Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1186/s13068-018-1279-5
Licence creative commons licence
Title (Primary) Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion
Author Bonk, F.; Popp, D.; Weinrich, S.; Sträuber, H.; Kleinsteuber, S. ORCID logo ; Harms, H.; Centler, F.
Source Titel Biotechnology for Biofuels
Year 2018
Department UMB
Volume 11
Page From art. 274
Language englisch
Keywords Biogas; Microbial resources management; ADM1; Acetoclastic methanogenesis
Abstract

Background

Demand-driven biogas production could play an important role for future sustainable energy supply. However, feeding a biogas reactor according to energy demand may lead to organic overloading and, thus, to process failures. To minimize this risk, digesters need to be actively steered towards containing more robust microbial communities. This study focuses on acetogenesis and methanogenesis as crucial process steps for avoiding acidification. We fed lab-scale anaerobic digesters with volatile fatty acids under various feeding regimes and disturbances. The resulting microbial communities were analyzed on DNA and RNA level by terminal restriction fragment length polymorphism of the mcrA gene, 16S rRNA gene amplicon sequencing, and a [2-13C]-acetate assay. A modified Anaerobic Digestion Model 1 (ADM1) that distinguishes between the acetoclastic methanogens Methanosaeta and Methanosarcina was developed and fitted using experimental abiotic and biotic process parameters.

Results

Discontinuous feeding led to more functional resilience than continuous feeding, without loss in process efficiency. This was attributed to a different microbial community composition. Methanosaeta dominated the continuously fed reactors, while its competitor Methanosarcina was washed out. With discontinuous feeding, however, the fluctuating acetic acid concentrations provided niches to grow and co-exist for both organisms as shown by transcription analysis of the mcrA gene. Our model confirmed the higher functional resilience due to the higher abundance of Methanosarcina based on its higher substrate uptake rate and higher resistance to low pH values. Finally, we applied our model to maize silage as a more complex and practically relevant substrate and showed that our model is likely transferable to the complete AD process.

Conclusions

The composition of the microbial community determined the AD functional resilience against organic overloading in our experiments. In particular, communities with higher share of Methanosarcina showed higher process stability. The share of these microorganisms can be purposefully increased by discontinuous feeding. A model was developed that enables derivation of the necessary feeding regime for a more robust community with higher share of Methanosarcina.

Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=20988
Bonk, F., Popp, D., Weinrich, S., Sträuber, H., Kleinsteuber, S., Harms, H., Centler, F. (2018):
Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion
Biotechnol. Biofuels 11 , art. 274 10.1186/s13068-018-1279-5