Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1111/oik.04815
Document Shareable Link
Title (Primary) Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity
Author Roscher, C.; Gubsch, M.; Lipowsky, A.; Schumacher, J.; Weigelt, A.; Buchmann, N.; Schulze, E.-D.; Schmid, B.
Source Titel Oikos
Year 2018
Department iDiv; PHYDIV
Volume 127
Issue 6
Page From 855
Page To 865
Language englisch
Data and Software links https://doi.org/10.5061/dryad.k1jt9
Keywords biodiversity; relative yields; functional traits
Abstract Functional traits may help to explain the great variety of species performances in plant communities, but it is not clear whether the magnitude of trait values of a focal species or trait differences to co‐occurring species are key for trait‐based predictions. In addition, trait expression within species is often plastic, but this variation has been widely neglected in trait‐based analyses. We studied functional traits and plant biomass of 59 species in 66 experimental grassland mixtures of varying species richness (Jena Experiment). We related mean species performances (species biomass and relative yield RY) and their plasticities along the diversity gradient to trait‐based pedictors involving mean species traits (Tmean), trait plasticities along the diversity gradient (Tslope), extents of trait variation across communities (TCV; coefficient of variation) and hierarchical differences (Tdiff) and trait distances (absolute values of trait differences Tdist) between focal and co‐occurring species. Tmean (30–55%) and Tdiff (30–33%) explained most variation in mean species performances and their plasticities, but Tslope (20–25%) was also important in explaining mean species performances. The mean species traits and the trait differences between focal species and neighbors with the greatest explanatory power were related to plant size and stature (shoot length, mass:height ratios) and leaf photosynthetic capacity (specific leaf area, stable carbon isotopes and leaf nitrogen concentration). The contribution of trait plasticities in explaining species performances varied in direction (positive or negative) and involved traits related to photosynthetic capacity, nitrogen acquisition (nitrogen concentrations and stable isotopes) as well as structural stability (shoot carbon concentrations). Our results suggest that incorporating plasticity in trait expression as well as trait differences to co‐occurring species is critical for extending trait‐based analyses to understand the assembly of plant communities and the contribution of individual species in structuring plant communities.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=20470
Roscher, C., Gubsch, M., Lipowsky, A., Schumacher, J., Weigelt, A., Buchmann, N., Schulze, E.-D., Schmid, B. (2018):
Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity
Oikos 127 (6), 855 - 865 10.1111/oik.04815