4DHydro mHM Tier 1 simulations 0 14386

Projekt
hydrometeorological data
Beschreibung
Tier 1 simulations of the 4DHydro ESA project, work package 2 deliverables).

This is a DOI reference for the STAC protocol of the 4DHydro project (tarball for all netcdf files, identical to non permanent storage under https://minio.ufz.de/4dhydro/mHM/tier1)

mHM simulations are based on Mesoscale Hydrological Model (release_5.11.2, commit 9ecb1875) 

Simulation options:
- Period: 1990-2021
- Region: global/European setup
- Settings: default (NO CALIBRATION, included modules: Basic hydrologic modules: snow processes are based on the day-degree approach, soil moisture is processed based on the Feddes equation for ET reduction, multi-layer infiltration capacity approach (Brooks-Corey like); direct runoff is based on linear reservoir exceedance approach; PET is based on Hagreaves-Samani method; interflow is approximated by storage reservoir with one outflow threshold and nonlinear response; groundwater is assumed to be a linear reservoir; river routing is approximated by adaptive timestep, spatially varying celerity.
- Spin up: based on a 30 years simulation with 1950-1989 climatology for ERA5 and E-OBS, while 10 years simulation with 1990-2000 climatology for EMO-1
- Source code: https://git.ufz.de/mhm/mhm Commit 9ecb1875
- Resolution: Spatial resolution: 0.015625degree; 0.125degree (see STAC protocol above for more details)
- Temporal resolution: hourly (meteo inputs daily, internal weights based on subdaily ERA5 values are used to disaggregate to hourly) 
  
Input datasets of the mHM setup:
* See Rakovec et al, (2022) and Boeing et al. (2022) for more information 

- Meteorology (and pre-processing):
Precipitation, temperature and reference potential evapotranspiration are based on two datasets: EMO-1 (Thieming et al, 2022 in it’s updated ~1km resolution, see for more details: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/CEMS-EFAS/meteorological_forcings/README-EMO-1arcmin.txt ) and ERA5 (Hersbach et al. 2020), the later was remapped on the 0.125deg grid using the nearest neighbor approach). European domain is forced with E-OBS data version v25e (Cornes et al. 2018), remapped onto 0.125deg. Reference potential evapotranspiration was determined using the Hargreaves-Samani equation (Hargreaves and Samani, 1985). The internal model time step of mHM is an hourly one, and the temporal disaggregation (day to hour) is based on the weights derived from the native hourly ERA5 dataset.

- Soil and topography:
Soil parameters are based on the SoilGrids (Hengl et al., 2014). Topography parameters are based on GMTED2010 (https://www.usgs.gov/coastal-changes-and-impacts/gmted2010) is used to derive information about the slope, aspect. It was further conditioned on the HydroSHEDS (Lehner et al., 2008) river network (https://www.hydrosheds.org/downloads) to derive flow direction and flow accumulation.

- Landcover and vegetation:
mHM uses three dominant land cover classes (forest, permeable, and impervious) that were retrieved by a GLOBCOVER database ESA (2009). Additionally, vegetation characteristics for interception processes are based Leaf Area Index (LAI) from the GIMMS MODIS. from the global land cover facility (GLCF), available at http://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/index.html.

- Groundwater processes:
The baseflow recession constants are based on categorical classes derived from the GLIM databased from the Universität Hamburg (https://doi.org/10.1594/PANGAEA.788537); see Hartman and Moosdorf (2012) for more details.

- Output variables:  
Discharge, actual evapotranspiration, soil moisture, total water, upstream area 


References:

Boeing, F., Rakovec, O., Kumar, R., Samaniego, L., Schrön, M., Hildebrandt, A., Rebmann, C., Thober, S., Müller, S., Zacharias, S., Bogena, H., Schneider, K., Kiese, R., Attinger, S., and Marx, A.: High-resolution drought simulations and comparison to soil moisture observations in Germany, Hydrol. Earth Syst. Sci., 26, 5137–5161

Cornes, R., G. van der Schrier, E.J.M. van den Besselaar, and P.D. Jones. 2018: An Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J. Geophys. Res. Atmos., 123. doi:10.1029/2017JD028200

ESA (2009) Globcover v2 http://due.esrin.esa.int/page_globcover.php

Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied engineering in agriculture, 1(2), pp.96-99.

Hartmann, J. and Moosdorf, N., 2012. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13(12).

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B. and Guevara, M.A., 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), p.e0169748.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D. and Simmons, A., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), pp.1999-2049.

Kumar, R., Samaniego, L. and Attinger, S., 2013. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resources Research, 49(1), pp.360-379.

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., ... & Wisser, D. (2011). High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management. Frontiers in Ecology and the Environment, 9(9), 494-502. DOI: 10.1890/100125.

Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M. and Samaniego, L., 2016. Multiscale and multivariate evaluation of water fluxes and states over European river basins. Journal of Hydrometeorology, 17(1), pp.287-307.

Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M. and Kumar, R., 2022. The 2018–2020 multi‐year drought sets a new benchmark in Europe. Earth's Future, 10(3), p.e2021EF002394.

Samaniego, L., Kumar, R. and Attinger, S., 2010. Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale. Water Resources Research, 46(5).

Samaniego, L., Kumar, R., Zink, M., Cuntz, M., Juliane Mai, Stephan Thober, Christoph Schneider, Giovanni Dalmasso, Jude Musuuza, Oldrich Rakovec, John Craven, David Schäfer, Vladyslav Prykhodko, Martin Schrön, Diana Spieler, Johannes Brenner, Ben Langenberg, Lennart Schüler, Simon Stisen, Cüneyd M. Demirel, Miao Jing, Maren Kaluza, Robert Schweppe, Pallav Kumar Shrestha, Nicola Döring and Sebastian Müller (2023) mhm-ufz/mHM: v5.13.1, Zenodo [Online]. DOI: 10.5281/zenodo.8279545.

Thiemig, V., Gomes, G.N., Skøien, J.O., Ziese, M., Rauthe-Schöch, A., Rustemeier, E., Rehfeldt, K., Walawender, J.P., Kolbe, C., Pichon, D. and Schweim, C., 2022. EMO-5: a high-resolution multi-variable gridded meteorological dataset for Europe. Earth System Science Data, 14(7), pp.3249-3272.

Thober, S., Cuntz, M., Kelbling, M., Kumar, R., Mai, J. and Samaniego, L., 2019. The multiscale routing model mRM v1. 0: Simple river routing at resolutions from 1 to 50 km. Geoscientific Model Development, 12(6), pp.2501-2521.


---------------------

LICENCE

CC BY-NC-SA 4.0 DEED
Attribution-NonCommercial-ShareAlike 4.0 International

---------------------




DOI
https://doi.org/10.48758/ufz.14386
Zitiervorschlag (APA)
Rakovec, O., & Samaniego, L. (2023). 4DHydro mHM Tier 1 simulations. Helmholtz-Centre for Environmental Research. https://doi.org/10.48758/UFZ.14386
Größe
23,9 GB
Lizenz- und Nutzungsbedingungen
LIZENZ- und NUTZUNGSBEDINGUNGEN
Datenqualität
qualitätsgesicherte Daten
(Pflicht)
(optional)
40  6  6  =
 
Falls Sie bezüglich des Datensatzes Kontakt zu uns aufnehmen wollen, füllen Sie bitte das nachfolgende Formular vollständig aus.
Ihre Nachricht wird automatisch an die richtigen Ansprechpartner weiter geleitet.
(maximal 100 Zeichen)
(maximal 4000 Zeichen)
20  8 + 5  =
 
Metadaten Kataloge