Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1021/acs.est.5b04083
Title (Primary) Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling
Author Neale, P.A.; Ait-Aissa, S.; Brack, W.; Creusot, N.; Denison, M.S.; Deutschmann, B.; Hilscherová, K.; Hollert, H.; Krauss, M. ORCID logo ; Novák, J.; Schulze, T. ORCID logo ; Seiler, T.-B.; Serra, H.; Shao, Y.; Escher, B.I.
Source Titel Environmental Science & Technology
Year 2015
Department WANA; ZELLTOX
Volume 49
Issue 24
Page From 14614
Page To 14624
Language englisch
Supplements https://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04083/suppl_file/es5b04083_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.5b04083/suppl_file/es5b04083_si_002.xlsx
UFZ wide themes RU2;
Abstract Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effect of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and fish embryo toxicity were applied along with chemical analysis to water extracts from the Danube River. Mixture toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals.
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=16705
Neale, P.A., Ait-Aissa, S., Brack, W., Creusot, N., Denison, M.S., Deutschmann, B., Hilscherová, K., Hollert, H., Krauss, M., Novák, J., Schulze, T., Seiler, T.-B., Serra, H., Shao, Y., Escher, B.I. (2015):
Linking in vitro effects and detected organic micropollutants in surface water using mixture-toxicity modeling
Environ. Sci. Technol. 49 (24), 14614 - 14624 10.1021/acs.est.5b04083