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Chapter 1: Introduction 

Introduction 
 

1. Background 

One of the most beloved paradigms in chaos theory is that a butterfly’s wing flap in Leipzig 

can cause a storm in Hong Kong. This thesis does NOT deal with verifying or falsifying this 

theory. However, the question addressed here concerns a similar jump in scales: This thesis 

deals with the impact of the dispersal behaviour of individuals (for example, a butterfly) on 

the connectivity of landscapes and the viability of metapopulations. 

For most people, it is quite clear why we need a weather forecast. The importance of studying 

the dynamics of metapopulations is less obvious. So, let us start with some words about that. 

 

Habitat fragmentation is one of the main factors in the present increase in species 

vulnerability and extinction (Wilcove et al. 1986, Andren 1994). Fragmentation implies that a 

species habitat is dissected into smaller units separated by for the species unsuitable or even 

hostile strips of land, called matrix. It occurs in natural systems through disturbances like fire, 

windfall, flooding or soil erosions. However, the most menacing and large-scale cause of 

habitat fragmentation is the current expansion and intensification of human land use (Burgess 

& Sharpe 1981). 

In fragmented landscapes, each habitat fragment, called patch, may contain a population of 

the species considered, but local extinction may cause (temporal) vacancies. This is especially 

the case for very small patches, where local populations may become extinct purely by 

stochastic processes. Immigration from other patches can lead to recolonisation of the empty 

patch. Thus, the whole set of such populations, the “population of populations”, can 

potentially persist if these recolonisations outweigh the extinction of local populations. This 

concept of a species regional persistence in a fragmented landscape being driven by the 

colonisation and extinction of subpopulations is called metapopulation concept. The term 

metapopulation was introduced first in the work of Levins (1970), although its roots may be 

found in earlier work (Wright 1940, Andrewartha & Birch 1954, Huffaker 1958, Den Boer 

1968, Levins 1969). After nearly 20 years of recess, it has been widely applied in the last 

years in the research of spatially structured population (Quinn & Hastings 1987, Merriam 

1988, Harrison & Quinn 1989, Gilpin & Hanski 1991, Hanski 1994, Drechsler & Wissel 

1997, Hanski & Gilpin 1997, Stelter et al. 1997, Frank & Wissel 1998). 

The metapopulation dynamics is the results of the combined dynamics of the subpopulations 

and the between-patch dispersal flow. Therefore, dispersal – the spreading of individuals 
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away from each other (Begon et al. 1990) - is seen as a key determinant of the viability of 

spatially structured populations (Den Boer 1970, Opdam 1990, Hanski et al. 1994, Hess 1996, 

Anderson & Danielson 1997, Frank & Wissel 1998, Thomas 2000, Johst et al. 2002). In 

metapopulation theory, it is not only crucial that an emigrant starting at a certain patch i 

successfully reaches any other patch in the landscape, but also which patch it reaches. Or, to 

formulate it from the perspective of a patch: it is important with which probability a certain 

patch j is reached by an emigrant starting at a certain patch i (referred to as patch 

accessibility). This patch accessibility is an important determinant of patch recolonisation. On 

the landscape level, it can be also used as a measure of landscape functional connectivity, i.e. 

the degree to which a landscape facilitates or impedes animals’ movement (Taylor et al. 

1993).  

Whether an individual reaches patch j depends on the landscape structure and the individuals’ 

movement behaviour (King & With 2002). The second factor is especially true for animals’ 

dispersal behaviour since most animals can disperse actively through the matrix. The path an 

animal takes through the matrix, depends on a variety of factors such as landscape elements 

functioning as corridors (Merriam 1991, Haddad 1999, Neve et al. 1996) or barriers (Ricketts 

2001, Roland et al. 2000), the distance from which animals can detect habitat patches 

(referred to as perceptual range) (Zollner & Lima 1997) or a specific systematic movement 

pattern of the animals (Dusenbery 1992). Such systematic movement patterns were found for 

a variety of animals in the context of homing behaviour (Hoffmann 1983, Bell 1985, Müller 

& Wehner 1994, Durier & Rivault 1999), as well as for some butterflies in context of 

dispersal (Conradt et al. 2000, Conradt et al. 2001). The existence of a perceptual range has 

been observed for a variety of animals as well (Zollner & Lima 1997, Zollner & Lima 1999a, 

Yeomans 1995, Conradt et al. 2000). 

 

2. The approach 

The reason why meteorologists did not yet include the wing flaps of butterflies in their 

predictions, can be seen in the fact that it would cost immense calculating time to consider 

each wing flap of all butterflies in the world explicitly (and just don’t think of the turbulence 

caused by bumble bees, fruit flies and wasps). The same problem appears in this thesis: how 

can we condense the individual behaviour in a simple form without loosing important 

information? 
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Non-random dispersal behaviour is likely to have an important impact on patch accessibility 

and therefore on landscape functional connectivity and metapopulation dynamics (Keitt et al. 

1997, Wiens, Schooley & Weeks 1997, Pither & Taylor 1998, Wiens 1997). This thesis deals 

with the problem of how to link the specific movement behaviours of individuals with the 

complex dynamics of spatially structured populations. The goal is to analyse the 

consequences of non-random dispersal behaviour on metapopulation dynamics. To tackle this 

problem, we have first to deal with the question of how the effect of individual movement 

behaviour can be incorporated in metapopulation dynamics. The consequences of dispersal 

for population dynamics are often analysed using models (Verboom et al. 1993). In most 

metapopulation models, the underlying process of dispersal is assumed to be random (Fahrig 

1992, Hanski 1994, Adler & Nuernberger 1994, Vos et al. 2001, Frank & Wissel 2002). Non-

random dispersal behaviour, like systematic search strategies or the existence of a perceptual 

range, are scarcely considered. Therefore, a focal point of this thesis will be to develop a 

modelling framework that allows the effect of individual dispersal behaviour to be studied in 

a simple way. By means of an individual based simulation model, a formula is derived that 

describes the effect of individual dispersal behaviour and landscape structure on patch 

accessibility in a simple way. This formula is inserted in an already existing software for 

metapopulation analysis to investigate the effect of individual dispersal behaviour on 

metapopulation viability. Before starting with the model, a field study is performed that gives 

a first impression of how animals disperse in the field. This field study should illustrate how 

dispersal behaviour of individuals can be measured and analysed, and furthermore it should 

give us – the readers as well as the author - a feeling of the subject to be modelled.  

 

3. Thesis overview 

The thesis consists of 4 chapters and is divided into 3 parts. Each part is intended to be 

readable for itself, each chapter is intended to be submitted independently to journals for 

publication. Therefore, it is unavoidable that some sections are repeated in the different 

chapters. A chapter presenting not only ideas for continuative studies, but also some first 

results, completes the thesis. 

The parts are arranged in the order of organisation levels: We start at the individual level 

where the movement behaviour of individuals is analysed (Part I). The consequences of 

individual dispersal behaviour on patch accessibility and landscape connectivity are addressed 

in Part II. Part III deals with the effects of individual behaviour on the metapopulation level.  
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The different questions addressed in the three different parts necessitate the use of different 

methods. In Part I, I applied field work and statistical analysis, in Part II, I developed and 

analysed an individual-based simulation model and in Part III an already existing software for 

metapopulation analysis is combined with the formula derived in Part II. 

 

Part I 

In Part I, we investigated how individuals disperse in the matrix. A small case study, taking 

the bog fritillary butterfly Proclossiana eunomia (Esper) as an example, demonstrates not 

only how individuals move in the field, but also how the movement of individuals can be 

measured and analysed. We released individual bog fritillary butterflies into an unsuitable 

habitat to force them to disperse and then mapped their flight paths. We focused on two 

aspects of the dispersal behaviour: we wanted to identify the distance from which P. eunomia 

can detect habitat patches (perceptual range), and we wanted to determine whether (if no 

habitat patch lies within the perceptual range) the butterflies move randomly or employ non-

random systematic dispersal strategies. To tackle the second aspect, we compared observed 

flight paths to a model of correlated random walk using net square displacement analysis 

(Turchin 1998). The part closes by discussing the implications of dispersal behaviour for 

landscape connectivity and metapopulation dynamics. 

 

Part II 

Part II approaches the problem of how the effect of individual movement behaviour can be 

incorporated in metapopulation models.  

In the first chapter of this part (Chapter 3), we address the question whether and how the 

effect of individual dispersal behaviour and landscape structure on patch accessibility can be 

described in one simple formula. One crucial aspect in studying the consequences of dispersal 

is predicting the probability rij of a certain patch j being reached by individuals starting at 

another patch i (called patch accessibility). This patch accessibility rij depends on both the 

landscape structure and the individuals’ dispersal behaviour (King & With 2002). To 

investigate the effects of these factors on rij, we developed a simulation model focusing on 

animal dispersal. The model analyses show that there is an important intrinsic effect of the 

interplay between landscape structure and dispersal behaviour on patch accessibility: the 

competition between patches for migrants. We derive a formula for patch accessibility. 

Although this formula is very simple, it is able to cover effects such as the competition for 

migrants. The formula was found to have high predictive power for a variety of movement 
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behaviours (loops, random walk with various degrees of correlation and Archimedean spirals) 

in any given landscape. The formula can be interpreted as a generic function for patch 

accessibility for further population dynamical analyses. It also delivers insights into the 

consequences of dispersal in fragmented landscapes. We complete this part by discussing the 

formula’s practical value as a tool for decision-support. 

In the second chapter of Part II (Chapter 4), we investigated the effect of movement behaviour 

on the formula derived. The relationship between the aggregated parameters of this formula 

and all the relevant movement details were analysed. Using the individual-based simulation 

model, we wanted to derive fitting functions for the functional relationship between the 

parameters of the dispersal function and several details of the movement behaviour. 

Moreover, we were looking for an ecological interpretation of such relationships. Although 

the study addresses a particular movement behaviour observed in nature by way of an 

example, the approach presented of integrating movement behaviour into dispersal functions 

is general and can be applied to a wide range of movement patterns.  

 

Part III 

In Part III, the effect of individual dispersal behaviour on the viability of metapopulations is 

investigated. 

Metapopulation models are a useful tool to assess fragmented landscapes regarding their 

ability of carrying viable metapopulations (review by Verboom et al. 1993, Hanski 1999). In 

such models, the processes that determine metapopulation viability are often modelled in a 

simple way. Animals’ dispersal between habitat fragments is mostly taken into account by 

using a simple dispersal function that assumes the underlying process of dispersal to be 

random movement (Fahrig 1992, Hanski 1994, Adler & Nuernberger 1994, Vos et al. 2001, 

Frank & Wissel 2002). Species-specific dispersal behaviour as for example a systematic 

search for habitat patches is likely to influence the viability of a metapopulation (Wiens 1997, 

Ims & Yoccoz 1997). We investigate whether such specific dispersal behaviour affects the 

predictions of ranking orders of landscapes ranked regarding their ability of carrying viable 

metapopulations. We compare metapopulation viability of different landscape configurations 

taking different underlying dispersal behaviours into account. This is done by using META-X 

(Frank, et al. 2002), a software for metapopulation viability analysis. To incorporate dispersal 

behaviour in META-X, we use a submodel for the colonisation rates which utilises the 

formula for the accessibility of patches derived in Part II and allows different movement 

patterns to be considered. Landscape ranks were given by comparing for each movement 
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pattern (random walk with various degrees of correlation, loops) the resulting mean 

metapopulation lifetime Tm of different landscape configurations. The results show that 

landscape ranks change considerably between different movement patterns. We furthermore 

analyse under which circumstances such an inversion of landscape ranks can happen. We 

discuss implications for metapopulation modelling, planning and conservation. 
 

Where to go from here: possible directions and first results 

This chapter does not only provide ideas for prospective research, but also some first 

investigations and results how these ideas can be implemented. These ideas cannot be 

completely covered by this thesis and therefore need to be investigated more thoroughly in 

future studies.  

Additional landscape heterogeneity, like e. g. heterogeneous sized patches (Hill et al. 1996, 

Kuussaari et al. 1996, Bender et al 2003) or a heterogeneous matrix (Gustafson & Gardner 

1996, Haddad & Baum 1999, Merriam 1991, Roland et al. 2000, Jonsen et al. 2001, Ricketts 

2001, Ries & Debinski 2001, Vandermeer & Carvajal 2001), is likely to change patch 

accessibility. I present several approaches of investigating the applicability of the formula 

derived in Part II in landscapes with additional landscape heterogeneity. In these approaches, 

the effect of heterogeneously sized patches or heterogeneous matrix structures as barriers and 

topography on patch accessibility is investigated. 

Furthermore, I discuss how the formula’s results can be compared with field data and I show 

exemplarily how models can help to estimate the structure of unknown parameters. 

Finally, I call into question whether the incidence pattern of patches can be used as an 

indicator of a change in landscape ranks under different underlying dispersal behaviours. I 

compare the mean lifetimes Tm resulting of different underlying dispersal behaviours for a 

given landscape with the corresponding patch incidence pattern. 
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Part I 
 

Non-random dispersal behaviour of individuals in 

fragmented landscapes: the bog fritillary butterfly 

Proclossiana eunomia 

 

1 Introduction 
Animals’ ability to disperse between habitat fragments is a key determinant of the viability of 

spatially structured populations (Levins 1970, Opdam 1990, Hanski et al. 1994, Anderson & 

Danielson 1997, Frank & Wissel 1998, Thomas 2000). The consequences of dispersal for 

population dynamics are often analysed using models. In most metapopulation models, the 

underlying process of dispersal is assumed to be random movement (purely or correlated 

random walk) (Fahrig 1992, Hanski 1994, Frank & Wissel 2002). However, several studies 

have shown that animals’ movement is not totally random (Odendaal, Turchin & Stermitz 

1989, Matter & Roland 2002). Conradt et al. (2000, 2001) investigated the dispersal 

behaviour of two butterfly species, the meadow brown butterfly Maniola jurtina and the 

gatekeeper butterfly Pyronia tithonus. Their studies revealed systematic dispersal behaviour 

different from a random movement with the individuals flying in large ellipses in a succession 

of petal-like loops around their starting-point. Another deviation from random movement 

occurs due to animals’ ability to detect distant habitat patches and then head for them, known 

as the “perceptual range” (Zollner & Lima 1997). This perceptual range has been observed in 

a variety of animals (Harrison 1989, Yeomans 1995, Zollner & Lima 1997, Zollner & Lima 

1999a). The type of dispersal behaviour (random or systematic) could influence the functional 

connectivity of the landscape and therefore affect the whole spatio-temporal dynamics of 

(meta-) populations. For example, a recent modelling study found a systematic search strategy 

more efficient than random walk in a landscape with a clumped distribution of habitat patches 

(Conradt et al. 2003). However, detailed information about how individuals disperse in the 

field is limited because of the difficulties of keeping track of dispersing individuals in the 

field (Nathan 2001). Most investigations rely on mark-release-recapture studies, partly 

combined with modelling studies (e.g. (Brakefield 1982, Dover 1996, Hill, Thomas & Lewis 

1996, Petit et al. 2001, Wahlberg et al. 2002), but these do not provide information about the 

individuals’ actual dispersal path. 
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Chapter 2: Non-random dispersal behaviour of individuals 

The first step to shedding light on the role of movement behaviour within landscape 

connectivity and metapopulation viability is therefore to expand on our hitherto limited 

knowledge of the dispersal movement of individuals. Hence we studied the dispersal 

behaviour of the threatened bog fritillary butterfly, Proclossiana eunomia (Esper), whose 

population dynamics are well investigated (Baguette & Neve 1994, Baguette et al. 1996, 

Baguette et al. 1998, Schtickzelle & Baguette in press). This butterfly is a non-migratory 

species living in fragmented habitat networks whose natural patchiness is increasing due to 

human impact (Baguette et al. in press). In order to simulate dispersal in a field experiment 

(Harrison 1989, Zollner & Lima 1997, Conradt et al. 2000), we released individual butterflies 

into an unsuitable habitat in order to force them to disperse and mapped their flight paths. We 

focused on two aspects of the dispersal behaviour: we wanted to identify the distance from 

which P. eunomia can detect habitat patches (perceptual range), and we wanted to determine 

whether (if no habitat patch lies within the perceptual range) the butterflies move randomly or 

employ non-random systematic dispersal strategies. To tackle the second aspect, we 

compared observed flight paths to a model of correlated random walk using net square 

displacement analysis (Turchin 1998). The paper closes with a discussion of the implications 

of movement behaviour for landscape functional connectivity and metapopulation dynamics. 

 

2 Methods 

2.1 Study organism 

The bog fritillary butterfly, Proclossiana eunomia (Fig. 2.1), is a glacial relict occurring in 

scattered population islands all over Europe (Ebert 1991). The species is restricted to wet 

meadows and peat bogs where the only larval food plant and the nectar source of the adults, 

the bistort Polygonum bistorta, can be found (Baguette & Neve 1994). These wet meadows 

are early successional stages created in the past by agricultural use and nowadays mostly 

maintained by extensive management. Due to anthropogenic changes (the abandonment of 

mowing and grazing), the natural patchiness of such habitats has increased. As a result, P. 

eunomia is contained in the Red List of Threatened Species in some European countries such 

as Belgium (Baguette et al. 1998) and Germany (Pretscher 1998).  

The bog fritillary is a univoltine Nymphalid flying for about one month between the end of 

May and the beginning of July. Male butterflies emerge earlier than females. The mating 

system is polygynous and male mate-locating behaviour is patrolling (Baguette et al. 1996). 
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Figure 2.1 A female bog fritillary butterfly, Proclossiana 

eunomia, on its food plant, the bistort Polygonum bistorta 

 

 

2.2 Study site 

The experiment was performed during June 2002 at two different release sites in the Belgian 

Ardennes. 

