Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1186/s40168-024-01865-2
Licence creative commons licence
Title (Primary) DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories
Author Nieto, E.E.; Jurburg, S.D.; Steinbach, N.; Festa, S.; Morelli, I.S.; Coppotelli, B.M.; Chatzinotas, A.
Source Titel Microbiome
Year 2024
Department iDiv; AME
Volume 12
Page From art. 146
Language englisch
Topic T7 Bioeconomy
Data and Software links https://doi.org/10.5281/zenodo.12220242
Supplements https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-024-01865-2/MediaObjects/40168_2024_1865_MOESM1_ESM.docx
Abstract Background
Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation.
Results
Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil.
Conclusion
Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=29270
Nieto, E.E., Jurburg, S.D., Steinbach, N., Festa, S., Morelli, I.S., Coppotelli, B.M., Chatzinotas, A. (2024):
DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories
Microbiome 12 , art. 146 10.1186/s40168-024-01865-2