Publication Details

Category Text Publication
Reference Category Journals
DOI 10.1080/02626667.2015.1083104
Document accepted manuscript
Title (Primary) Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany
Author Van Stan, J.T.; Lewis, E.S.; Hildebrandt, A.; Rebmann, C.; Friesen, J. ORCID logo
Source Titel Hydrological Sciences Journal-Journal des Sciences Hydrologiques
Year 2016
Department CHS; CATHYD
Volume 61
Issue 11
Page From 2071
Page To 2083
Language englisch
Keywords Quercus robur; Fagus sylvatica; stemflow; funnelling ratio; bark water storage capacity; storm intermittency
UFZ wide themes TERENO; RU5
Abstract Trees concentrate rainfall to near-stem soils via stemflow. When canopy structures are organized appropriately, stemflow can even induce preferential flow through soils, transporting nutrients to biogeochemically active areas. Bark structure significantly affects stemflow, yet bark-stemflow studies are primarily qualitative. We used a LaserBark to compute bark microrelief (MR), ridge-to-furrow amplitude (R) and slope (S) metrics per American Society of Mechanical Engineering standards (ASME-B46.1–2009) for two morphologically contrasting species (Fagus sylvatica L. (European beech), Quercus robur L. (pendunculate oak)) under storm conditions with strong bark water storage capacity (BWSC) influence in central Germany. Smaller R and S for F. sylvatica significantly lowered BWSC, which strongly and inversely correlated to maximum funnelling ratios and permitted stemflow generation at lower rain magnitudes. Larger R and S values in Q. robur reduced funnelling, diminishing stemflow drainage for larger storms. Quercus robur funnelling and stemflow was more reliant on intermediate rain intensities and intermittency to maintain bark channel-dependent drainage pathways. Shelter provided by Q. robur’s ridged bark also appears to protect entrained water, lengthening mean intrastorm dry periods necessary to affect stemflow. Storm conditions where BWSC plays a major role in stemflow accounted for much of 2013’s rainfall at the nearest meteorological station (Wulferstedt).
Persistent UFZ Identifier https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=16479
Van Stan, J.T., Lewis, E.S., Hildebrandt, A., Rebmann, C., Friesen, J. (2016):
Impact of interacting bark structure and rainfall conditions on stemflow variability in a temperate beech-oak forest, central Germany
Hydrol. Sci. J.-J. Sci. Hydrol. 61 (11), 2071 - 2083 10.1080/02626667.2015.1083104