One study site, Prés de la Lienne, was located on the Lienne river (50°18’ N, 5°49’ E). Small 

habitat patches of unfertilised wet meadow with Polygonum bistorta were situated on both 

sides of the river. The release site was located east of these habitat patches, separated from the 

habitat by a fragmentary tree line. It was an extensively used meadow with no stands of 

Polygonum bistorta, making it an unsuitable habitat for the bog fritillary butterfly. 

The other site was located at the Pisserotte nature reserve (50°13’ N, 5°47’ E). Stands of 

Polygonum bistorta were scattered over a peat bog surrounded by pine trees (Fig. 2.2a). Fig. 

2.2b demonstrates the wetness of this peat bog. The release site – again an extensively used 

meadow without Polygonum bistorta – was situated in the south of the bog. Pictures of both 

sites are shown by Schtickzelle & Baguette (2003). 
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re 2.2 The peat bog in the nature reserve Pisserotte, one of the 

 study sites. The habitat is covered with Polygonum bistorta 

. 2.2a) and characterised by its wetness (2.2b). 

 Experiments 

terflies were captured in one of the population’s habitat patches. They were sexed, marked 

guette & Neve 1994), and male butterflies were immediately moved to the release site 

58 in total) in a nylon meshed transport box (18 x 18 x 30 cm) covered with a black bag. 

ly male butterflies were used for releases in order to reduce the impact on the population. 

 release sites, which constituted unsuitable habitats, were at distances of 50, 70, 100, 250 

 300 m away from the nearest habitat patch (the other habitat patches being considerably 

her away). Butterflies were transferred to a release box (18 x 18 x 30 cm) covered in fine 

on mesh and were given 3 minutes to settle. Then they were released (always one butterfly 

 time) by opening the release box with a string pulled by an observer standing 5 m away 

. 2.3). The observer’s position was changed between different releases to avoid a bias in 

a due to the observer’s presence. Nevertheless, the position of the observer did not seem to 

uence the subsequent flight pattern. The observer followed each butterfly (from a distance 

10 m) until it either found the habitat patch or was lost from view. 
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Figure 2.3 The release box opened by a string. 

 

 

2.4 Data collection 

The butterflies’ paths were mapped by placing flags at every point the butterfly turned. 

Additionally, one flag each was placed at the point where the animals crossed a circle with a 

radius of 10 m around the release point (crossing point). This information was used to 

measure the diverging angle between the shortest possible route to the habitat patch and the 

route to the actual crossing point (i. e. start direction, Fig. 2.4). With this quantity the initial 

orientation of the butterflies could be assessed. This ability to orient towards the patch was 

taken as an indication of the bog fritillary butterfly’s perceptual abilities, as has already been 

done in the literature for a variety of animals (Yeomans 1995, Zollner & Lima 1997, Conradt 

et al. 2000).  

 
 

H
ab
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t 

 
Shortest way 
to the habitat 

α

Crossing point 
Figure 2.4 The butterflies’ ability to orient towards the 

patch is determined by measuring the starting angle α.  

This is done by placing one flag at the point where the 

individual crosses a circle with a radius of 10 m around 

the release point (crossing point). The starting angle α is 

calculated by the divergence between the shortest 

possible route to the habitat patch and the route to the 

actual crossing point.  
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For all the butterflies released at 250 and 300 m, the flight path was recorded (n=33). This 

was done by determining the exact positions of the flags by measuring the distances between 

the flags and three fixed points each. The positions of these fixed points were obtained by 

GPS, and the exact positions of the flags were calculated by triangulation. From the positions 

of the flags, we determined the straight move length between two flags and the associated 

turning angle. The overall path of an animal can therefore be described by a sequence of 

moves (distance between two flags) and turning angles (change in direction between two 

moves). Note that the definition of moves in this context diverges from the definition of 

Turchin (1998), where a move is defined as the distance between two stopping points. As 

butterflies rarely stopped in the matrix, this definition could not be applied here. Instead, 

move is defined here as the straight distance between two turning points. According to 

Turchin (1998), this wider definition of the term move could entail serial correlation in data 

analysis, which can be solved by using a moving block bootstrap (see data analysis).  

We also noted the number of butterflies which returned to the habitat patch. This was 

determined either directly by following them until they found a patch or their subsequent 

recapture in the patch. Additionally, we measured the following environmental factors for 

each release: temperature, wind speed, wind direction and cloud cover. 

 

2.5 Data analysis 

Perceptual abilities 

The orientation of the butterflies towards the patch measured in terms of the starting angle 

was analysed using a standard circular statistical test (Batschelet 1981, Fisher 1993). We used 

the Rayleigh V-test, which is considered more powerful than Rayleigh’s z when a predicted 

direction is known. This was done in order to test whether the orientation differs from a 

uniform distribution and has a specific mean direction (Zar 1999). To test whether there is a 

correlation between starting angles and the environmental factors temperature, wind speed 

and cloud cover, we used an angular–linear correlation test; for wind direction we used an 

angular–angular correlation test (Zar 1999). 

 

Turning angles and move lengths 

Because the data of flight paths were taken from two different locations and two different 

release distances (250 m in Prés de la Lienne and 300 m in Pisserotte), they were analysed 

separately. The sample size of the data from Prés de la Lienne (n=7) was not high enough to 

test for differences between sites.  
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The flight paths were analysed regarding the move lengths and turning angles of the paths. 

The mean and standard deviation of the turning angles was calculated using circular methods 

(Fisher 1993). After graphical inspection of the distribution of turning angles (in order to 

confirm unimodality), we tested whether the mean angle is orientated towards 0° as is typical 

of turning angles (Turchin 1998) using the Rayleigh V-test (Zar 1999). We also examined the 

data for correlation between consecutive turning angles using a parametric angular–angular 

test (Zar 1999). To obtain significance we resampled the angular-angular correlation 

coeffecient raa n times, each time eliminating a different pair of consecutive turning angles, 

and then obtained the 95% confidence interval of the statistic for the null hypothesis of no 

correlation (raa = 0). The raa of the angular–angular test corresponds to the correlation 

coefficient Pearson’s r for linear data, also referred to as “Pearson product-moment 

correlation coefficient”. If r = 0, there is no correlation between variables; for r = 1 and r = –1 

the data are 100% correlated. We also tested for correlation between turning angles and move 

length using an angular–linear correlation test (Zar 1999). The move lengths between turns 

were analysed regarding their distribution using a Kolmogorov-Smirnov test. We examined 

the data for correlation between consecutive moves using Pearson’s r and a Spearman’s rank 

correlation for not normally distributed cases. Whether there is a correlation between 

consecutive turning angles or move lengths needs to be known in order to determine whether 

a moving block bootstrap (see analyses of paths) has to be used.  

 

Analyses of paths 

The overall paths were analysed according to Turchin (1998). To check whether the 

movement can be described by a correlated random walk, the theoretical net square 

displacement was calculated (Kareiva & Shigesada 1983) and compared with the observed 

one. In order to determine whether the deviation between observed and theoretical net square 

displacement  is statistically significant, we performed a bootstrap (Turchin 1998). For 

this analysis, all the turning angles and move lengths of one site were pooled. A large number 

of pseudopaths (n = 1000) was simulated by drawing random move lengths and turning angles 

out of the empirical distribution. From the pseudopaths, the  was calculated and the 

resulting values were sorted in ascending order. The 95 % confidence interval was estimated 

for each move by taking the 26

2
nR

2
nR

th and 975th values of the sorted list as the end of the 95 % 

confidence interval. If the observed  lies within the 95% confidence interval, the path can 

be described with a model of correlated random walk (CRW). Because there were only a few 

2
nR
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observed paths with more than 15 moves, the average for each move n>15 was calculated 

using the displacement after the first 15 moves (Turchin 1998). Since there was an 

autocorrelation in the turning angles and move lengths of the paths from Pisserotte, a moving 

block bootstrap was used for these path data (Efron & Tibshirani 1993). For this moving 

block bootstrap, data were pooled in blocks of three (e.g. 1-3, 2-4, 3-5, ...) because there was 

no third-order autocorrelation. This analysis was only performed for paths with 6 or more 

moves, and so we analysed a total of 27 paths (thereof 20 paths from Pisserotte).  

 

Paths with a more systematic movement 

To characterise the paths which displayed a pattern different from correlated random walk, we 

analysed them in the following way:  First, we tried to find out whether there is a preference 

to retain the orientation of one step in the next step. This was done by placing all possible 

turning angles into one of two categories: (1) turns in the same orientation and (2) turns in the 

opposite orientation. Deviation from a random distribution can then be assessed by a c2 test. 

Second, we tested whether there are high-order autocorrelations (1 to 8 lags) between the 

turning angles of all the paths with a low  using the above-described parametric angular–

angular correlation test (Zar 1999). 

2
nR

The linear statistics were calculated with SPSS. The circular statistics, net square 

displacement and bootstrapping were programmed in C++. 

 

3 Results 

3.1 Perceptual abilities and return rate 

Fig. 2.5 shows the angular orientation of butterflies 10 m away from the release point. There 

was no correlation between the starting angle and the environmental factors investigated (for 

wind speed and cloud cover: angular–linear correlation test, for wind direction: angular–

angular correlation test, P>0.05). While for butterflies released at 50, 70 and 100 m most of 

the starting angles lay within 90° of the shortest route to the habitat patch, the butterflies 

released at 250 and 300 m seemed to be less orientated. However, in statistical terms there 

was no significant orientation towards the habitat for butterflies released at 50 m (V-test, 

u=0.887, P>0.05, n=7). Butterflies released at 70 and 100 m were significantly orientated 

towards the habitat patch (V-test, u=2.583, P<0.005, n=9; and u=1.782, P<0.05, n=7). In 

contrast, there was again no significant orientation for butterflies released at 250 and 300 m 

(V-test, u=-1.586, P>0.05, n=6; and u=1.379, P>0.05, n=29).  
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Figure 2.5 The angular orientation of butterflies at 10 m from the release point. Data are given for butterflies 

released at 50, 70, 100, 250 and 300 m from the habitat patch. Each point represents one individual. The point of 

the habitat closest to the release point (symbolised by the bistort) was defined as 0° for each release point. The 

vectors indicate the average angle and the mean vector length. 

 

 

100% of those butterflies released at 50 and 100 m and 86 % of those released at 70 m were 

found to have returned to the habitat. Of the butterflies released at 250 m or more (the data 

from 250 m and 300 m being combined), only 61 % returned. 

 

3.2 Analysis of dispersal behaviour 

Turning angles and move lengths 

For both sites, the turning angles were significantly orientated towards 0° (Rayleigh’s V-test; 

Prés de la Lienne: u=4.958, P<0.0005; Pisserotte: u=10.94, P<0.0005). In Prés de la Lienne, 

the mean angle (± SD) was 10.47° ± 10.56°; in Pisserotte it was 8.28° ± 4.34°. For Prés de la 

Lienne, there was only a weak correlation between consecutive turning angles separated by 

one lag (i.e. a first-order autocorrelation, angular–angular correlation raa=0.091, n=31 [the 

95 % confidence interval of all the raa presented here did not include 0]). For Pisserotte, there 

was a slightly stronger correlation between consecutive turning angles, separated by one lag 

(angular–angular correlation raa=0.21, n=202) and by two lags (i.e. a second-order 

autocorrelation, raa=0.16, n=183). Separated by three lags, the correlation between turning 
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angles becomes weaker (raa=0.08, n=164). For both sites, there was no correlation between 

turning angle and the associated move length (Pearson’s r; Prés de la Lienne: r=0.57, P>0.05, 

n=48; Pisserotte: r=0.54, P>0.05, n=237). 

The distribution of move length followed a normal distribution in Lienne (Kolmogorov-

Smirnov d=0.132, P>0.05, n=48) but not in Pisserotte (d=0.188, P<0.01, n=237). The mean 

move length (± SD) was 19.4 m ± 11.9 m in Lienne and 11.3 m ± 10.2 m in Pisserotte. For 

Prés de la Lienne, no correlation between consecutive move lengths was detected (Pearson’s 

r=0.05, P>0.05, n=39). In Pisserotte, a correlation was found between consecutive moves for 

moves separated by one (Spearman’s rank rs=0.19, P<0.01, n=209) or two lags (rs=0.19, 

P<0.01, n=185), but not for a higher-order correlation (rs=0.07, P>0.05, n=162). 

 

Analyses of paths 

In order to assess whether a model of correlated random walk (CRW) can describe the path 

data appropriately, the overall paths were analysed by comparing the theoretical net square 

displacement  for all moves n with the observed one (Kareiva & Shigesada 1983). An 

observed  exceeding the predicted one indicates the paths are more direct than would be 

suggested by CRW. The opposite pattern, an observed  lying below the predicted one, is 

less common and occurs in data sets where a more systematic search is found (e.g. Mexican 

bean beetles Epilachna varivestis (Turchin 1998)).  

2
nR

2
nR

2
nR

In the first step, we perform this analysis by pooling the turning angles and move lengths of 

all paths to calculate the predicted net square displacement . Exemplarily, the results of 

this analysis of the Pisserotte data are shown in Fig. 2.6. As long as the observed  values 

are averaged over all paths, the following picture occurs: the mean  observed for each 

move n lies after 9 moves close to the calculated  and well within the 95% confidence 

interval. However, considering each observed path separately, almost all of the paths lies 

outside the 95% confidence interval. From all 27 paths, the observed  of 13 paths 

increases significantly faster with increasing step number n as predicted. In contrast, the 

observed  of 10 paths increases (compared with the predicted ) significantly slower. 

This can be also seen in Fig. 2.6, where the  of two paths with the described properties are 

shown as an example. This result indicates that there are great differences in turning angles 

2
nR

2
nR

2
nR

2
nR

2
nR

2
nR 2

nR

2
nR
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and move length of different paths. The good fit of the mean observed  appears to be 

attributable to the fact that different paths with high and low  average out each other. 

2
nR

2
nR

Therefore, in a second step, the same analysis – comparing the theoretical and observed net 

square displacement – was performed, but now by calculating the predicted  for each 

path separately (taking the data of one path considered as a basis). Using this method, more 

paths were found to be appropriately described by a correlated random walk. Of 27 paths, 15 

paths (including 5 paths from Prés de la Lienne) can be described with the correlated random 

walk model (56 %), while for 3 paths (including none from Prés de la Lienne) the  

increased faster than expected (11 %) and for 8 paths (including 2 paths from Prés de la 

Lienne)  increased slower (30 %). One path displayed no clear trend. In Fig. 2.7, these 

three cases are shown by way of example on three paths. A path which can be described with 

the correlated random walk model according to the  analysis can be seen in Fig. 2.7a. 

Here, the observed  lies within the 95% confidence interval, and the corresponding path 

seems to be quite straight (as all paths where the observed  equals that predicted). The 

path shown in Fig. 2.7b has a  significantly higher than that calculated and also appears 

straight. In Fig. 2.7c, the observed path lies partly within the 95 % confidence interval, but for 

some steps significantly below the predicted . This reflects the shape of the path, where the 

butterfly changed direction completely and returned close to the starting point. This behaviour 

indicates a more systematic movement than a random walk.  

2
nR 2

nR

2
nR

2
nR

2
nR

2
nR

2
nR

2
nR

2
nR

Figure 2.6 In order to test whether the 

paths can be described with a random walk 

model, the predicted and observed net 

square displacement ( 2
nR ) were ompared 

(here shown for the data of Pisserotte). 

Predicted 2
nR  and 95  confidence 

interval were obtained by simulations. 

White points represent the mean observed 

2
nR  over all the ths of this site; black 

points represent two examples for the 

observed 2
nR  for single path
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igure 2.7 Examples of three paths with different results between theoretical (white dots) and observed (black 

27). 2b: The observed nR  lies above the theoretical one (observed for 3 paths out of 27). 2c: The observed

lies below the theoretical one (observed for 8 paths out of 27). 

a 
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dots) net squared displacement ( 2R ). 2a: Theoretical and observed 2R  coincide (observed for 15 paths out of 
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Paths with a more systematic movement 

A visual inspection of the paths shows that the paths with low  are all bent and seem to 

 more than in the other. We decided to test whether 

o

tions (1 to 8 lags), we only found – similar to the data of all paths – a correlation at 

iour, 63 % 

able 2.1 The correlation between angles at different lags for two paths with low  (a correlation coefficient 

0.1 (or r>–0.1) is shown in bold type) 

2
nR

have a tendency to turn in one direction

this tendency can be found from the means of turning angles and m ve lengths. 

We did not find any preference to retain the orientation of one step in the next step (c2=0.931, 

P>0.05)).  

By pooling the turning angles of all paths with low 2
nR  and testing for high-order 

autocorrela

the first and second time lags, but not for higher lags. In contrast, when investigating the 

correlation for each path separately, high-order correlation that was even stronger than at the 

first lag was found – albeit for each path at a different lag. For example, correlation was found 

at the 4th lag of path 5, while in path 3 correlation was observed at lags 8 and 9 (for details see 

Table 2.1). These high autocorrelations at a certain lag suggest that the butterflies tend to turn 

in the same direction for several moves. Because the correlations were at different lags, they 

could not be found by amalgamating the turning angles of all the paths considered. 

We also investigated whether the return rate of butterflies flying non-randomly differs from 

those flying randomly. Of the butterflies with the more systematic movement behav

arrived at the habitat patch – almost exactly the same proportion as was found for all 

butterflies released at 250 and 300 m (61 %; see above) . 

