publications about GHG emissions from dry aquatic systems

  • Bretz KA, Jackson AR, Rahman S, Monroe JM, Hotchkiss ER, 2021. Integrating Ecosystem Patch Contributions to Stream Corridor Carbon Dioxide and Methane Fluxes. Journal of Geophysical Research: Biogeosciences 126:e2021JG006313.
  • Palmia B, Leonardi S, Viaroli P, Bartoli M, 2021. Regulation of CO2 fluxes along gradients of water saturation in irrigation canal sediments. Aquat. Sci. 83:18.
  • Sediment drying-rewetting cycles enhance greenhouse gas emissions, nutrient and trace element release, and promote water cytogenotoxicity, JR Paranaíba et al. PlosOne
  • Global CO2 emissions from dry inland waters share common drivers across ecosystems, P. S. Keller et al., Nature Communications
  • Spatial upscaling of CO2 emissions from exposed river sediments of the Elbe River during an extreme drought; U Mallast, M Staniek, M Koschorreck, Ecohydrology
  • dos Santos Pinto et al. (2020), River-floodplain restoration and hydrological effects on GHG emissions: Biogeochemical dynamics in the parafluvial zone, STOTEN
  • Amorim M, Santos MaD, Camargo JMRD (2019) Methane diffusive fluxes from sediment exposed in a Brazilian tropical reservoir drawdown zone. Journal of South American Earth Sciences, 90, 463-470.
  • Delvecchia AG, Balik JA, Campbell SK, Taylor BW, West DC, Wissinger SA (2019) Carbon Dioxide Concentrations and Efflux from Permanent, Semi-Permanent, and Temporary Subalpine Ponds. Wetlands.
  • Martinsen et al. (2019) Carbon dioxide fluxes of air-exposed sediments and desiccating ponds, Biogeochemistry
  • Marcé, R. et al. (2019) Emissions from dry inland waters are a blind spot in the global carbon cycle Earth-Sci. Rev. 188 , 240 - 248
  • Kosten S. et al 2018, Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas, Inland Waters, 8, 329-340.
  • Deshmukh, C. et al. 2018, Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere, Biogeosciences
  • Boodoo, K.S., Trauth, N., Sch,midt, C., Schelker, J., Battin, T.J., 2017, Gravel bars are sites of increased CO2 outgassing in stream corridors, Scientific Reports 7:14401, doi: 10.1038/s41598-017-14439-0
  • Bolpagni, R., Folegot, S., Laini, A., Bartoli, M., 2017. Role of ephemeral vegetation of emerging river bottoms in modulating CO2 exchanges across a temperate large lowland river stretch. Aquatic Sciences 79, 149–158. doi:10.1007/s00027-016-0486-z
  • Lesmeister, L., Koschorreck, M., 2017. A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments. Atmospheric Measurement Techniques 10, 2377–2382. doi:10.5194/amt-10-2377-2017
  • Looman, A., Maher, D.T., Pendall, E., Bass, A., Santos, I.R., 2016. The carbon dioxide evasion cycle of an intermittent first-order stream: contrasting water–air and soil–air exchange. Biogeochemistry. doi:10.1007/s10533-016-0289-2
  • Gilbert, P.J., Cooke, D.A., Deary, M., Taylor, S., Jeffries, M.J., 2016. Quantifying rapid spatial and temporal variations of CO2 fluxes from small, lowland freshwater ponds. Hydrobiologia. doi:10.1007/s10750-016-2855-y
  • Gómez-Gener, L., Obrador, B., Marcé, R., Acuña, V., Catalán, N., Casas-Ruiz, J.P., Sabater, S., Muñoz, I., von Schiller, D., 2016. When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams. Ecosystems 19, 710–723. doi:10.1007/s10021-016-9963-4
  • Jin, H., Yoon, T.K., Lee, S.-H., Kang, H., Im, J., Park, J.-H., 2016. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environmental Research Letters 11, 124003. doi:10.1088/1748-9326/11/12/124003
  • Kudo, Y., Noborio, K., Shimoozono, N., Kurihara, R., Minami, H., 2017. Greenhouse gases emission from paddy soil during the fallow season with and without winter flooding in central Japan. Paddy and Water Environment 15, 217–220. doi:10.1007/s10333-016-0523-5
  • Reverey, F., Grossart, H.-P., Premke, K., Lischeid, G., 2016. Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review. Hydrobiologia 775, 1–20. doi:10.1007/s10750-016-2715-9
  • Gómez-Gener, L., Obrador, B., von Schiller, D., Marcé, R., Casas-Ruiz, J.P., Proia, L., Acuña, V., Catalán, N., Muñoz, I., Koschorreck, M., 2015. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 125, 409–426. doi:10.1007/s10533-015-0139-7
  • Catalan, N., von Schiller, D., Marce, R., Koschorreck, M., Gomez-Gener, L., Obrador, B., 2014. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33, 349–359.
  • von Schiller, D., Marce, R., Obrador, B., Gomez-Gener, L., Casas-Ruiz, J.P., Acuna, V., Koschorreck, M., 2014. Carbon dioxide emissions from dry watercourses. Inland Waters 4, 377–382. doi:10.5268/IW-4.4.746
  • Gallo, E.L., Lohse, K.A., Ferlin, C.M., Meixner, T., Brooks, P.D., 2014. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121, 189–207. doi:10.1007/s10533-013-9927-
  • Segarra, KEA; Samarkin, V, King, E, Meile, C, Joye, SB, 2013, Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA), biocheochemistry 115, 349-361
  • Koschorreck, M., Darwich, A., 2003. Nitrogen dynamics in seasonally flooded soils in the Amazon floodplain. Wetlands Ecology and Management 11, 317–330. doi:10.1023/B:WETL.0000005536.39074.72
  • Koschorreck, M., 2000. Methane turnover in exposed sediments of an Amazon floodplain lake. Biogeochemistry 50, 195–206. doi:10.1023/A:1006326018597

If you want to include a paper in this list, please mail it to Philipp Keller .