If the soil subsequently becomes moist again, however, under certain circumstances they cannot be re-wetted – an important prerequisite for their degradation by other bacteria. This would provide the simplest explanation for the stabilisation of theoretically easily degradable carbon compounds in soil. "This new approach explains many properties of organic soil components which were previously viewed as contradictory", says Matthias Kästner. In the late 1990s, Kästner and his team arrived at this idea on the basis of earlier investigations on the degradation of environmental contaminants like anthracene in polluted soils of former gas work sites. In these investigations, isotopic analyses revealed bound carbon residues which have been of bacterial origin. With the support of the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG), from 2000 on they began to follow up this clue within the scope of two joint research programmes.

Mountains

In the course of the last 150 years glacier has retreated by around one kilometre. In its place granite rock remained behind, which was gradually recolonised by living organisms accompanied by soil development. Following the formation of new soil the first plants, such as mosses and grasses, were followed by bushes and, later, also by trees.
Photo: Christian Schurig/ UFZ
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0/de/)

Following the laboratory experiment, the hypothesis was tested in field research. In summer of 2009 the researchers took soil samples in the forefield of the Damma Glacier in the Swiss Canton Uri. In the course of the last 150 years glacier has retreated by around one kilometre. In its place granite rock remained behind, which was gradually recolonised by living organisms accompanied by soil development. Following the formation of new soil the first plants, such as mosses and grasses, were followed by bushes and, later, also by trees. In the meantime, the Damma Glacier, on which a broad range of studies is being conducted, has therefore become an important outdoor laboratory not only for climate researchers, but for ecologists as well. The soil investigated with the samples was between 0 and 120 years old and thus allowed insight into early processes of soil development. Scanning electron microscopic investigations which followed at the Max Planck Institute for Developmental Biology in Tübingen also indicated that the covering of the soil mineral particles by a film comprised of bacterial cell wall residues had increased with the soil age. The results of the outdoor investigations therefore confirmed the hypothesis and the laboratory results. This new knowledge was ultimately made possible by recent advances in scanning electron microscopy, which in the meantime enable the identification and evaluation of the soil nano-components.

Damma Glacier

The Damma Glacier, on which a broad range of studies is being conducted, has become an important outdoor laboratory not only for climate researchers, but for ecologists as well. The soil investigated with the samples was between 0 and 120 years old and thus allowed insight into early processes of soil development.
Photo: Christian Schurig/ UFZ
CC BY 3.0 (http://creativecommons.org/licenses/by/3.0/de/)

The predominant share of the plant debris in fertile soil is thus rapidly processed by micro-organisms, e.g. bacteria, leading to more bacteria and, in turn, also to more cell fragments. This then results in more organic material in the soil. "Even though the greatest part of the organic carbon in the eco-systems is definitively produced primarily by plants, we were able to show that a large part of the organic material is actually comprised of residues of bacteria and fungi. This underscores the importance of bacteria as organisms in all types of soil", summarises Matthias Kästner. Furthermore, they are important for the global climate: The degradation of these organic material results, in mineralisation products and the greenhouse gas carbon dioxide (CO2). According to estimates from Great Britain the amount of CO2 escaping annually to the atmosphere due to the degradation of organic material in the soils of England and Wales is in the order of magnitude by which greenhouse gas emissions are annually reduced there. This means that no rigorous progress in climate protection may be accomplished without first protecting the soil. Tilo Arnhold


Publications:

Christian Schurig, Rienk H. Smittenberg, Juergen Berger, Fabio Kraft, Susanne K. Woche, Marc-O. Goebel, Hermann J. Heipieper, Anja Miltner, Matthias Kaestner (2012): Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry.

published online:DOI: 10.1007/s10533-012-9791-3

The investigations were supported by the German Research Foundation (DFG) within the scope of the SPP1315 DynaCarb project and the European Union within the scope of the ModelPROBE project.


Anja Miltner, Petra Bombach, Burkhardt Schmidt-Brücken, Matthias Kästner (2012). SOM genesis – Microbial biomass a significant source. Biogeochemistry, in press; published online: DOI 10.1007/s10533-011-9658-z

The investigations were supported by the German Research Foundation (DFG) within the scope of the SPP1090 BioRefrak project and the European Union within the scope of the ModelPROBE project.


Further information:

Professor Matthias Kästner/ Dr. Anja Miltner/ Dr. Christian Schurig

Helmholtz Centre for Environmental Research (UFZ)

Telephone: 0341-235-1235

http://www.ufz.de/index.php?de=4459

http://www.ufz.de/index.php?de=4530

http://www.ufz.de/index.php?de=18888

or from

Tilo Arnhold (UFZ press office)

Telephone: 0341-235-1635

http://www.ufz.de/index.php?de=640


Related links:

EU project ModelPROBE:

http://www.ufz.de/modelprobe/index.php?en=18269

DFG project DynaCarb:

http://www.spp1315.uni-jena.de/


UFZ core topic water / soil:

http://www.ufz.de/index.php?en=20167


At the Helmholtz Centre for Environmental Research (UFZ) scientists are researching the causes and consequences of far-reaching changes to the environment. They are concerned with water resources, biological diversity, the consequences of climate change and adaptability, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment, their effect on health, modelling and social science issues. Their guiding theme: Our research contributes to the sustainable use of natural resources and helps to secure this basis for life over the long term under the effects of global change. The UFZ employs 1,000 people in Leipzig, Halle and Magdeburg. It is financed by the federal government and the federal states of Saxony and Saxony-Anhalt.
http://www.ufz.de/

The Helmholtz Association contributes towards solving major and pressing social, scientific and economic issues with scientific excellence in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Aerospace and Transport. The Helmholtz Association is Germany’s largest scientific organisation with over 33,000 employees in 18 research centres and an annual budget of approximately 3.4 billion euros. Its work stands in the tradition of the naturalist Hermann von Helmholtz (1821-1894).
http://www.helmholtz.de