 

 

 

2
nRT

r>

Lag 1 2 3 4 5 6 7 8 9 10 

r of path 3 0.105 0.028 0.087 -0.075 -0.078 -0.005 0.036 0.165 -0.184 -0.048 

r of path 5 0.319 0.026 0.059 0.247 0.030 - - - - - 
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4 Discussion 
.1 On the movement behaviour of Proclossiana eunomia 

e habitat for butterflies released 

100 m release distance, animals were found to head towards the habitat 

, we cannot rule out the possibility that the 

a high level of 

4

Perceptual abilities 

Our results do not show any significant orientation towards th

at 50 m. From a 70–

right from the start, while for higher release distances no significant orientation was found. At 

the 50 m distance, the butterflies may have shown low motivation to aim for a habitat 

accurately (since from a short release distance deviations in the starting angles only result in 

small detours). For the 250 and 300 m release distance, the butterflies were probably no 

longer able to head for the patch. Furthermore, 100% of the butterflies released at 100 m 

returned to the habitat, while only 61% of the butterflies released at 250 m returned. From 

these arguments, it can be concluded that the apparent perceptual range of the butterflies 

released is at least 100 m. A similarly high perceptual range (over 70 m) was found for 

Maniola jurtina (Conradt et al. 2000), while for the Fender's Blue Butterfly Icaricia 

icarioides fenderi the distance from which butterflies react to the habitat edge seems to be 

much shorter (10-22 m (Schultz & Crone 2001)). The effect that butterflies released from 

very short distances showed no significant orientation towards the habitat patch was also 

found for Maniola jurtina (Conradt et al. 2000).  

Since the concurrent performance of genetic studies prevented us from releasing individuals 

from one population at the other population’s site

release site was already familiar to the butterflies. However, there was a fragmentary 

boundary of trees between habitats and release sites. As such boundaries have been shown to 

be a barrier to emigration (Ries & Debinski 2001, Schtickzelle & Baguette 2003), it seems 

unlikely that the animals crossed the boundary to explore the hostile matrix.   

The results of this study can also contribute to the understanding whether P. eunomia is a 

sedentary butterfly. Baguette & Nève (1994) and Petit et al. (2001) found 

movements between the patches of a structured population where the distance between habitat 

patches varied between 40–150 m; the maximum dispersal distance observed for P. eunomia 

is 4.6 km (Petit et al. 2001). This indicates that P. eunomia is a more dispersive butterfly than 

proposed in previous literature (Bink 1992). A perceptual range of 100 m may give an 

explanation for the high exchange rates: most movements between habitat patches in this 

population would be well within the perceptual range, which for small distances reduces the 

risk of moving. 
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Flight paths  

shows that most of the flight paths recorded for P. eunomia can be described 

t from random has also been found by other authors. Conradt et 

ndividuals of one species can exhibit 

.2 Consequences for analysing individual dispersal success, landscape connectivity and 

Findings such as a high perceptual range, the existence of non-random dispersal behaviour 

dividuals in finding habitat patches (and ultimately their individual 

Our analysis 

with a correlated random walk model. However, 3 out of 27 paths showed a behaviour 

straighter than a correlated random walk, while 8 paths indicated a more systematic flight 

behaviour, where the butterflies exhibited a tendency to return to the release point. This more 

systematic movement behaviour is characterised by high-order correlations in turning angles. 

Since this correlation occurs at different lags for different paths, each path can only be 

comprehended individually. 

Dispersal behaviour differen

al. (2000, 2001) observed systematic dispersal behaviour in two butterflies, Maniola jurtina 

and Pyronia tithonus. Mexican bean beetles released in a field with no host plants exhibited a 

spiralling movement pattern (Turchin 1998). Other studies have observed non-random 

movement for individuals searching for food or their nest (Hoffmann 1983, Müller & Wehner 

1994). These investigations indicate that non-random movement behaviour is not an 

exception but can be found in a variety of species.  

Furthermore, our results show that different i

qualitatively different movement patterns. This corresponds with the results of other studies, 

which found variability in movement patterns in other species (Baars 1979, Morales & Ellner 

2002, Angelibert & Giani 2003).  

 

4

metapopulation dynamics 

and the individual variability in movement patterns can influence our understanding of 

various ecological aspects of species in fragmented landscapes in general and P. eunomia in 

particular. This chiefly has implications for evolutionary questions, landscape ecology and 

metapopulation theory. 

Firstly, the success of in

fitness) is likely to be influenced by these factors. It has already been found in simulation 

models that the perceptual range increases the search success (Zollner & Lima 1999b). While 

nearly straight correlated random walk was found to be especially advantageous in most 

landscape types (Zollner & Lima 1999b), Conradt et al. (2003) found a systematic search 

strategy to be more efficient in landscapes with a clumped distribution of habitat patches. 
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Secondly, both field studies and simulation studies have shown that the behaviour of animals 

can strongly influence the functional connectivity between habitat patches (Keitt et al. 1997, 

Pither & Taylor 1998, Heinz et al. 2003 submitted). This is especially relevant for 

behavioural aspects as perceptual range as well as type and variability of movement patterns. 

These three aspects should therefore be considered when dispersal functions are developed for 

further use in the context of connectivity. So far, these functions have usually been based on 

the assumption of (correlated) random walk (Turchin 1998).  

Thirdly, if the perceptual range and the movement behaviour alter search success and 

connectivity, via these factors they could also influence the whole dynamics and viability of 

spatially structured populations and metapopulations. The colonisation of empty habitat 

patches can be broken down into several processes: the emigration of individuals from an 

occupied patch, dispersal through a more or less inhospitable matrix, immigration into a new 

habitat patch, and establishment in this patch (Ims & Yoccoz 1997). Our results directly 

contribute to our understanding of how individuals move through the matrix; yet they also 

provide insights regarding the emigration in fragmented landscapes. Usually the emigration 

rates are related to the size and area of patches. Schtickzelle & Baguette (2003) showed that 

the emigration of P. eunomia additionally depends on the degree of fragmentation. The 

existence of a perceptual range of 100 m recorded in the present study probably gives an 

explanation. Habitat patches inside the perceptual range of a habitat patch under consideration 

can increase the willingness of individuals to leave and, hence, increase the emigration rate. 

This shows that emigration rates can only be correctly understood if the whole spatial 

configuration of the habitat network is considered and the perceptual range is taken as a 

spatial scale. 

 

 

 

Part I demonstrated that the dispersal behaviour of individuals is often not random. To 

analyse the consequences of such non-random dispersal behaviour on metapopulation 

dynamics without spending tremendous simulation time on modelling each particular 

movement step, we need a modelling framework that subsumes the details of individual 

dispersal behaviour in a simple, but sufficiently explicit way. This will be the challenge of 

Part II. 
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Part II 

Dispersal behaviour in fragmented landscapes:  

Deriving a practical formula for patch accessibility 

 

1 Introduction 
Many studies have shown that the ability of animals to move between habitat fragments is a 

key determinant of the viability of spatially structured populations and metapopulations 

(Levins 1970, Opdam 1990, Hanski et al. 1994, Hess 1996, Anderson & Danielson 1997, 

Frank & Wissel 1998, Thomas 2000, Johst et al. 2002). In this connection, one crucial factor 

is the probability rij of a certain patch j being reached by an emigrant from a certain patch i, 

referred to as patch accessibility.  

To analyse the consequences of dispersal for population viability in mathematical models, the 

functional relationship between patch accessibility rij and landscape configuration needs to be 

subsumed in a simple way. The easiest approach is doubtless to take the distances between 

patches into account. In the literature, this is normally done by describing rij as a function of 

distance between start and target patch. It has been concluded that rij may decrease with 

increasing distance (Harrison et al. 1988). One of the simplest and most obvious approaches 

to describe this relationship is the exponential form, where rij declines exponentially with 

distance. This approach is used in a variety of models (Fahrig 1992, Hanski 1994, Adler & 

Nuernberger 1994, Hanski et al. 1996, Vos et al. 2001, Frank & Wissel 2002). Although 

Wolfenbarger (1949) proved this exponential dispersal function to be valid for a variety of 

small, passive organisms, it is debatable whether this approach is suitable to describe more 

complex situations, especially when the individuals’ dispersal behaviour is taken into account. 

As many empirical studies have shown, animals’ movement behaviour often cannot be 

described by a model of (correlated) random walk (Wiens et al. 1997, Conradt et al. 2000, 

Conradt et al. 2001) and some authors have stated that other functions describe the 

dependence of dispersal on distance better than the exponential approach (Hill et al. 1996, 

Baguette et al. 2000). Nevertheless, what kind of function is flexible enough to explain the 

distance dependence for different complex movement characteristics is not yet clear. 

Moreover, whether the effect of complex dispersal behaviour and landscape structure on patch 

accessibility can be described by a simple formula is an open question. 
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This paper addresses the problem of how to describe patch accessibility rij in a simple way. 

To tackle this problem we developed a simulation model to determine rij for varying 

landscape configurations and dispersal behaviours. Our model analyses show an important 

intrinsic effect of the interplay between landscape structure and dispersal behaviour on patch 

accessibility: the competition between patches for migrants.  

Analysing landscapes of increasing complexity, we derive a formula to calculate rij .Although 

this formula is very simple, it is able to cover effects such as the competition for migrants. We 

show that this formula is applicable to a variety of spatial configurations and types of 

dispersal behaviour. We used simple movement patterns, such as the often used random walk 

(Doak et al. 1992, Ruckelshaus et al. 1997, With & King 1999) and the Archimedean spiral 

(Bell 1991, Dusenbery 1992, Zollner & Lima 1999b). We also used a more complex pattern 

observed in nature – the loop-like movement pattern observed for a variety of animals 

(Hoffmann 1983, Bell 1985, Müller & Wehner 1994, Durier & Rivault 1999), especially (in 

the context of dispersal) for Maniola jurtina and Pyronia tithonus (Conradt et al. 2000, 

Conradt et al. 2001). The essence of the model is condensed in this formula. This delivers 

insights into the consequences of dispersal in fragmented habitats for population dynamics 

and furthermore enables the potential and limits of the exponential approach to be analysed.  

 

2 The model 
In order to determine the probability rij of patch j being reached by an emigrant starting from 

patch i in any given landscape, we developed a spatially structured, individual-based model. 

Since we wanted to investigate the impacts of different landscape configurations (number and 

configuration of patches) and different movement patterns, both had to be variable in the 

model. The programming language used to build the model was C++. 

 

2.1 Landscape 

To determine the patch accessibility rij for any given landscape configuration, we used 

spatially continuous (rather than grid-based) landscapes with circular patches and a 

homogenous matrix. A specific number of patches was distributed randomly within a 100 x 

100 area (scaled by virtual spatial units) by selecting x- and y-coordinates from a uniform 

distribution. The diameter of the habitat patches was set to 4 spatial units. If two patches 

overlapped, the location of the second patch was resampled.  In contrast to most other existing 

models (Pulliam et al. 1992, Adler & Nuernberger 1994), we did not use any kind of border to 

restrict the landscape. The animals were allowed to run out of the patch-containing landscape 
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and to return as long as they were still alive. This seems biologically reasonable, because real 

landscapes do not necessarily have edges between patch-containing and empty matrices that 

are apparent to dispersing animals. Since in our case we need to be able to pinpoint an animal 

during its entire dispersal time, substituting one animal that runs out of the landscape by 

another animal coming in (as is done in models with periodic border conditions) would be 

pointless. Additionally, from an analytical viewpoint, omitting borders means the system is 

not made additionally complex by extra border effects. 

Not only landscape aspects (distance between habitats, patch size) but also behavioural 

components (step-length, perceptual range, mean dispersal distance) are scaled by virtual 

spatial units. As long as the ratio between these features remains proportionate, they can be 

transformed for different animals and landscapes to any appropriate spatial scale.  

 

2.2 Movement patterns 

To investigate the probability of a certain patch being reached, the following movement 

patterns were applied: random walk with different degrees of correlation between the angles 

of consecutive steps, the Archimedean spiral and a loop-like movement pattern. The 

Archimedean spiral is a movement pattern where the individual circles outward from the start 

patch in a continuous curve. For the loop-like pattern found for Maniola jurtina and Pyronia 

tithonus (Conradt et al. 2000, Conradt et al. 2001), the individuals move away from the start 

point, describe a semi-circle and return to the starting point on a different path. The next loop 

is started in another direction, creating a petal-like path. The size of the loops increases with 

the number of loops, and so the radius searched increases. 
In the model, all movement patterns are based on the elements of random walk. For 

simplicity’s sake, the random walks are assumed to have a constant step length (half a spatial 

unit) with only the turning angles varying. The variation of the turning angles determines 

whether the direction of movement is uncorrelated between two consecutive steps (and 

therefore the movement is completely random) or correlated. These turning angles are drawn 

from a zero-mean Gaussian distribution. The variation of the turning angles (and therefore the 

degree of the correlation of the random walk) is determined by the standard deviation of this 

distribution. We model the standard deviation std = (1-c)*2*p, with c being the degree of 

correlation between consecutive movement directions. Thus for c = 0, the standard deviation 

of turning angles would be 2*p (360°) and therefore the random walk would be almost totally 

random. For c = 1, all turning angles would be 0° and the movement would be a straight line. 

We decided less extreme values would approximate biologically reasonable movements, and 
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so chose values for c of 0.00 for uncorrelated, 0.90 for fairly correlated and 0.99 for strongly 

correlated random walk (Fig. 3.1).  

The two more complex movement patterns, spiral and loops, are generated by adding a few 

more rules to the random walk. Since these rules are very simple, it is conceivable that they 

reflect the actual movement behaviour of animals. 

The spiral is created by a random walk in just one orientation (i.e. clockwise or anticlockwise) 

using the absolute valued of turning angles drawn from the Gaussian distribution. The 

orientation of the spiral is determined by the first randomly drawn step. For the typical spiral, 

the radius of the spiral increases as the number of steps grows. This increase in radius can be 

implemented by increasing the correlation degree of the random walk, which can be generated 

by decreasing the standard deviation of the Gaussian distribution utilised (see above). We 

used a power function for increasing c with the number of steps 

( ) , with c*01.0( 3.1
1 stepstepstep ccc +=+ step(initial) = 0.95). Because the turning angles are 

taken randomly from the Gaussian distribution, this kind of spiral is subject to stochasticity. 

An example of the spiral-like movement pattern can be seen in Fig. 3.1b. 

 

 

 

 

 

 

 

a b c 

II 

III 

I 

Figure 3.1 Different movement patterns: a) Random walk with three different degrees of correlation: strongly 

correlated (I), fairly correlated (II) and uncorrelated (III). b) Spiral c) Loop-like movement pattern. The diameter 

of the movement points reflects the perceptual range of the disperser. 
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The loops (Fig. 3.1c) are generated in three phases. In the first phase, the individuals move 

away from the starting-point in a random direction with a strongly correlated random walk 

(c = 0.99). The number of steps in this phase determines the length of the loop (we choose 4 

steps for the initial loops). In the second phase, the animal starts to take all its steps in the 

same orientation (albeit with different turning angles), and so it describes an arched path 

(c = 0.90). In order to describe approximately a semi-circle, the number of steps in the second 

phase has to be adjusted to the correlation degree (in this case, we used 4 steps). The width of 

the loops is approximately determined by the number of steps in this phase. In the third phase 

the turning angle and the number of steps needed for the way back were calculated and the 

animal returns in a straight path to the starting patch. This behaviour reflects the orientation 

abilities of animals observed in nature. Some animals are known to be able to return straight 

to the starting-point by integrating their turning angles while moving. This behaviour is called 

path integration (dead reckoning) and has been observed for a number of animals (Wehner et 

al. 1996, Etienne et al. 1998, Durier & Rivault 1999, Menzel et al. 2001). For the next loop, 

the animal starts again in a random direction away from the starting-point, but not in the same 

quadrant of an imaginary circle around the starting-point as before. As observed in nature 

(Conradt et al. 2000), the size of the loops in the model increases with increasing number. 

This is done by increasing the number of steps in the first phase after each 4 loops about 2 

more steps.  

 

2.3 Parameters 

Besides the movement rules there are two other parameters in the model that determine 

dispersal ability: mortality risk and perceptual range. We expressed mortality risk as the per-

step probability of dying, as is done in various models (Pulliam et al. 1992, Zollner & Lima 

1999b, Tischendorf 2001). This seems biologically reasonable since mortality is more likely 

to happen with increasing time spend in the hostile matrix. The mortality risk was varied 

between values of 0.001 and 0.01. Perceptual range describes the distance within which an 

animal can detect new patches and can therefore move towards them. It is commonly used in 

models (Cain 1985, Fahrig 1988, Armsworth et al. 2001) and has been well investigated in 

the field (Yeomans 1995, Zollner and Lima 1997,  Zollner 2000, Conradt et al 2000). In the 

model, we used values between 0 and 8 spatial units for the perceptual range. In Fig. 3.1, the 

perceptual abilities of the dispersing animals can be seen as the diameter of the circle 

symbolising the moving animal. Unless otherwise specified, a per-step mortality of 0.001 and 

a perceptual range with a radius of 2 spatial units are taken as standard model parameters. 
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2.4 Simulation 

For one simulation run, 100 landscapes with a specific number of patches (2, 3 or 10) were 

produced. In each landscape, 1000 animals were released at patch i. After release, the 

individuals move through the landscape according to their movement rules (movement pattern 

and movement parameters) until they either find a patch or die. If a patch comes within the 

perceptual range of an individual (excluding the patch from which the individual emigrated), 

the individual moves straight to this patch and stays there. If there is more than one patch 

within the perceptual range, the individual moves randomly to one of these patches and stays 

there. The probability rij of patch j being reached is counted as the proportion of individuals 

arriving at this patch. Additionally, landscape features, such as the position of the patches and 

the corresponding distance dij between start patch i and target patch j (measured from centre 

to centre) are noted. 

The results of the simulation model are analysed by using linear and non-linear regressions. 

