Sebastian Preidl
Scientist
Department Remote SensingHelmholtz Centre for Environmental Research GmbH - UFZ
Permoserstraße 15 | 04318 Leipzig | Germany
Phone +49 341 235 1887
sebastian.preidl@ufz.de
Research Interests
Remote sensing of vegetation - for a better understanding of plant physiology, ecosystem management and the effects of climate change.
Major topics:
- Radiative transfer modelling using hyperspectral remote sensing (AISA)
- Land cover classification of crop types and tree species on a large scale using high resolution satellite data (Sentinel-2, RapidEye)
- www.ufz.de/land-cover-classification
Methods and tools:
- Model inversion, sensitivity analysis, optimization (PROSAIL, SLC)
- Machine learning (randomForest, SVR), SVD
- Main programming language: R
- High performance computing (HPC)
- Radiometric/geometric correction of remote sensing data
Projects
Current: Principal Investigator: Leading an R&D project for the 'Federal Agency for Nature Conservation' (BfN)
- Title: „Ermittlung naturschutzbezogener Kriterien in der Umweltprüfung der Bedarfsplanung für Stromnetze und in der Bundesfachplanung zur Erhöhung der Planungssicherheit und Verhinderung von Zielkonflikten“
- Aim: Classification of Germany's forests at tree species level and the assessment of its nature conservation status.
- www.ufz.de/land-cover-classification
Academic Background
PhD candidate, UFZ - Department of Computational Landscape Ecology and Humboldt-University, Berlin, Germany
M.Sc., Geography, Christian-Albrechts-University, Kiel, Germany and Canterbury Christ Church University, Canterbury, England
- Thesis: “The Use of TerraSAR-X Image Texture for Land Cover Mapping in Tropical Peat Swamp Forests (Central Kalimantan, Indonesia)”, Munich, Germany
- Minors: Geology (Paleo-Climatology), Ocean Circulation and Climate Dynamics (GEOMAR Helmholtz Centre for Ocean Research Kiel), Media Sciences
B.Sc., Geography, Philipps-University, Marburg, Germany
Publications
- Interview for the Earth System Knowledge Platform of the Helmholtz Association on the use of APiC for land cover mapping (Preidl et al. 2020).
- Press release "Flurschau aus dem Weltall - Methoden des maschinellen Lernens liefern detaillierte Informationen zur Landbedeckung".
- Preidl et al. 2020: Introducing APiC for regionalised land cover mapping on the national scale using Sentinel-2A imagery, Remote Sensing of Environment, Volume 240, Article 111673, DOI: 10.1016/j.rse.2020.111673.
- S. Preidl, M. Lange and D. Doktor, "An Adaptable Approach for Pixel-Based Compositing and Crop Type/Tree Species Mapping," IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 71-73, DOI: 10.1109/IGARSS.2019.8900205.
- S. Preidl and D. Doktor, "Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data," 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011, pp. 1-4, DOI: 10.1109/WHISPERS.2011.6080936.