Publication Data for Bandara et al 2021 - Front.Plant.Sci LRWhite Embedding Method 0 11158

Projekt
POF3 - T123D631 - Rhizosphere
Beschreibung
Data acquired in the framework of the SPP 2089, funded by the DFG.

This data folder associated with the publication "Microbial Identification, High-Resolution Microscopy and Spectrometry of the Rhizosphere in its Native Spatial Context" by Bandara et al. (2021), Frontiers in Plant Science Journal. DOI: 10.3389/fpls.2021.668929

The compressed folder contains ten subfolders corresponding to each technique as described below. Each folder named as Origin contains the original data, while processed data is included in the folder named as Export. In total there are 251 files.

1. CARD-FISH:
This folder contains Epifluorescence micrographs presented in Figure 8d and 10a. Original data format is .czi from Carl Zeiss imaging. Exported images format is .tif. Folder contains two folders for individual samples.

2. Correlia_Registered_Datasets
This folder contains two Correlia (https://www.ufz.de/correlia) projects used to register different microscopy images presented in Figure 8d and Figure9.

3. DarkField_Figure3_Map
This folder contains stitched darkfield micrographs of CY0211 sample (Figure3). Text file contains the imaging information.

4. Epifluorescence
This folder contains Epifluorescence images presented in Figure3, Figure 10

5. HIM
This folder contains Helium ion micrographs presented in Figure 2 and Figure 6d

6. nanoSIMS
This folder contains nanoSIMS data presented in Figure 6 and Figure 10

7. Raman
This folder contains confocal Raman Microscopy data presented in Figure 7

8. Roughness Measurements
This folder contains surface profile data presented in Figure 2b

9. SEM-EDX
This folder contains SEM and EDX data presented in Figure 5 and Figure 8d

10.ToFSIMS
This folder contains ToFSIMS data presented in Figure 4

Funding:
This data was produced within the framework of the priority program SPP 2089, “Rhizosphere spatiotemporal organization-a key to rhizosphere functions” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 403641683 (RI-903/7-1). Research work of Yalda Devoudpour was supported by Deutsche Forschungsgemeinschaft Integration of Refugee Scientists and Academics.
DOI
https://doi.org/10.48758/ufz.11158
Zitiervorschlag (APA)
Imihami Mudiyanselage, C. C. D. B., Schmidt, M., Stryhanyuk, H., Musat, N., Richnow, H. H., & Davoudpour, Y. (2021). Publication Data for Bandara et al 2021 - Front.Plant.Sci LRWhite Embedding Method. Helmholtz-Zentrum für Umweltforschung. https://doi.org/10.48758/UFZ.11158
Größe
51,4 GB
Datenqualität
qualitätsgesicherte Daten
(Pflicht)
(optional)
 1 + 8  =
 
Falls Sie bezüglich des Datensatzes Kontakt zu uns aufnehmen wollen, füllen Sie bitte das nachfolgende Formular vollständig aus.
Ihre Nachricht wird automatisch an die richtigen Ansprechpartner weiter geleitet.
(maximal 100 Zeichen)
(maximal 4000 Zeichen)
51  6  5  =
 
Metadaten Kataloge