All regressions are done using SigmaPlot which applies the Marquardt-Levensberg Algorithm 

for minimization of least squares. We also applied the Akaikes Information Criterion (AIC, 

Motulsky and Christopoulos 2003) to compare functions with different number of fit 

parameters. 

 

3 Results 
In order to find the functional dependence of the patch accessibility rij on landscape 

configuration our twin aims are to identify the essential spatial characteristics of the landscape 

and to express the functional relationship between rij and these characteristics as simply as 

possible. Moreover, we are interested in understanding how the functional structure depends 

on the individuals’ movement behaviour. 

The simplest way of including landscape configuration is doubtless to take the distances 

between the patches into account. In the literature, this is usually done by describing rij in 

dependence on the distances between start and target patch. The commonest approach of this 

type uses an exponential fitting function given by: 

ijdb
ij eR *−=       (3.1) 

where dij is the distance between start patch i and target patch j, and 1/b is the mean distance 

an individual is able to cover. The notations rij and Rij are needed to distinguish between 

simulated values (rij) and the fitting function (Rij). However, since this approach is ad hoc, it 

is uncertain how well it predicts rij in the case that the individuals’ movement behaviour is 
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taken into account. This question is especially relevant if the behaviour is more complex, as in 

the case of the loop-like behaviour observed in nature.  

Therefore, in our initial experiment we investigate whether this exponential distance-based 

approach works to describe rij for the loop-like movement pattern taken as an example. In 

order to answer this question, we perform the above described simulation (2.4). We use 

landscapes with 10 patches and let the animals move in a loop-like movement pattern. To test 

the predictive power of the exponential approach, the resulting values of rij and dij are 

recorded for each of the 10 patches and each of the 100 landscapes. These rij-dij values are 

used as a basis for regression analysis, where the data are fitted to an exponential curve.  

Fig. 3.2 shows the result of regression analysis, with each point representing one particular 

patch pair. As can be seen, the results exhibit high variation, and so rij can be neither 

predicted nor explained by the exponential function. This is not only caused by the shape of 

the exponential function, but mainly by the large variety of possible values of rij for a certain 

fixed distance dij. This large variation may be a result of statistical or systematic effects. 

Below we investigate the systematic effects. As the range of the rij values shows that distance 

dij is not the only determinant of rij, it is (at least for the loop-like movement pattern) not 

sufficient to consider merely the distance between start and target patch to describe rij. We 

hypothesise that the variation of rij is the result of the interactions with all the other patches. 

This means we have to consider the complete landscape configuration if we want to 

understand and predict rij.  

 
 

 

Figure 3.2 The 

probability rij of patch j 

being reached in 

landscapes with 10 

patches as a function of 

distance dij between 

start patch and target 

patch for the loop-like 

movement behaviour. 

The dots represent the 

simulation results, the 

line a fitted exponential 

curve. Distance dij
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In order to examine the influence of landscape configuration systematically and to handle the 

complexity of the system, we use a hierarchical approach: In a first step, we focus on the 

simplest landscape (two-patch systems). By taking the results of this reference study as a 

basis, more complex landscapes (multi-patch systems) are investigated in a second step. In 

both steps, a set of the different movement patterns described is considered and investigated. 

 

3.1 The patch accessibility rij in a two-patch system  

Below, a landscape with only two patches is considered. Our aim is to find the simplest 

possible mathematical function that allows the functional relationship between the patch 

accessibility rij and the distance dij between start patch i and target patch j to be reproduced 

qualitatively correctly and quantitatively sufficiently.  

To achieve this goal, the same experiment as before is performed, but now using landscapes 

with only two patches. The loop-like movement pattern is used as an initial case to search for 

a suitable function. Once an appropriate function type has been found, its predictive power is 

tested for a variety of model parameters of the complex loop-like pattern and later on for the 

other, more simple movement patterns, such as random walk with different degrees of 

correlation and Archimedean spirals. 

The loop-like movement pattern 

As can be seen in Fig. 3.3, the patch accessibility rij decreases with rising distance dij. In 

contrast to the results in Fig. 3.2, a clear functional relationship can be detected. However, 

comparison with the corresponding exponential fit (dashed line) reveals that the functional 

relationship is qualitatively different from the exponential one. For larger distances, the 

simulated rij values lie below the exponential curve, while for shorter distances they lie above 

it. It is especially noticeable that in the range of shorter distances the decrease is rather flat. 

For larger distances, however, an exponential decline can be observed. Therefore we are 

interested in finding the simplest possible fitting function Rij that allows this type of 

functional behaviour (flat decrease in the short range, exponential decrease in the long range) 

to be described. An appropriate candidate is the so called sigmoidal function given by: 

)*(
1

ijdbea
ij eR

−
∗−−=       (3.2) 

where dij is the distance between start patch i and target patch j, and a and b are two fitting 

parameters. Comprising two parameters, this function has one parameter more than the 

exponential one. As can be easily checked (Appendix A1), it behaves approximately 

exponentially for larger distances. 
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The solid line in Fig. 3.3 indicates what happens if the sigmoidal function (3.2) is taken as a 

basis of a non-linear regression. There is a close correspondence between the data and the 

fitting curve for the range of both short and long distances. Moreover, the r2 value is much 

better for the sigmoidal fit (r2 = 0.999) than for the exponential fit (r2 = 0.877). Applying the 

Akaikes Information Criterion (AIC), we found the sigmoidal function to be more likely to be 

correct (∆AIC=-624 with ∆AIC=AICsig-AICexp, negative values indicating that the sigmoidal 

function more likely, positive values indicating that the exponential function is more likely). 

Even more important is the fact that the sigmoidal function gives a much better qualitative 

reflection of the simulated values than the exponential one. While the exponential function 

underestimates the patch accessibility for small distances and overestimates it for larger ones, 

the sigmoidal function gives a high-quality fit for the whole distance range. 
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Figure 3.3 The probability rij of patch j being reached in a 2-patch system depending on the distance dij between 

start patch and target patch. The lines indicate two fitted functions, the sigmoidal function (3.2) (solid line; 

r2 = 0.999) and the exponential function (3.1) (dashed line, r2 = 0.877).  
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Figure 3.4 The probability rij of reaching a specific patch j depending on the distance dij between start and target 

patch for different mortality risks (left side) and different perceptual ranges (right side). The original rij-dij data 

show a rather sigmoidal shape (3.4a and 3.4b), the corresponding r2 of the non-linear regression can be found in 

Table 3.1 (upper 7 values). To detect the fine structure of the curve, the log transformation was performed 

according to the exponential function (relation (3.1)) (3.4c and 3.4d) and the sigmoidal function (relation (3.2)) 

(3.4e and 3.4f). The linearity test for the correspondingly transformed values ln(rij) and lnln(1/(1-rij)) indicate the 

original data rij to be sigmoidal rather than exponential.  
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Additionally to this non-linear regression, we performed a structural analysis of the functional 

relationship between rij and dij. If the rij values really show a mathematical dependence on the 

distance dij of this type (sigmoidal/exponential), then the correspondingly transformed values 

lnln(1/1-rij) for the sigmoidal (3.2) and ln(rij) for the exponential (3.1) type must show a linear 

relationship with the distance dij.  

The results of the non-linear transformation and the corresponding test for linearity performed 

for a variety of parameter combinations can be seen in Fig. 3.4. While the curve for the 

sigmoidal approach displays a strong linear dependence on the distance dij for all parameter 

combinations, the exponential approach leads to a rather bent curve. This curvature cannot be 

removed by adding one additional parameter to the exponential function (in this case the 

curve would undergo parallel displacement). Therefore the high-quality fit of the sigmoidal 

function is due not to its extra parameter, but rather its inner structure. This finding confirms 

that - as far as the loop-like movement behaviour is concerned - the sigmoidal function is 

found to be able to reproduce the functional relationship between rij and dij qualitatively 

correctly and quantitatively sufficiently.  

 

Correlated random walks and Archimedean spiral 

Below, the sigmoidal and the exponential function are compared regarding their predictive 

power for the more hypothetical movement patterns such as correlated random walks with 

different degrees of correlation and the Archimedean spiral. 

The functional relationship between the patch accessibility rij and the distance dij for the 

movement patterns mentioned can be seen in Figure 3.5.  

All the scenarios of the correlated random walk lead to a rather exponential shape, regardless 

of the degree of correlation. The corresponding non-linear regression analysis (Table 3.1), 

however, reveals a better adjustment of the sigmoidal function for strongly correlated random 

walk and fairly correlated random walk. For the uncorrelated random walk both functions 

show a good fit, with the exponential function fitting slightly better. If the Archimedean spiral 

is taken as movement pattern, the resulting rij-dij relationship shows a slightly flat decrease in 

the short range. The corresponding r2 values reveal that both the sigmoidal and exponential 

function give rise to a high-quality fit. The better fit of the sigmoidal function is not surprising 

as this function has one parameter more than the exponential one. However, the AIC shows 

that the sigmoidal function is in most cases more likely to be correct, and furthermore this 

additional parameter allows the qualitative behaviour of the rij-dij relationship to be better 

reproduced.  
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Table 3.1 Results of the regression analyses for a two- and ten-patch system. ∆AIC is used as an indicator for 

which model (exponential or sigmoidal) is more likely to be correct taking the different number of fit parameters 

into account. Negative (positive) values indicate that the sigmoidal (exponential) function is more likely to be 

correct. The last column shows the results for a linear regression between simulated and calculated values in a 

10-patch-system (calculated with ). ij
II

ij
calc
ij RWr ∗=

 

Parameters 2-patch-system 10-patch-system 

Movement 

pattern 

Mortality Perceptual 

range 

r2 of 

 

ijdb
ij eR *−=

r2 of 

 

)*(
1

ijdb
ea

ij eR
−

∗−−=

∆AIC= 

AICsig -AICexp

r2 of   

rij
sim  vs. 

rij
calc

ij
II

ij
calc
ij RWr ∗=

 

0.001 0 0.921 0.998 -368.2 0.958 

0.001 2 0.877 0.999 -624.1 0.979 

0.001 8 0.767 0.999 -507.1 0.963 

0.002 2 0.857 0.997 -378.4 0.955 

Loops 

0.005 2 0.848 0.990 -254.8 0.949 

0.001 0 0.888 0.961 -102.4 0.830 

0.001 2 0.993 0.985 87.3 0.895 

0.001 8 0.941 0.941 3.1 0.897 

0.002 2 0.993 0.985 76.3 0.882 

Uncorrelated 

random walk 

(Correlation 

degree 0.00) 

0.005 2 0.980 0.980 2.3 0.913 

0.001 0 0.768 0.9523 -359.2 0.704 

0.001 2 0.307 0.974 -325.8 0.824 

0.001 8 0.781 0.880 -57.8 0.785 

0.002 2 0.393 0.935 -220.5 0.787 

Fairly correlated 

random walk 

(Correlation 

degree 0.90) 

0.005 2 0.576 0.970 -261.7 0.777 

0.001 0 0.226 0.836 -152.8 0.648 

0.001 2 0.888 0.906 -28.6 0.740 

0.001 8 0.773 0.910 -89.7 0.808 

0.002 2 0.391 0.856 -141.2 0.604 

Correlated 

random walk 

(Correlation 

degree 0.99) 

0.005 2 0.289 0.852 -154.5 0.652 

Spirals 0.001 2 0.987 0.986 0.1 

 

0.854 
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Figure 3.5 The probability rij of patch j being reached in a 2-patch system depending on the distance dij between 

start and target patch for different movement patterns. The r2 of the regression analysis can be found in Table 

3.1. 

 

To summarise, we have seen that the sigmoidal function is able to reproduce the functional 

relationship between rij and dij for all movement patterns under consideration if the landscape 

only consists of two patches. The sigmoidal function is flexible to cover both, an exponential 

and a sigmoidal shape. This is not surprising, because the exponential function can be 

interpreted as a special case of the sigmoidal one, depending on the value of the parameter a: 

for a ≤ 1 the sigmoidal function always behaves approximately exponentially (see the 

calculation in the Appendix B). For a > 1, however, the sigmoidal function displays the 

typical ‘flattening’ in the short distance range, which cannot be described by an exponential 

approach. This ‘flattening’ reflects an important ecological effect, namely an above-average 

presence in the range of short distances, as derived from movement patterns such as the loops 

(returning to the start patch) or the spirals (initial focus on the short range). This ‘flattening’ 

points out the limits of the exponential function as this function cannot reflect this shape.  

There may also be other functions which allow the typical shape of the rij-dij curves and the 

ecological phenomena mentioned to be reflected. In the present paper, the sigmoidal function 

is used for further analysis because of its appropriateness and structural simplicity. 
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3.2 The patch accessibility rij in a multi-patch system  

As we have shown (Fig. 3.2), the probability rij of a certain patch being reached by an 

emigrant starting at patch i depends not only on the distance dij between start patch i and 

target patch j if a landscape with more than two patches is considered. We hypothesised that 

the variety found in the rij values for a given distance dij results from an interaction of the start 

patch with all other patches in the landscape. Therefore, our aim in this section is to obtain a 

better understanding of this interaction and to find the simplest way of describing it formally.  

To attain this goal, we perform a similar model experiment as in Section 3.1, but now with 3 

(or 10) patches in each of the 100 randomly produced landscapes. As before, we start with the 

loop-like movement pattern and the standard parameter set mentioned (mortality risk = 0.001, 

perceptual range = 2 spatial units). The resulting rij-dij curves are taken as the starting-point 

for further investigation. In a first step, we analyse the predictive power of the sigmoidal 

fitting approach that was found to be suitable for predicting rij in a two-patch system. 

Figs. 3.6a and 3.6b show the resulting plot of the rij-dij curves. As in the 10-patch system 

discussed above (Fig. 3.2), high variety is seen in the rij values for a given distance dij. The 

solid lines in both figures correspond to the sigmoidal fitting function (3.2) derived from the 

two-patch system with the same movement behaviour taken as a basis. It can be seen that 

none of the rij values exceeds the sigmoidal curve. This means that the sigmoidal function 

(3.2) provides an upper limit for the simulated rij values in both the 3-patch and the 10-patch 

system. The same effect can be seen in Figs. 3.6c and 3.6d, where the simulated rij values are 

plotted against the correspondingly calculated values rij
calc = Rij determined by the sigmoidal 

function (3.2): all the simulated values are on or below the identity curve (full line), indicating 

that they are smaller than or equal to the calculated ones. While the values are quite close to 

the identity curve in the 3-patch system (r2=0.903), they are evenly scattered over the whole 

‘lower triangle’ in the 10-patch system (r2=0.273).  

These model results show that the interaction between start patch i and all other patches in the 

landscape first of all leads to a reduction of the probability rij of the target patch j being 

reached. The more patches a landscape contains, the stronger this reduction will be. This 

effect can be ecologically explained: We assumed in our model that an individual will stay at 

the first patch it successfully reaches. Staying at this patch naturally prevents this individual 

from reaching any other patch. As a result of this interception effect, the patches effectively 

‘compete’ for migrants (following the terminology  by Hanski (1994)). This finding also 

explains why the sigmoidal function provides an upper limit for the actual values of the 

probability rij of a certain patch being reached bearing in mind that the sigmoidal function 
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describes the patch accessibility of the target patch in a system with two patches, i.e. without 

any competing patch. Therefore the sigmoidal function Rij can also be interpreted as the 

potential patch accessibility of patch j in a competition-free space. 

In the next step, we are seeking ways of modifying the formula (3.2) for the calculated patch 

accessibility rij
calc such that the reduction effect caused by competition between patches for 

migrants is taken into account. The idea is to amend the existing formula (rij
calc = Rij) with an 

appropriate correction term Wij and to test the predictive power of the modified formula 

(rij
calc = Wij * Rij) for a multi-patch system. 

An appropriate candidate for Wij can be obtained by the following reflections. The ability of a 

certain patch k to intercept a migrant from patch i is strongly related to the potential patch 

accessibility Rik of this patch. Thus, the probability of a migrant actually reaching patch j and 

not being intercepted by another patch has to be weighted according to the potential 

accessibility Rij of patch j in relation to the potential accessibility Rik of all competing patches 

k. A possible correction term is: 

∑
≠

=

ik
ik

ij
ij R

R
W I        (3.3) 

As can be seen, this correction term has the structure of a weighting factor where the sum of 

all Wij equals 1. By taking this correction term Wij = Wij
I as a basis, we obtain the following 

formula: 

ijij
calc

ij RWr ∗=        (3.4) 

In order to test the predictive power of formula (3.4), the calculated rij
calc values are plotted 

against the simulated rij values. The results for the 3-patch and the 10-patch systems are 

shown in Figs. 3.6e and 3.6f. Both show much stronger correspondence between the 

simulated and the calculated values than in Figs. 3.6c and 3.6d, where the original formula 

(3.2) instead of the modified one (3.4) was used. Fig. 3.6e also reveals that in the case of 3 

patches, in addition to a high r2 value (0.971), there is also good concordance between the 

regression curve (broken line) and the identity curve (solid line). A slightly different picture 

occurs in the case of 10 patches (see Figs. 3.6f), where the r2 value is lower (0.804). Much 

more critical is the fact that the regression curve (dashed line) is markedly above the identity 

curve (solid line). This indicates that the modified formula (3.4) underestimates the simulated 

rij values in this system, i.e. it overestimates the reduction effect caused by competition. This 

underestimation can also be seen in the 3-patch system (Fig. 3.6e), but only in the range of 

higher rij values. 
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Figure 3.6 The probability rij of patch j being reached in a 3-patch system (left side) and in a 10-patch system 

(right side, 100 simulated landscapes at each case). 3.6a and 3.6b: rij depending on dij; the solid line indicates the 

functional relationship Rij between rij and dij in a two-patch system. 3.6c - 3.6h: Simulated vs. calculated values 

(calculated with different relations). The solid line indicates the identity curve x = y, the dashed line represents 

the linear regression. 3.6c and 3.6d: Rij vs. simulated rij. 3.6e and 3.6f: rij
calc calculated under consideration of the 

weighting factor Wij
I vs. simulated rij. 3.6g and 3.6h: rij

calc under consideration of the weighting factor Wij
II vs. 

simulated rij. In Figure 3.6h, broken and solid lines are almost identical. 
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This effect of underestimating the patch accessibility by using Wij
I can be explained by the 

fact that all patches are considered with their potential accessibility determining the overall 

competition effect. This assumption is not realistic because in systems with many patches, a 

distant patch is less likely to be reached because migrants are intercepted by other patches. 

Therefore this patch cannot effectively intercept individuals and so cannot provide 

competition with other patches. Thus, the weighting factor used overestimates the competitive 

power of distant patches and underestimates the effective patch accessibility of the target 

patch. To overcome this problem, we corrected the weighting factor as follows:  

∑
≠

−

−

=

ik

N
ik

N
ij

ij
R

R
W )1(

)1(
II       (3.5) 

where N is the number of patches in the landscape. This weighting factor is expressed in 

terms of the potential patch accessibility, but raised to the power of the number of competing 

patches (N-1). This approach ensures that the interception effect of more distant patches 

decrease with the number of patches ( ). 0)1( ≈−N
ijR

In order to test the predictive power of the modified formula, the corresponding rij
calc values 

are plotted against the simulated rij values. The result for both the 3-patch and the 10-patch 

systems is shown in Figs. 3.6g and 3.6h. In both figures, in addition to a clear linear 

relationship between calculated and simulated values (r2 = 0.987 for the 3-patch system and 

r2 = 0.979 for the 10-patch system), the regression line almost coincides with the identity 

curve in each case. These findings give rise to the hope that the modified formula will allow 

the functional relationship between the patch accessibility and the landscape configuration to 

be appropriately described. 

The predictive power of the modified rij
calc is also tested for the loop-like movement pattern 

with other model parameters (Fig. 3.7 and Table 3.1). As in Figs. 3.6g and 3.6h, there is 

strong correspondence between simulated and calculated rij values.  

Finally, the predictive power of rij
calc is assessed for the other movement patterns. Fig. 3.8 

shows the results for the correlated random walks with different degrees of correlation and the 

Archimedean spiral with standard parameters (see Table 3.1 for the results of all model 

parameters tested). As can be see, again there is good correspondence between simulated and 

calculated values. The r2 values range from 0.895 for the uncorrelated random walk, through 

0.854 (spiral), 0.824 (fairly correlated random walk), to 0.740 for correlated random walk. It 

is noticeable that the straighter the movement behaviour, the worse the predictive power of 

rij
calc . This can be explained by the fact that even in the two-patch system the sigmoidal 
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function fits worse for straighter movement patterns. Additionally, for straight movements, a 

patch between the source and the target patch competes more than a patch at the same 

distance from the source patch but to the opposite direction. As the weighting factor should be 

structurally simple, it does not account for this specific fact. 
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Figure 3.7 Simulated versus calculated rij in landscapes with 10 patches and different movement parameters of 

the loop-like behaviour. 
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Figure 3.8 Simulated versus calculated rij in landscapes with 10 patches and different movement patterns. 
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4 Discussion 
4.1 A formula for the patch accessibility rij  

One major result of this paper is the identification of the functional relationship between the 

probability rij of a certain patch j being reached by an emigrant from a certain patch i and the 

landscape configuration. Moreover, we have found a simple formula rij
calc that allows this 

relationship to be reproduced qualitatively correctly and quantitatively sufficiently. This 

formula is given by  

ij

ik

N
ik

N
ijcalc

ij R
R

R
r ⋅=
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    where       (3.6) 
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The predictive power of this formula has been successfully tested for a wide range of 

randomly generated landscapes. We have shown that the formula works for all the well-

known simple movement patterns (uncorrelated random walk, correlated random walk, 

Archimedean spirals) as well as for the more realistic and complex loop-like pattern. Since 

the investigated movement patterns are qualitatively so different from each other and cover a 

wide range of biologically reasonable situations, it can be supposed that the formula will work 

for most movement patterns. But our study also clarifies the formula’s limits: the predictive 

power of the formula has been found to be extremely high as long as movement patterns are 

concerned where the individual trails cover a large part of the nearby area of the start patch 

(as is the case for usual random walks, the spirals or loops). The predictive power decreases 

slightly if the movement becomes straight as in the case of the correlated random walk. This 

is mainly due to the fact that for this movement pattern the sigmoidal function does not fit as 

well as for the other movement patterns. In such cases, the predictive power of the formula 

could be enhanced by using the weighting factor with another function for the potential patch 

accessibility instead of the sigmoidal one. Additionally, the formula was investigated only for 

the case that individuals stay on the first patch they discover. Assuming that individuals can 

visit multiple patches before staying at one, the strength of the competition effect may change. 

We also should note that the model analysis is based on the assumption that a homogeneous 

matrix is considered or the individuals do not respond to matrix heterogeneity. Many 

theoretical and empirical studies indicate that the movement and distribution of individuals is 

influenced by the structure of the landscape (Crist et al. 1992, Wiens et al. 1993, Gustafson & 

Gardner 1996, Wiens et al. 1997, With et al. 1997, McIntry & Wiens 1999, Ricketts 2001, 

Goodwin & Fahrig 2002, Tischendorf et al. 2003). Furthermore, the patches are assumed to 

be circular and equal-sized, although patch size and shape could influence the immigration 
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rate (Bender et al. 2002). In the case of heterogeneous matrix or heterogeneously sized 

patches, changes in search success and therefore in the functional structure found here could 

be expected . 

 

The functional structure of the derived formula (3.6) reveals that the probability rij of a certain 

patch being reached mainly consists of two components: the potential patch accessibility Rij of 

patch j and a correction term describing the competition effect caused by interception of 

migrants. 

As relation (3.2) indicates, the potential patch accessibility Rij can be described by a simple 

sigmoidal function of the distance dij between start patch i and target patch j and two 

parameters a and b. We have seen that whenever 1≤a , the sigmoidal function behaves 

approximately exponentially. This means that the widely used exponential approach can be 

interpreted as a special case of the presented sigmoidal one and is therefore justified to a 

certain extent. The sigmoidal function, however, is much more flexible. This function is able 

to cover an exponential decline, but additionally it allows the reproduction of the flat decrease 

for small distances describing an above-average presence in the short-distance range, as has 

been found in many field studies (Endler 1977, Brakefield 1982). 

The functional structure of the correction term in relation (3.6) provides a better 

understanding of the relevance of competition effects in the context of species’ dispersal. 

Regardless of the actual movement behaviour of the individuals, the mentioned competition 

effect inevitably and inherently results as a consequence of the interception of migrants. In the 

context of dispersal kernels, however, competition effects have so far been considered rarely 

and cursorily (e.g. Frank & Wissel 1998, Hanski et al. 2000, Frank & Wissel 2002). This 

drawback is overcome by formula (3.6). The correction term presented summarises all the 

relevant effects of competition between the individual patches for the migrants from patch i, 

produced by the simulation model. Even so, the term is structurally simple (a weight) and 

completely expressed in terms of the potential patch accessibility between pairs of patches. 

The probability rij of a certain patch being reached can therefore be completely described by 

the distances between the patches. However, we can also see that it is not sufficient to only 

take the distance dij between start patch i and target patch j into account. Correct conclusions 

can only be drawn if the whole spatial configuration, i.e. the distances dik between start patch i 

and all other patches k, are taken into consideration. This is certainly the most important result 

of this paper. Consequently, we conclude that each approach which only refers to the distance 

between start patch and target patch (as in the case of the usual exponential approach) is 
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doomed to fail in more complex landscapes because it neglects interaction with the other 

patches. Furthermore, we see that there are only two parameters a and b needed to fit the 

whole formula. These parameters summarise all the relevant details investigated of the 

movement behaviour. Therefore they allow the relationship between the accessibility of the 

patches and the landscape configuration to be described in a species-specific manner.  

Although the formula reflects the rather complex interplay between species behaviour and 

landscape configuration, is it still structurally simple. 

In most metapopulation models, the competition effect is ignored. A few studies account for 

the competition effect, but the expressions used to describe competition are extremely 

different to each other (Hanski & Thomas 1994, Hanski et al. 2000, Frank & Wissel 1998). 

This may be due to the fact that these studies assume a certain ad hoc approach to model 

competition, but do not explain the underlying mechanisms. We highlight here one of these 

approaches that is structurally very similar to the patch accessibility function derived here 

(relation (3.6)). Hanski & Thomas (1994) use the following expression for describing patch 

accessibility:  
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with two parameters α  and µ  summarizing effects of dispersal behaviour and landscape 

structure (e.g. number of patches N) on patch accessibility. The strength of formula (3.6) is 

that a and b are independent of the patch configuration. Hence, the effects of behaviour and 

spatial structure can be separately analysed, to the benefit of a better understanding. 

 

4.2 The practical value of the presented formula 

First of all, the formula presented here provides a tool for modelling. It can be used as a 

dispersal function for further analysis. Until now, the exponential approach has been used in 

most models (Fahrig 1992, Hanski 1994, Adler & Nuernberger 1994, Hanski et al. 1996, Vos 

et al. 2001, Frank & Wissel 2002). The formula propounded here was found to be much more 

realistic than the exponential function and can therefore be used instead since, although 

simple, it provides a more realistic approach. The most important advantage of the formula 

presented over the exponential one is that it allows the inherent competition effect between 

the patches to be taken into account in a very simple way. 

Furthermore, the formula provides as well a tool for understanding. In this study, the formula 

was a useful tool for understanding that the distances between patches (start patch and all 

other patches in the landscape) are sufficient to explain the dependence of patch accessibility 
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on landscape configuration. It also helped to understand that competition between patches is 

an inherent and essential effect in the context of patch accessibility. 

Last but not least, the formula provides a tool for prediction. By taking the formula and the 

parameters a and b as a basis, the probability of a certain patch being reached can be assessed 

without having to run any simulations. The formula contains the whole essence of the 

simulation model, summarising the complex effects of interaction between landscape and 

movement behaviour concerning the probability of a certain patch being reached. Therefore 

the formula is able to give the same answer as the model itself.  

 

4.3 Some general remarks on the hierarchical approach put forward 

The functional structure of the patch accessibility rij could only be revealed because we used a 

hierarchical approach where we increased the spatial complexity step by step (2-, 3- and 10-

patch systems).  

Before using the hierarchical approach, we started our investigation by analysing the plot of 

rij-dij data for a 10-patch system and by taking the hypothesis of having an exponential 

relationship as a basis (see Fig. 3.2). Viewed via this exponential approach, no pattern was 

identified. The general impression was that of an unstructured cloud of data points. As a result 

of going back to a 2-patch system, we obtained an insight into the functional structure of the 

potential patch accessibility Rij of a certain target patch j.  A clear functional relationship 

between the potential patch accessibility Rij and the distance dij between start and target patch 

was detected and the sigmoidal function was found to describe it appropriately. By increasing 

the number of patches and taking the potential patch accessibility (i.e. the sigmoidal function 

Rij from the 2-patch system) as a reference, we obtained a better understanding of the effect of 

the interaction between the target patch and all the other patches. By analysing exactly the 

same data set for the 10-patch system as before, but now from the angle of the sigmoidal 

approach (see Fig. 3.6b), a clear pattern emerged: all the rij values were found to lie below the 

values for the potential patch accessibility Rij. This finding was the starting-point for the 

identification of the competition effect caused by the interception of migrants. It provided 

some idea of possible correction terms ( and ). To summarise, the hierarchical 

approach presented here resulted in a whole series of bottom-up model experiments each 

providing additional insights into the functional structure of the patch accessibility r

I
ijW II

ijW

ij. 
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4.4 Some prospects 

In this study we developed a formula with the two parameters a and b of the sigmoidal 

function summarising all the relevant effects of individual movement behaviour. One prospect 

for further research would be to try to understand the biological meaning of these two 

function parameters, as will be done in a forthcoming paper. One aspect of investigating this 

biological significance is to examine the effect of a change of these two parameters on the 

functional dependence (as was partly done for the function parameter a). A second aspect is to 

investigate the way in which the movement characteristics influence the function parameters. 

This knowledge would enable our formula to be interpreted purely in the terms of movement 

characteristics and distances. 

On this basis it would be also feasible to categorise movement patterns and their function 

parameters. With regard to the probability of a certain patch being reached, movement 

patterns with similar a and b values react similarly to changes in landscape configuration. 

Therefore it could be possible to determine groups of organisms with similar reactions to 

landscape changes.  

To obtain an initial understanding of the structure of the patch accessibility, it was studied 

here in a relatively simple landscape, with a homogeneous matrix and equal-sized patches. 

Another aim for further research would be to extend the formula presented here to more 

complex situations, e.g. a landscape with heterogeneously sized patches or a heterogeneous 

matrix. 

The formula could be used to study the consequences of the interaction between movement 

behaviour and landscape configuration described here at a metapopulation level in order to 

acquire further knowledge for decision support. 

 

 

5 Appendices  
Appendix A1: The sigmoidal function behaves exponentially for larger distances 

There is some analytical evidence that the sigmoidal function (3.2) is able to reproduce the 

qualitative behaviour of the functional relationship between rij and dij (i.e. the exponential 

decrease in the long range). For large values of dij, the exponential term  is close to 

zero. It is well known that for small values of x, . Consequently, for large values 

of d

)*( ijdbe −

xe x =− − )(1

ij we obtain: 
dijb

ij eaR ** −≈  ,     (A.1) 
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Relation (A.1) reveals that the sigmoidal function (3.2) behaves exponentially for larger 

distances dij as required. 

 

Appendix A2: Identifying the parameter value for an approximately exponential decline of the 

sigmoidal function 

At the turning point xtp of the sigmoidal function, the curve starts to decline exponentially. In 

the following, we therefore determine the turning point xtp by analytical means and reveal the 

conditions under which xtp ≤ 0. This condition ensures that the range of all relevant distance 

values (dij≥0) completely lies in the area of exponential decline. 

Mathematically, the turning point xtp is defined to be the x value for which the second f”(x) 

derivative becomes zero. Therefore, we start by determining the second derivative of the 

sigmoidal function (3.2).  

For simplicity’s sake, we rewrite the function as   where  )(1)( xgexf −−= bxeaxg −= *)(  

This simplified function is taken as a basis to obtain the second derivative f”(x) of f’(x) by 

subsequently applying the chain rule. 

 

))('')('(*)('' 2)( xgxgexf xg +−= −  

As we can see, f”(x) becomes zero if the right part  becomes zero (since 

). Therefore, the turning point x

)('')(' 2 xgxg +−

0)( >− xge tp has to meet the following condition 

 )('')(' 2 xgxg =

The first and the second derivative of  are given by  bxeaxg −= *)(

bxebaxg −−= **)('    and, hence,    xbebaxg **222 *)*()(' −=

xbebaxg *2 **)('' −= , so the condition is 

xbxb ebaeba *2**22 ***)*( −− =     

This is exactly the case if      , i.e.    1* * =− xbea
b
axtp

ln
=   

This relation shows that the condition for an approximate exponentiality  is given if 0≤tpx

0ln
≤

b
a . This is only the case if 0ln ≤a  , i.e. a≤1 (since b is assumed to be positive). 

Therefore, the function declines approximately exponentially for all distances if a≤1.  
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Integrating individual movement behaviour into 

dispersal functions 

 

1 Introduction 

In order to understand the role of dispersal, its consequences for population dynamics need to 

be analysed in mathematical models. If dispersal is to be integrated into more complex studies 

(e.g. analyses of landscape connectivity or population viability) as simply as possible, 

dispersal functions are needed so that the probability of a certain patch being reached by an 

emigrant (referred to as patch accessibility) can be calculated (Fahrig 1992, Adler & 

Nuernberger 1994, Hanski 1994, Hanski et al. 1996, Vos et al. 2001, Frank & Wissel 2002). 

Ideally, such a dispersal function should explicitly consider the landscape configuration as 

well as the animals’ movement behaviour while summarising all the details in a simple 

manner.  

The literature contains various approaches for finding a dispersal function with the attributes 

required (Hanski 1994, Adler & Nuernberger 1994, Hill et al. 1996). These approaches are 

very simple: the corresponding dispersal functions contain only one or two parameters which 

summarise all the effects of movement behaviour. Because of the highly aggregated nature of 

these parameters, it is difficult to assess the effect of a particular behavioural aspect. Taking 

the dispersal function of Heinz et al. (submitted) as an example, we show how the movement 

behaviour can be integrated by means of an individual-based simulation model. This function 

was found to have a high predictive power for a variety of movement patterns. The landscape 

configuration is explicitly subsumed by this dispersal function, while the movement 

behaviour is described by two function parameters a and b summarising all the relevant 

aspects of movement. 

In this study, we investigate the effect of movement behaviour on the previously found 

function for the accessibility of patches. Therefore, we analyse the relationship between the 

aggregated parameters a and b of the dispersal function and all the relevant movement details. 

As a result, we find fitting functions for the functional relationship between the parameters of 

the dispersal function investigated and the movement details. In addition to trying to describe 

this relationship statistically, we also attempt to give an ecological interpretation of it. We do 

this by way of example for the relevant movement details of a complex movement pattern 
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observed in nature – the loop-like movement pattern observed for a variety of animals 

(Hoffmann 1983, Bell 1985, Müller& Wehner 1994, Durier & Rivault 1999, Conradt et al. 

2000, Conradt et al. 2001). The approach presented of integrating movement behaviour into 

dispersal functions is more general and can be applied to other movement behaviours as well.  

Combining the dispersal function previously found and the functional relationship between 

the function parameters and the movement details revealed in the present study gives a better 

understanding of the role of movement behaviour, including implications for how the 

movement behaviour of animals can be taken into account in the management of endangered 

species. It provides a framework for investigating the impacts of dispersal behaviour on 

metapopulation viability. 

 

2 Methods 
2.1  The dispersal function 

We investigate the effect of movement behaviour on the dispersal function derived in Chapter 

3, relation (6.3). This dispersal function is given by the following formula for the probability 

rij of a certain target patch j being reached by an emigrant from a certain start patch i: 

)( ijij dRWr
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⋅=             (4.1) 
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As mentioned in Chapter 3, the function R(d) (relation(4.3)) gives the potential accessibility 

of a patch in a landscape with two patches (start and target patch) only by considering the 

distance d between them. In this study, R(d) is referred to as the potential accessibility 

function. It only contains two parameters, a and b, which summarise all the relevant details of 

movement behaviour. In a landscape with more than two patches the patches compete for 

emigrants, as an emigrant intercepted by one patch cannot reach another patch (assuming that 

movement stops when a non-source patch is reached). This competition is described by the 

weighting factor Wij (relation(4.2)). This weighting factor is completely expressed in terms of 

the potential accessibility function R(d), the distances dik between the start patch i and all the 

other patches k, and a power given by the number N of patches in the landscape. The overall 

dispersal function (relation(4.1)) is therefore completely expressed in terms of the potential 
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accessibility function. Consequently, there are only two function parameters a and b 

specifying the whole dispersal function.  

 

To analyse the effect of movement on the potential accessibility function R(d) (relation(4.3)) 

several methods complementing one another were used. First of all, to obtain a better 

understanding of the effect of the two function parameters a and b we used Mathematica to 

study their impact on the curve shape. In a second step, movement characteristics were taken 

into account and their effect on the function was analysed in several respects. To obtain the R-

d curves for different movement characteristics, we used the individual-based simulation 

model described in Chapter 3. The simulation runs are slightly different to those described in 

Chapter 3 and are therefore described in the following.  

 

2.2  The model 

In order to determine the potential accessibility function R(d) for different movement 

parameters, we used the spatial, individual-based simulation model described in Chapter 3 

(Section 2). It allows both patch configuration and individual movement through the 

landscape to be taken into account.  

 

Simulation  

For each simulation run, 100 landscapes (100 x 100 spatial units) with two patches at different 

distances from each other are randomly produced. Note that in a two-patch system the 

potential accessibility R coincides with the accessibility r because of the lack of competing 

patches. In each landscape, 1000 animals are released at the start patch. After release, the 

individuals move through the landscape with the loop-like movement behaviour. If the target 

patch comes within the perceptual range of an individual, the individual moves straight to this 

patch and stays there. The probability r of the target patch being reached (and hence the 

potential accessibility R) is counted as the proportion of individuals arriving at this patch. The 

corresponding distance d between the two patches was noted. 

 

Parameters 

We varied three parameters in the model which determine dispersal ability: mortality risk, 

perceptual range and loop length. We expressed mortality risk as the per-step probability of 

dying, varying it between values of 0.001 and 0.01. Perceptual range describes the distance 

within which an animal can detect new patches and can therefore move straight towards them. 
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In the model, we used values between 0 and 10 spatial units for the perceptual range. The 

loop length determines radius and intensity of the search. It is given by the number per steps 

of the initial loops (the 4 first loops) and the increase in step number of each of the next 

subsequent quartets of loops. This increase in step number is modelled by adding after each 4 

loops half of the steps of the initial loop length to the steps determining the last loops (i.e. if 

we have an initial loop length of 4 steps, we increase it after the 4 first loops about 2 steps to 6 

steps, after the next 4 loops to 8 steps, than to 10 steps and so on).We utilised 4 different loop 

lengths: small, intermediate, large and very large. This suits a step number of 4 initial steps 

plus an increase of 2 steps for the 4 subsequent loops respectively (small), 8 initial steps plus 

an increase of 4 steps (intermediate), 16 initial plus an increase of 8 steps (large), and 32 

initial steps plus an increase of 16 steps each (very large). 

 

3 Results 
The aim of our study is to investigate the effect of movement characteristics relevant for the 

loop-like behaviour (mortality risk, perceptual range, loop size) on the relationship between 

the potential accessibility R and the distance d between two patches. As we know from a 

previous study (Heinz et al. submitted), this relationship can be described by the following 

function referred to as the potential accessibility function (see also relation (4.3)) 
)(

1)(
dbeaedR
⋅−⋅−−=        (4.4) 

where a and b are two parameters. These two function parameters a and b summarise all the 

details of movement behaviour relevant for the potential accessibility and completely 

determine the qualitative and quantitative behaviour of function (4.4). Therefore it seems 

reasonable to analyse the relationship between the two function parameters and the movement 

characteristics. However, this is not uncritical because the summarising character of a and b 

also harbours a disadvantage: the two parameters are too highly aggregated to allow a direct 

ecological interpretation. Therefore, we perform a pre-analysis to look for appropriate 

ecologically interpretable measures which allow – as a and b themselves – the shape of the 

potential accessibility function R(d) to be characterised and which can be expressed in terms 

of a and b. These measures help clarify the relationship between the accessibility-function and 

movement characteristics, and permit an ecological understanding of this relationship. 

 

3.1 Pre-analysis: characterising the shape of the potential accessibility function R(d) 

To obtain a basic grasp of the behaviour of the potential accessibility function R(d), we start 

by varying the parameters a and b and analysing their effect on the resulting shape of the R-d 
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curves. For enabling a more systematic, quantitative analysis of all these effects, we look for 

appropriate measures which (a) characterise the shape of the curves, (b) can be expressed in 

terms of the parameters a and b, and (c) can be ecologically interpreted.  

The resulting R-d curves for different a and b values are shown in Fig. 4.1. To obtain a 

maximum understanding of the formal relationship, we extend the range of distances into the 

ecologically meaningless area of negative values.  

 

 

 

 

 

b 

a 

Figure 4.1 The impact of the function parameters a and b on the potential accessibility function R(d). Fig. 4.1a: 

The parameter a is varied (a increases from the left to the right curve) while the parameter b is constant 

(b = 0.075). Fig. 4.1b: The parameter b is varied (b increases from the left to the right curve) while the parameter 

a is constant (a = 5.84). 
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In Fig. 4.1a, the parameter a is varied, while the parameter b is fixed. Each curve displays a 

typical sigmoidal behaviour, i.e. there is a plateau where the R-values are close to 1. Changing 

the parameter a seems to shift curves to shift along the d-axis. This is a reflection of the fact 

that: 

)
)ln(

(1)*(1)(
b
adb

ee
bdeaedR

−−
−−≡

−−−=      (4.5) 

(since ). Relation (4.5) shows that, for one given value of parameter b, all sigmoidal 

functions emerge from each other by a shift about the distance 

aea ln=

b
aln . As can be seen in 

Appendix A1, the distance 
b
aln  coincides with the value of the so-called turning point , 

i.e. the distance at which the shape of sigmoidal function R(d) changes from concave to 

convex decline. In the range of distances d below the turning point  where the decline is 

concave, the migrant’s search for a patch is found to be above-average effective. Above , 

however, the curves rapidly convexly decline to 0. This allows us to ecologically interpret 

TPd

TPd

TPd

b
adTP

ln
=      (4.6) 

as an “index of effective search” which can take both positive and negative values, depending 

on the values of the parameters a and b. Negative values (i.e.  < 0) indicate missing 

effectiveness and an exclusively convex decline of R with distance d, while positive values 

(i.e.  > 0) indicate both existence and scale of effective search. 

TPd

TPd

Varying parameter b results in a totally different effect (Fig. 4.1b). All curves coincide in their 

points of interception R(d = 0) with the R-axis, but differ in the turning points  and the 

rapidness of the decline of R(d) with distance d. This motivates to investigate the scale of 

decline , i.e. the distance over which the R-d curve declines to 0 measured from the 

turning point 

TPd

decld

b
a

TPd ln=  . An appropriate measure for the scale of decline is given by  

b
ddecl

112.1 ⋅= ,     (4.7) 

as the calculation in Appendix A2 indicates. 

To summarise, we found two measures characterising the shape of the R-d curves: the index 

of effective search  and the scale of decline dTPd decl. Both measures are expressed in terms of 

the parameters a and b. They allow the effect of movement details on the potential 

accessibility R  to be ecologically interpreted. 
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3.2 The effect of the movement characteristics 

Now we investigate the effect of movement characteristics relevant for the loop-like 

behaviour (perceptual range, mortality risk, loop length) on the potential accessibility function 

R(d) (relation(4.3)). This is done by changing sequentially each of the movement details of 

the loop-like behaviour and assessing the effect on the shape of the corresponding R-d curves 

directly, as well as on the function parameters a and b and the two measures characterising 

the curve shape, and dTPd decl. This enables us to obtain a statistical description of the 

functional relationship between the function parameters a and b and the details of movement, 

as well as an ecological interpretation of the effect of movement details. Analysis is done 

using the individual-based model. The results are illustrated in Figs. 4.2—4.4. 
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Figure 4.2 The effect of perceptual range on the potential accessibility function R(d): a) The effect on the curve 

shape, b) the effect on the function parameters a and b and c) the effect on the curve characteristics dTP and ddecl. 
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The effect of perceptual range 

Fig. 4.2a shows the effect of perceptual range on the potential accessibility function, Fig. 4.2b 

the effect on the function parameters a and b, and Fig. 4.2c the effect on the two curve 

characteristics  and dTPd decl. It can be seen that both function parameters exhibit a clear 

functional dependence on the perceptual range. For both a and b, a linear function fits with a 

high r2 (Table 4.1). While a markedly increases with rising perceptual range, the parameter b 

decreases slightly (in the third decimal place). Corresponding to the effect on parameters a 

and b, an increase in the perceptual range leads to an increase in the index of effective search 

 (depending on both parameters), while the scale of decline dTPd decl (depending on parameter 

b only) seems to be robust to a change in the perceptual range. This shows that an increase in 

the perceptual range leads mainly to an increase in the effectiveness of the search for small 

distances. These findings are confirmed by the shape of the function, where mainly the 

sigmoidal plateau of the curve is extended with increasing perceptual range. 

 

The effect of mortality risk 

The function parameter a decreases with increasing mortality while parameter b increases 

(Fig. 4.3b). The functional relationship between the function parameter a and the mortality 

risk can be described by an exponential decay. For function parameter b, a hyperbola fits the 

resulting curve very well (Table 4.1). Since both parameters act in the same direction 

regarding the index of effective search , it is not surprising that  becomes very small 

for a high mortality risk (Fig. 4.3c). The values for the scale of decline d

TPd TPd

decl which are only 

influenced by function parameter b decrease. Therefore, the two curve characteristics  and 

d

TPd

decl indicate both a reduction in search effectiveness and the faster decline of potential 

accessibility with distance. Both result in reduced search success. All these effects are 

reflected by the shape of the R-d curves (Fig. 4.3a). 
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Figure 4.3 The effect of mortality risk on the potential accessibility function R(d): a) The effect on the curve 

shape, b) the effect on the function parameters a and b and c) the effect on the curve characteristics dTP  and ddecl. 

 

The effect of loop length 

Both function parameters, a and b, decrease as the loop length increases (Fig. 4.4b). As with 

perceptual range and mortality, the function parameters exhibit a clear functional dependence 

on loop length. The resulting curves of both parameters can be fitted with a rational function 

(Table 4.1). Since both parameters decrease, they act in different directions on the potential 

accessibility R, which is reflected by the curve characteristics and dTPd decl (Fig. 4.4b). With 

increasing loop length, the index of effective search decreases, while the scale of decline ddecl 

increases. Therefore, the search success becomes lower for small distances but higher for 
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large ones. This is confirmed by the curve shape (Fig. 4.4a). Small loops express a larger 

plateau for small distances, but decline faster for large ones. 

The fitting functions found here can be included in the potential accessibility function R(d) 

(relation(4.4)). Taking loop length (i.e. the length of the initial loops) l as an example, we 

obtain the function: 

dleledlR
*))*025.156.9/(1(*))*024.0075.0/(1(1)(

+−+−−=  
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Figure 4.4 The effect of loop length on the potential accessibility function R(d): a) The effect on the curve 

shape, b) the effect on the function parameters a and b and c) the effect on the curve characteristics dTP and ddecl. 
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Table 4.1 The functional relationship between the movement details (perceptual range, mortality and loop 

length) and the function parameters a and b can be described with simple fitting functions.  

 

 

Movement detail Fitting function Parameter of the fitting function 

Perceptual range a=α+β*pr α=4.097 

(pr)  β=0.8115 

  r2=0.991 

 b=α+β*pr α=0.07702 

  β=0.0005782 

  r2=0.907 

Mortality (m) a=α*e-βm α=6.188 

  β=25.41 

  r2=0.857 

 b=αm/(β+m) α=0.2048 

  β=0.002154 

  r2=0.973 

Loop length (l) a=1/(α+β*l) α=0.07478 

  β=0.02437 

  r2=0.998 

 b=1/(α+β*l) α=9.564 

  β=1.025 

  r2=0.977 

 

 

 

4 Discussion 
Our study provides a thorough insight into the effect of movement characteristics on patch 

accessibility. Our main aims were to establish the functional relationship between the function 

parameters a and b and the details of movement, and to give an ecological interpretation of 

these effects. We achieved these goals by using an individual-based simulation model. 

We have shown that there are clear functional relationships between the function parameters 

of the potential accessibility function R(d) and the movement details investigated. We found 
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very simple fitting functions (for an overview see Table 4.1) to describe these functional 

relationships. These fitting functions were found by univariate analysis for each movement 

parameter. Therefore, it is not possible to give one single R(d)-function for a combination of 

all three parameters. But these fitting functions could help to roughly indicate the range of 

parameter values possible for one movement behaviour. Estimating the right parameters may 

often be a problem when working with dispersal functions. The fact that different movement 

characteristics have different effects on the function parameters a and b makes it difficult to 

estimate the function parameters. This can be overcome by the results presented, which 

indicate that there is a clear functional relationship between the function parameters and the 

movement characteristics. Once this functional relationship is known, it is at least possible to 

perform sensitivity analyses around the range of potential parameter values for a single aspect 

of movement behaviour.  

We found two measures characterising the shape of the potential accessibility function R(d): 

the index of effective search  and the scale of decline dTPd decl, which allow the effect of the 

movement details on the dispersal success to be ecologically interpreted. These measures can 

be expressed in terms of the function parameters a and b. These two measures make the effect 

of the different movement details on R(d) better understandable, allowing rules of thumb 

about these effects to be drafted. The increasing perceptual range positively affects  

strongly, but only has a slight effect on d

TPd

decl. An increase in the mortality risk leads to a 

decrease in both characteristics, while increasing the loop length depresses but leads to an 

increase in d

TPd

decl. Every effect can be completely described with the two measures.  

In this study, we only investigated the case of the loop-like behaviour observed in nature. 

Therefore, the functional relationship between the function parameters and the movement 

details derived in this paper cannot be directly used for other movement behaviours. 

However, the general approach, as well as the two measures index of effective search and 

scale of decline d

TPd

decl, can be used for other movement behaviours, too, as relation (4.3) was 

found to be appropriate for a variety of movement behaviours. 

It could be also feasible to categorise movement patterns and their function parameters on this 

basis. Regarding the dispersal function finally resulting (relation (4.1)), movement patterns 

with similar a and b values and therefore similar R-d curves react similarly to changes in 

landscape configuration. Therefore it could be possible to determine groups of organisms with 

similar reactions to landscape changes.  
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5 Appendices 
 

A1. Calculation of the turning point  TPd

The turning point  of the sigmoidal function is defined to be the d-value 

where the function changes from a concave to a convex shape. This point is given by the null 

of the second derivation of R(d), i.e. is determined by the solution of equation . The 

second derivation  is given by 

TPd
dbeaedR
⋅−⋅−−= 1)(

0)( =′′ dR

)(dR ′′

)1()( )( −⋅⋅⋅⋅⋅−=′′ ⋅−⋅+⋅− ⋅− dbdbea eabebadR
db

. 

This shows that the condition 0)( =′′ dR  is only met if the third part of expression )(dR ′′  

becomes 0, i.e.  By solving this equation, we obtain .01 =−⋅ ⋅− dbea b
a

TPd ln= . 

 

A2.  Calculating the scale of decline  decld

Starting point of the following calculation is the finding that each sigmoidal function 

shows a convex decline to zero in the range of distances d above the turning 

point 

dbeaedR
⋅−⋅−−= 1)(

b
a

TPd ln= . This motivates a scale of decline  defined to be the distance measured 

from the turning point  upwards over which  goes to 0. By adopting the idea that the 

scale of an exponential decline is given by 

decld

TPd )(dR

⎟⎟
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∫
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∞
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By taking into consideration that )exp(1)exp(1)( )( ln
b
axbxb eeaxR −−⋅− −−=⋅−−=  (see relation 

(5) in the text) and that b
a

TPd ln= , we get the following expression for : decld
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Substituting the term xb ⋅  by the variable xbz ⋅=  leads to 
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b
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This relation shows that the scale of decline  is independent of parameter a and 

proportional to , where the factor of proportionality is given by the ratio of two integrals, 

namely . We used Mathematica 3.0 (Wolfram 1996) for 

numerically determining the ratio between the integrals and obtained 1.12 as result. 

Consequently,  
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In Part II, we developed and analysed a simple formula for the patch accessibility that is able 

to cover a wide range of different movement patterns. The formula can now be used to 

investigate the effect of individual dispersal behaviour on metapopulation viability. This is 

done in Part III.   
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Part III 

 

On the viability of metapopulations:  

individual dispersal behaviour matters 
 

1 Introduction 
Assessing fragmented landscapes regarding their ability of maintaining viable 

metapopulations is a very difficult aim (Hanski & Ovaskainen 2000, Etienne & Heesterbeck 

2001, Frank & Wissel 2002). Metapopulation models are a useful tool to address this task 

(review by Verboom et al. 1993, Hanski 1999). Certainly, models cannot give exact 

quantitative predictions, but by comparing different landscapes, they can give qualitative 

assessments of which landscape configuration would be most effective (sustainable). Such an 

analysis can give ranking orders of landscapes that can be used as aids for decision support in 

landscape planning and conservation practice (Lindenmayer & Possingham 1996, Drechsler 

2000, Possingham et al. 2000). 

In order to avoid too much model complexity, the processes that determine metapopulation 

viability are often modelled in a simple way. Animals’ dispersal between habitat fragments is 

mostly taken into account by using a simple (exponential) dispersal function that assumes the 

underlying process of dispersal to be random movement (Fahrig 1992, Hanski 1994, Adler & 

Nuernberger 1994, Vos et al. 2001, Frank & Wissel 2002). Species-specific dispersal 

behaviour, for example, the orientation of animals along landscape structures (Haddad 1999, 

Merriam 1991), the ability to move straight to another patch due to a large perceptual range 

(Zollner & Lima 1997, Zollner & Lima 1999), or the systematic search for patches with a 

specific movement pattern (Conradt et al. 2000, Conradt et al. 2001), can therefore only very 

roughly be considered. Such specific dispersal behaviours will affect exchange rates between 

patches. Therefore, it will undoubtedly influence the viability of a metapopulation considered. 

If we want to compare different landscapes regarding their effect on metapopulation viability, 

it is not yet clear, whether and how such specific dispersal behaviour affects the predictions of 

landscapes’ ranking order. Is it possible that a landscape is assessed as the more effective one 

of two landscapes assuming one underlying dispersal behaviour, but is assessed as the less 

effective one assuming another underlying dispersal behaviour? 

The present paper addresses these questions by comparing metapopulation viability in 

different landscape configurations, where different underlying dispersal behaviours are taken 

into account. This is done by using META-X, a software for metapopulation viability analysis 
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(Frank et al. 2002). Metapopulation viability is measured in terms of the mean lifetime Tm and 

landscape ranks are determined by comparing the Tm -values for the different landscape 

configurations considered. To incorporate dispersal behaviour in META-X, we use a 

submodel for the colonisation rates which utilises the formula for the accessibility of patches 

(Chapter 3) and allows different movement patterns to be considered. We focus on random 

walk with various degrees of correlation, as well as on the loop-like movement pattern found 

for a variety of animals (Hoffmann 1983, Müller & Wehner 1994, Durier & Rivault 1999, 

Conradt et al. 2000, Conradt et al. 2001). We analyse whether and under what circumstances 

the dispersal behaviour influences ranking orders of landscapes. We discuss implications for 

metapopulation modelling, planning and conservation.  

 

2 Methods 
Throughout the paper, the mean lifetime Tm subsuming all details of viability of an established 

metapopulation was used as a quantifier for metapopulation viability. To obtain the values for 

Tm of metapopulations in a given landscape for a given movement behaviour, we used 

META-X (Frank et al. 2002), a software for metapopulation viability analysis.  

 

2.1 META-X 

The META-X model (Frank et al. 2002) is identical with the spatially realistic stochastic 

levins-type model of Frank & Wissel (1998). Technically speaking, the META-X model is a 

time-continuous Markov chain model for finite metapopulations.  

The metapopulation consists of N patches. Each patch is either occupied or empty. The state 

of the whole metapopulation is given by the state of the individual patches. The patches 

state’s can be changed by local extinction of on occupied patch or recolonization of an empty 

patch. Therefore, the dynamics of the metapopulation are determined by three parameters: the 

local extinction rate of a patch ei, the correlation degree of extinction cij between 

subpopulations and the colonisation rate bij from patch j to patch i. 

META-X offers two possibilities to include spatial structure and species ecology into the 

main model parameters: either by using the submodels provided or by reading in 

corresponding data files, which allow the use of external submodels. 

 

2.2 Specification of the main model parameters 

2.2.1 Extinction rate and correlation degree of extinction 
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In order not to overload the study with too many details, we decided to ignore the correlated 

extinction between patches (cij = 0) and to assume patches to be identical having an equal rate 

of local extinctions for all patches (ei = e = 0.1). All parameters that were needed to run the 

model can be found in Table 5.1. 

 

2.2.2 Colonisation rate 

The colonisation rate bij with which patch i colonises patch j can be described as a product of 

three factors: (i) the mean number of emigrants Ei leaving the occupied patch i per year, (ii) 

the probability that an emigrant starting from patch i reaches patch j, called patch 

accessability rij, and (iii) the number of emigrants Ij needed on patch j to establish a new 

subpopulation.  

The movement behaviour acts on the patch accessability rij. The submodel for the 

colonisation rates provided by META-X assumes a simple exponential dependence for the 

patch acessibility on interpatch distance. Such an exponential dependence was found in 

Chapter 3 to be unable to cover the functional relationship between patch accessibility and 

distance for all movement patterns. Furthermore, if we assume that individuals stay at the first 

patch they reach, patches “compete” for migrants. Competition between patches for migrants 

is considered only very simplistically in the submodel provided by META-X, as emigrants are 

equally distributed to all connected patches not accounting for the fact that emigrants may be 

more attracted by a closer patch than by a distant one. Therefore, we decided to use our own 

submodel for covering more explicitly the effect of different movement patterns considered.  

 

We calculated the colonisation rates in the following way: 

j
ijiij I

rEb 5.0**=       (5.1) 

where Ei is the mean number of migrants leaving the occupied patch i to other patches and Ij is 

the number of immigrants needed on patch j to establish a new subpopulation with a 50 % 

probability of success. 

We assumed patches to be identical and therefore kept the emigration rate Ei and the number 

of immigrants needed Ij equal for all patches. Therefore, relation (5.1) could be simplified to 

I
rEb ijij

5.0**= . The values used for E and I can be found in Table 5.1. 
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Table 5.1 The parameters needed to calculate local extinction, correlated extinction, colonisation rates and the 

patch accessability included in the colonisation rates 

 

Process Parameter determining the process  

Local Extinction Rate of Extinction 0.1 

Correlated Extinction Mean Correlation length 0 

Colonisation rates Ei 10 

 Ij 3 

Parameter a ->Loops 5.840 

Parameter b  ->Loops 0.075 

Parameter a ->uncorrelated random walk 2.149 

Parameter b ->uncorrelated random walk 0.076 

Parameter a -> fairly correlated random walk 0.796 

Parameter b -> fairly correlated random walk 0.025 

Parameter a ->correlated random walk 0.580 

Parameter a and b for patch 

accessability of different movement 

patterns 

Parameter b -> correlated random walk 0.091 

 

 

 

2.2.2.1 A formula for calculating patch accessability for different movement patterns 

For calculating the for the probability rij of reaching a certain target patch j from a certain start 

patch i (patch accessability), we used according to Chapter 3 the following formula:  

)( ijij dRWr
ij

⋅=             (5.2) 

       where   
∑
≠

−

−

=

)(

1

1

)(

)(

ik

N
ik

N
ij

ij
dR

dR
W         (5.3) 

             and           (5.4) 
)(

1)(
dbeaedR
⋅−⋅−−=

The function R(d) (relation (5.4)) gives the potential patch accessibility in a landscape with 

two patches (start and target patch) only by considering the distance d between them. It only 

contains two parameters, a and b, which summarise all the relevant details of dispersal 

behaviour. In a landscape with more than two patches the patches compete for emigrants as an 

emigrant intercepted by one patch cannot reach another patch (assuming that migrants stay on 

the first patch they reach). This competition is described by the weighting factor Wij 
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(relation (5.3)). This weighting factor is completely expressed in terms of the potential patch 

accessibility R(d) and a power given by the number N of patches in the landscape. This 

weighting factor accounts for the fact that the competition strengths of patches depends on the 

relation of the potential accessibility of patch j to the potential accessibilities of all patches k 

in the landscape. The overall dispersal function (relation (5.2)) is completely expressed in 

terms of the potential patch accessibility. Consequently, there are only two function 

parameters a and b specifying the whole formula.  

The resulting patch accessibility of this formula was compared with the results of a simulation 

model, where the patch accessibility for different movement patterns in varying landscape 

configurations was simulated (Chapter 3). This comparison showed a high predictive power 

of the formula presented for each movement pattern and landscape simulated. The simulation 

furthermore enables us to determine the parameters a and b for the different dispersal 

behaviours (Chapter 4). Therefore, we could use the formula instead of using the simulation 

model, keeping so the model simple, but allowing a realistic approximation to real movement 

patterns. 

  

2.2.2.2 The movement patterns  

The movement patterns investigated were loops, uncorrelated random walk, fairly correlated 

random walk, strongly correlated random walk. While random walk is a rather simple 

movement pattern, the loop-behaviour is a very complex pattern, found in nature for a variety 

of animals (Hoffmann 1983, Bell 1985, Müller & Wehner 1994, Durier & Rivault 1999, 

Conradt et al. 2000, Conradt et al. 2001). For this loop-like pattern the individuals move away 

from the start point, returning to it on a different path. The next loop is started in another 

direction, creating a petal-like path. The size of the loops increases with the number of loops, 

and so the radius searched increases. The parameters a and b of the formula subsuming all the 

relevant details of those movement patterns can be found in Table 5.1. 

 

2.3 Simulations 

In the two first experiments (Sections 3.1 and 3.2), we used randomly generated landscapes. 

For this, x- and y-coordinates of patches were randomly taken from 100 uniformly distributed 

values. In the third experiment, landscapes were generated in a systematic way (for the 

description see Section 3.3). 

From the resulting patch positions, we calculated inter patch distances (measured between 

patch centres). With these distances, the patch accessibilities rij and the corresponding 
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colonisation rates were calculated for the movement patterns considered (loops, uncorrelated 

random walk, fairly correlated random walk, strongly correlated random walk). All these 

calculations were done in C++. The resulting matrix of colonisation rates was read in META-

X and the mean lifetime Tm was obtained. 

The time horizon of META-X is limited to 10 000 years. This horizon is sufficient for using 

META-X in the context of conservation. Since we are interested in gaining understanding, we 

need an unlimited time horizon. For simulations where the resulting mean lifetime exceeds 

the limit given by META-X, we used the original model forming the basis of META-X 

(Frank & Wissel 1998). This original model was programmed in Mathematica ® (Wolfram 

1996). 

 

3 Results 
3.1 Does behaviour matter? 

The aim of the present study is to understand the influence of the individual dispersal 

behaviour on the viability of metapopulations with respect to both (a) the absolute values of 

the mean lifetime Tm for a particular landscape and (b) the relative ranking orders between the 

Tm –values in varieties of alternative landscapes.  

In order to get an initial impression about these questions, we generate 10 random landscape 

configurations with 9 patches each as examples (Fig. 5.1). In Figure 5.2, the resulting mean 

lifetime Tm is plotted for every landscape and every movement pattern. The absolute values of 

Tm for a particular landscape differ between the different movement patterns. This quantitative 

effect of behavior is not surprising. By comparing the Tm –values for the different landscapes 

between each other, we see that also the landscape ranks differ between the movement 

patterns. A landscape where this can drastically be seen is Landscape 9. Assuming ‘Loops’ 

and ‘Fairly correlated walk’ as underlying movement patterns, this landscape is one with the 

lowest Tm-value and hence the lowest rank. But considering ‘Uncorrelated’ or ‘Strongly 

correlated random walk’, Landscape 9 has the highest Tm-value of all landscapes and the 

highest rank. Another drastic example for different landscape ranks is Landscape 4. While 

this landscape has a low rank for ‘Loops’, ‘Fairly correlated’ and ‘Uncorrelated random 

walk’, it has a comparatively high rank for ‘Strongly correlated random walk’.  

The fewest differences in landscape ranks between movement patterns can be found when we 

compare ‘Loops’ and ‘Fairly correlated random walk’. But even here landscape ranks changes 

considerably. If we consider ‘Loops’ as underlying movement behaviour, Tm–value and rank 

of Landscape 2 are lower than for Landscapes 3, 5 and 7, while for ‘Fairly correlated random 
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walk’, the opposite is true. Note that the differences between landscapes in the absolute Tm–

values are not as high as in the more drastic examples. Still, the ranking orders are changing.  

Although these results are merely based on few examples, they bring an important problem to 

light: They indicate that the individual dispersal behaviour can markedly influence not only 

the absolute Tm–value for a particular landscape but also relative results on Tm for varieties of 

different landscapes. The latter result has serious implications for theory and conservation 

(see the Discussion) since relative results as ranking orders or trends are important aids for 

decision making. Therefore, there is a strong need to fully understand the effect of behaviour 

on the ranking orders between different landscapes. 

 

 

 

Landscape 1 Landscape 2 Landscape 3

Landscape 4 Landscape 5 Landscape 6

Landscape 7 Landscape 8 Landscape 9

Landscape 10

Figure 5.1 The 10 randomly generated landscapes that were used for the analysis 
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Figure 5.2 The mean metapopulation lifetime Tm for metapopulations in 10 different randomly generated 

landscape configurations calculated assuming different underlying individual dispersal behaviours: a) loop-like 

behaviour, b) uncorrelated random walk, c) fairly correlated random walk, d) correlated random walk 

 
 
 
3.2 Why behaviour matters  

In the following, we want derive a hypothesis concerning why individual dispersal behaviour 

changes landscape ranks. With our settings ( ijeI
E

iji rbee ⋅== ⋅
⋅5.0, ), Tm is exclusively influenced 

by landscape structure and individual behaviour via patch accessibility . Relation (5.2) 

reveals that  consists of two components: the potential patch accessibility  (relation 

(5.4)) and the weighting factor W

ijr

ijr )( ijdR

ij (relation (5.3)) accounting for the competition between 

patches for migrants (see Section 2.2.2.1). Both components can be responsible for the change 

in the landscape rank.  

To test whether the competition between patches causes a change in landscape ranks, we 

repeat the same experiment as before using the 10 landscapes of the first experiment (Fig. 

5.1), but modifying formula (5.2) for the patch accessibility in such a way that the 

competition between patches is ignored, i.e. )( ijij dRr = , as is done in many metapopulation 
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models (Fahrig 1992, Adler & Nuernberger 1994, Vos et al. 2001). We therefore calculate the 

patch accessibility rij by using the potential accessibility function (relation (5.4)).  )(dR

The resulting mean lifetimes Tm of all landscape configurations and movement patterns for the 

competition-free case are shown in Fig. 5.3. As before, the absolute Tm -values for a particular 

landscape are affected by a change in the movement patterns. The ranking orders in the Tm -

values between the different landscapes, however, are the same for all underlying dispersal 

behaviours. Without competition, there seems to be no effect of dispersal behaviour on the 

landscape ranks. This gives rise to the hypothesis that the competition effect is responsible for 

the change in the ranking orders.  
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Figure 5.3 The mean metapopulation lifetime Tm for metapopulations in 10 different randomly generated 

landscape configurations calculated with relation (5.3) only, ignoring the competition between patches. Different 

underlying individual dispersal behaviours were assumed: a) loop-like behaviour, b) uncorrelated random walk, 

c) fairly correlated random walk, d) correlated random walk 
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3.3 Gaining understanding: how competition acts 

Now, we are interested in gaining a mechanistic understanding of the effect of landscape 

structure and individual behaviour on metapopulation viability and the role of the competition 

effect in this context. Hence, it is no longer sufficient to comparatively analyze randomly 

generated landscapes. These landscapes differ in too many factors that produce complexity.  

We therefore perform a more systematic experiment with a hypothetical landscape consisting 

of five patches. We change the position of merely one patch (Figs. 5.4a) by gradually moving 

Patch 1 towards Patch 2. The corresponding patch accessibilities  are calculated in two 

different ways: (i) without competition between patches using relation (5.4) (see Section 3.2) 

and (ii) with competition using relation (5.2) (see Section 3.1).  

ijr

Additionally, we analyze the functional structure of a previously published approximation 

formula  for the mean lifetime Ta
mT m (Frank & Wissel 2002) which gives insight into the 

relationship between Tm and all the model parameters. This formula has been found to have a 

high predictive power for a wide range of landscape configurations. By inserting our settings 

( ijeI
E

iji rbee ⋅== ⋅
⋅5.0, ) into , we obtain a
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Relation (5.5) reveals that Tm can be approximated by a polynomial of a certain term x that 

characteristically depends on the patch accessibilities . It is evident that merely the total 

outgoing accessibilities  and the total incoming accessibilities 

 of the individual patches i as well as the corresponding harmonic mean of 

these two quantities 

ijr

∑ ≠
=

)(, ij ijiout rr

∑ ≠
=

)(, ij jiiin rr

12
,

2
,2

1
,, ))((),( −−− += iinioutiiniout rrrrH  are decisive for the value of Tm. 

This reflects the well-known effect that the effective colonization ability of the 

subpopulations (given by x) depends on the ability to colonise patches and the chance of 

becoming recolonized after extinction. 

In Figs. 5.4b and 5.4c, the resulting mean lifetime Tm of the simulation experiment is plotted 

against the distance d12. Since the Tm –values drastically differ for the same landscape but 
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different movement patterns (we found 50 000 years (‘Loops’) and 250 years (‘Strongly 

correlated random walk’) in the initial landscape), we normalised Tm, i.e. we measured Tm in 

percentage of the maximum Tm -value found in the variety of landscapes considered for a 

given movement pattern. 

In case without competition (Fig. 5.4b), Tm increases with decreasing distance  between 

Patches 1 and 2, regardless of the movement behaviour. Therefore, the ranking orders of 

landscapes are the same for all the movement patterns considered. This effect can be 

explained as follows: Shifting Patch 1 towards Patch 2 mainly results in a decrease of the 

distance  between Patches 1 and 2, while all the other distances  remain almost 

unchanged. Since in the case without competition 

12d

2112 dd = ijd

)( ijij dRr = , the accessibilities 

 increase, while all the other accessibilities  remain almost constant. In 

consequence, the total incoming and outgoing accessibilities  and  for Patches 1 and 2 

and the harmonic mean  between them increase, while the terms ,  and 

 for all the other patches j remain constant. The functional structure of the T

)( 122112 dRrr == ijr

iinr , ioutr ,

),( ,, ioutiin rrH jinr , joutr ,

),( ,, joutjin rrH m-

formula (5.5) reveals that these findings result in a positive effect on Tm.

 

  79 



Chapter 5: On the viability of metapopulations 
 

Distance between P1 and P2
10 15 20 25 30

Tm
/T

m
m

ax
*1

00

40

60

80

100

Position P1 
P2

a) Experiment

b) without competition between patches

c) with competition between patches

Distance between P1 and P2
10 15 20 25 30

T m
/T

m
m

ax
*1

00

60

70

80

90

100

loops
uncorrelated random walk
fairly correlated random walk
correlated random walk

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 a) An experiment to 

investigate the effect of the 

interaction between movement 

behaviour and landscape 

systematically: the position of one 

patch is changed in the way that 

Patch 1 is moved closer to Patch 2 

while the position of all other 

patches was kept constant.  

b) and c) The resulting mean 

lifetime Tm (to allow a better 

comparison between movement 

patterns, Tm is measured in 

percentage of the maximum Tm -

value found for a given movement 

pattern in the variety of landscapes 

of one experiment) for different 

landscape configurations and 

movement patterns, calculated b) 

without considering the competition 

between patches and c) by 

considering competition between 

patches. 
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A totally different picture occurs in the case where competition between patches is included 

(Fig. 5.4c). For each movement pattern, there is some optimum distance  at which T12d m is 

highest. This optimum distance differs between the dispersal behaviours considered. The 

existence of different optima results in different ranking orders for different movement 

patterns. While the decrease in distance  may result in an increase of T12d m for one movement 

pattern (for example for ‘Strongly correlated random walk’), it may already result in a 

decrease for another movement pattern (for example ‘Loops’).  

What are the mechanisms leading to the behaviour-dependent optimum? An optimum always 

indicates some trade-off. Such a trade-off can actually be read-off from the functional 

structure of the formulas for Tm (relations (5.5; 5.6)) and  (relation (5.2)) in the case of 

competition:  

ijr

(a) As we know from relation (5.2), the accessibilities  and  between the Patches 1 and 2 

are given by 
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Since there is a decrease in , while all other ’s remains constant, the potential 

accessibilities 

2112 dd = ijd

)()( 2112 dRdR =  and the weighting factors  and  increase. This results 

in an increase of the overall values  and .  

12W 21W

12r 21r

(b) The accessibilities  and  for emigrants from Patches 1 and 2 to all other patches j are 

given by 
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Here, the potential accessibilities and  remain almost unchanged. The 

weighting factors  and , however, decrease because of the increasing terms 

in the denominators. This reflects the fact that any improvement of the 

exchange between Patches 1 and 2 goes to the disadvantage of the exchange to all other 

patches. In consequence, the overall values  and  decline.  

)( 1 jdR )( 2 jdR

jW1 jW2

)()( 2112 dRdR =

jr1 jr2

(c) The accessibilities  between all other patches i and j remain almost unchanged.  ijr
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The findings on the pair-wise accessibilities  result in the following total incoming and total 

outgoing accessibilities  and 

ijr

∑ ≠
=

)(, ij jiiin rr ∑ ≠
=

)(, ij ijiout rr  for all the patches i: For the two 

Patches 1 and 2, both  and  increase (because of the increase in  and ) and so 

does the harmonic mean  between them. For all other patches , the total 

incoming accessibilities  decrease (because of the decrease in  and ), while the 

outgoing accessibilities  remain almost unchanged (because of the almost constant ’s). 

Hence, the corresponding harmonic means  for the patches j decrease.  

iinr , ioutr , 12r 21r

),( ,, ioutiin rrH )2,1(≠j

jinr , jr1 jr2

joutr , jkr

),( ,, joutjin rrH

Since relations (5.5; 5.6) reveals that  depends on the product of all the (2 increasing and 

 decreasing) harmonic means  of the individual patches, we conclude that 

the change in the position of Patch 1 actually results in a trade-off effect on T

mT

)2( −N ),( ,, ioutiin rrH

m.  

The optimum distance , where advantage and disadvantage of the change in the position of 

Patch 1 compensate each other, depends on two things: the strength of the increase in  and 

 as the only source of advantage and the strength of the decrease in and  as the only 

source of disadvantage. All these changes are related to the change in . Therefore, the 

optimum distance depends on the shapes of the R vs. d curves. As is illustrated in Fig. 5.5, 

these shapes and so the optimum distance depend on the movement pattern. This is the reason 

why different movement behaviours result in different optimum distances and, hence, in 

different landscape ranks. 
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Figure 5.5 The relationship between the potential patch accessibility Rij and the distance dij.  
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4 Discussion 
Behaviour matters 

We found that the dispersal behaviour of the individual does not only have a quantitative 

effect on the viability of a metapopulation, but also a qualitative effect: It influences ranking 

orders among alternative landscapes regarding the mean lifetime  of the corresponding 

metapopulations. The competition between patches for migrants was found to be an important 

factor driving the shift in landscape ranks. Our analysis of the consequences of a systematic 

change in a hypothetical 5-patch landscape revealed the mechanism how competition acts on 

the landscape ranks: If the distance between two patches is decreased while the rest of the 

landscape is kept constant, a trade-off between advantage (improved potential patch 

accessibility) and disadvantage (increased strength of competition) of this decrease in one 

inter-patch distance results. Whether the advantage compensates the disadvantage in a given 

landscape was found to depend on the shape of the potential accessibility function R(d) and 

hence on the dispersal behaviour. These results have serious implications for metapopulation 

modelling, planning and management: 

mT

Our study shows that it is very important to incorporate dispersal behaviour in metapopulation 

models in an appropriate way. In most existing metapopulation models, dispersal behaviour is 

only cursorily taken into account by using an exponential function assuming the underlying 

process of dispersal to be random movement (Fahrig 1992, Hanski 1994, Adler & 

Nuernberger 1994, Vos et al. 2001, Frank & Wissel 2002). As our results indicate, this bears 

the risk of getting a bias in landscape ranking orders. Therefore, the dispersal behaviour has to 

be considered explicitly enough to allow an as good as possible landscape ranking. This 

reflects the opinion of many other authors calling for better integration of behavioural aspects 

into the analyses of ecological landscapes (Lima & Zollner 1996, Roitberg & Mangel 1997, 

Morales & Ellner 2002). On the other side, models need to be simple enough to be 

understandable and comprehensible (Gillman & Hails 1997). To model the movement 

behaviour explicitly is very time consuming and may complicate the model considerably, 

therefore models are usually working with formulas. As is shown in this study, not all 

formulas are able to reflect the differences in movement behaviour with an appropriate 

resolution. As we have seen, landscape ranks determined by a formula without competition 

between patches differ from those determined by formula with competition. Therefore, 

dispersal functions which do not incorporate competition will lead to (quantitatively and 

qualitatively) different results. The formula used here is an example for a formula that is 

structurally simple, but allows the effect of a variety of (hypothetical and realistic) movement 
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patterns to be described. For this formula, the dependence of the function parameters on the 

behaviour was already investigated (Chapter 4). This shows that it is possible to keep the 

dispersal behaviour in metapopulation models simple enough to be understandable, but 

explicit enough to be reliable. 

Our results indicate the need of taking the movement behaviour in the context of landscape 

planning and metapopulation management into account, otherwise there is a high risk of 

counter-productive recommendations. This finding seems to provide the impression that it is 

impossible to derive any transferable statements on the effect of landscape changes on 

metapopulation viability which are generally valid for all species. But as we have seen, all the 

behavioural effects on relative results and ranking orders among the Tm-values of alternative 

landscapes are summarized in the shape of the potential accessibility function R(d) (relation 

(5.4)) which is completely determined by the two function parameters a and b. These two 

parameters give rise to a categorization of species in the sense that movement patterns which 

result in the same values a and b lead to the same ranking orders and, hence, to common 

recommendations for landscape management. This corresponds with the results of other 

studies that it is needed and possible to derive ecologically differentiated, but still simple rules 

of thumb which are valid whole ecological classes of species (Verboom et al. 1993, Weaver 

et al. 1996, Frank & Wissel 1998, Frank 2004).  

 

On the potential of approximation formulas 

The present study demonstrates the potential of using formulas for particular model 

parameters (here: patch accessibility rij) or target quantities (here: mean lifetime Tm). The 

formula for the patch accessibility rij (relation (5.2)) revealed that rij is the product of the 

potential accessibility Rij and a competition term Wij. In consequence, the competition term 

could be switched on and off and the hypothesis that competition for migrants is responsible 

for the ranking effect could be tested. This would have been impossible by using the 

underlying individual-based simulation model. The formula for the mean lifetime Tm (relation 

(5.5)) provided structural insight into the functional relationship between Tm and the rij’s. It 

revealed that merely the total incoming ( ∑ ≠
=

)(, ij jiiin rr ) and outgoing ( ) 

accessibilities of the individual patches are decisive for T

∑ ≠
=

)(, ij ijiout rr

m. By inserting formula (5.2) for rij 

and systematically analyzing the functional dependence of ( ) on all the inter-patch 

distances , a trade-off effect of decreasing the distance between two patches on T

iinr , ioutr ,

ijd m could  

be shown and the role of the movement behaviour could be explained. All these aspects were 
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decisive for fully understanding the behavioural effects on the landscape ranks. This shows 

that the practical value of such formulas is much more than just “allowing predictions without 

having to run any simulation”; gaining insight into the functional structure is even more 

important. This indicates that it is worth to look for approximation formulas for measures of 

(meta-)population persistence (Hanski & Ovaskainen 2000, Frank & Wissel 2002, 

Ovaskainen & Hanski 2004, Frank submitted) and justifies the approach of deriving patch 

accessibility functions from individual-based simulation models. 

 

Prospects for further research 

To understand the effect of dispersal behaviour on landscape ranks, we started with most 

simple systematic landscapes, with 5 equally sized patches only. Real landscapes are more 

complex. They usually differ not only in one aspect from each other, but in a variety of 

aspects. These aspects may impact the shift in landscape ranks in the same or in the opposite 

direction, being complementary or contrary to each other. Furthermore, it is not yet clear how 

heterogeneous patch sizes would influence effect of dispersal behaviour on the ranking orders 

of landscapes. Heterogeneously sized patches may strengthen or soften the effects found in 

this study. Here, there is more research needed to make a systematic assessment possible. 
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Where to go from here:  

Possible directions and first results 
 

A thesis is never finished. There are a lot of subjects that I would have liked to work (more) 

on. Some challenges for future work are already mentioned in the respective parts. In the 

following, I would like to discuss some prospective ideas which have already been subject to 

further investigations. Therefore, I will not only present ideas here, but also some first results. 

These results are only the first step on investigating these ideas, since the themes presented 

here are too broad and too important to be covered completely within this chapter of the 

thesis.  

 

1 Including landscape heterogeneity into the formula for patch 

accessibility 
The patch accessibility formula derived in Chapter 3 was found to have a high predictive 

power for a variety of movement patterns and landscape configurations. Simulations were 

done in a binary landscape, with habitat and non-habitat only, and equal sized patches. 

Landscape heterogeneity was considered in the simulation model only in that way that we 

used different landscape configurations. Therefore, it is an open question whether the formula 

is able to predict patch accessibility in landscapes with further heterogeneity as well. 

Heterogeneity in landscapes can be due to heterogeneously sized patches or due to 

heterogeneous matrix structures, such as different matrix quality ( Roland et al. 2000, Jonsen 

et al. 2001, Ricketts 2001, Vandermeer & Carvajal 2001) or landscape elements acting as 

corridors, barriers or directing components (Merriam 1991, Neve et al. 1996, Gustafson & 

Gardner 1996, Haddad & Baum 1999, Ries & Debinski 2001, Berggren et al. 2001, Pe’er et 

al. submitted b). In this section, several attempts to investigate the formulas applicability in 

heterogeneous landscapes – done by collegues (Eckhardt et al. unpublished data, Pe’er et al. 

submitted) or by myself - are discussed. 

 

1.1 Heterogeneously sized patches 

Patch size is likely to have an important impact on patch accessibility as large patches should 

have a higher probability of being reached than small patches (Hill et al. 1996, Kuussaari et 

al. 1996).  

89 



Chapter 6: Prospects 
 

To investigate the effect of patch size, we perform the simulation described in Chapter 3, 

Section 2.4, releasing animals at patch i and counting the proportion of individuals arriving at 

patch j. We use landscapes with 10 heterogeneously sized circular patches. The patch size is 

generated randomly and varies between a radius of 1 and 5, covering so an area between 3.14 

units2 for the smallest and 78.54 units2 for the largest patch. As in Chapter 3, the resulting 

simulated values for the patch accessibility were plotted against the calculated values that 

were computed with relation (3.6).  

 Fig. 6.1a shows the results of this analysis. There is a strong correspondence between 

simulated and calculated values (r2 = 0.94), but compared to the equal-sized case, there is a 

wider spread of values. Therefore, in landscapes with patch-size heterogeneity, formula (3.6) 

for the patch accessibility has a significantly lower predictive power. 
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Figure 6.1 Simulated vs. calculated patch accessibility rij in landscapes with heterogeneously sized patches. a: 

The patch accessibility rij
calc is calculated by using the original formula rij(d). b: The patch accessibility rij

calc is 

calculated by using the formula rij(dnew), with dnew being the distance between patches calculated in the following 

way: dij
new=dij-radi-radj with rad being the radius of a patch. 
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How can patch size be included in the formula for patch accessibility in a simple way? In the 

formula, the distance between patches is measured from patch centre to centre. Thinking of a 

very large patch, it may be already a problem that – measuring the distance from centre to 

centre – this distance exceeds the “real” distance from one patch edge to the other by far. In 

landscapes with heterogeneous sized patches, the deviance between real and calculated 

distance varies between the different sized patch combinations and therefore leads to a bias 

when calculating the competition effect. 

Therefore, the easiest approach to consider heterogeneous sized patches would be to take only 

the distance between the edges of patches into account: 

                   (6.1) ji
new radraddd −−=

with rad being the radius of patches. The new calculated distances can be inserted in relation 

(3.6).  

In Fig. 6.1b, the simulated values are plotted against the resulting calculated ones. Here, the 

values are less scattered and the regression analyses show a stronger correspondence 

(r2 = 0.98) with a predictive power as good as in the homogeneous case. Therefore, for the 

patch accessibility it seems sufficient to consider patch size by correcting the distance 

between patches. This may be valid as long as one thinks of circular patches. For irregular 

shaped patches another approach may be needed. This could be one aim of prospective 

research. 

Why is it not needed to correct for the radius in landscapes with homogeneous sized patches? 

As long as all patches are equal sized, the deviance between real and calculated distance is the 

same for all distances. Therefore, this deviance can be covered by the fitting parameter a of 

the formula as can be seen in the following transformation: 

dbeadberadbearadbedbearaddbea eeee
*'***)**()***(*)(* 1111

−−−−−−−−−−− −=−=−=−  

(6.2) 

with rad being the radius of patches. As can be seen in relation (6.2), the deviance between 

the distance from centre to centre and the distance from edge to edge can be completely 

expressed in terms of the fitting parameter a’. 

 

1.2 Heterogeneous matrix: the effect of barriers  

Landscape elements can act as barriers which can not or hardly be crossed by animals (Ries & 

Debinski 2001). Examples for such landscape elements are matrix types unsuitable for 

movement (such as dense forest that cannot be crossed by butterflies or open fields avoided 

by forest species), roads or rivers. Such barriers may result in an altered patch accessibility as 
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they block the access to some patches and deflect the animals path in the direction of other 

patches. 

During an internship with my supervision, Winnie Eckhardt investigated the effect of barriers 

on patch accessibility (Eckhardt et al. unpublished data). For our analysis, the same 

simulation as described in Chapter 3, Section 2.4 is performed, but with landscapes containing 

a barrier. An impermeable barrier with either 34 or 64 units lengths and 4 units width is 

placed in the middle of each (100x100 units) landscape. This fixed position of the barrier is 

used to enable a systematic analysis of the barriers effects and to avoid edge effects. 

Individuals are released from the start patch and move through the landscape with the loop-

like dispersal behaviour. If they encounter a barrier, they change their next intended step by 

an angle of 10 degree in order to avoid the barrier. If they still encounter the barrier, they 

change this step again by 10 degrees, continuing like this until they can make this step 

without hitting the barrier. The following step is again according to the loop-like movement 

behaviour, but if animals encounter the barrier again, the procedure starts from the beginning. 

Therefore, it happens sometimes that the animals’ path is deflected along the barrier (for an 

example of the movement behaviour see Fig. 6.2). As in Chapter 3, the movement is subject 

to stochasticity, so that the individuals’ paths are varying. As above, the patch accessibility is 

determined by counting the proportion of animals arrived at patch j. The resulting simulated 

values for the patch accessibility were plotted against the values calculated with relation (3.6) 

using the parameters a and b fitted for the movement pattern considered in a homogeneous 

matrix. The effect of the barrier on patch accessibility can be seen in the derivation between 

calculated and simulated values.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 The loop-like movement behaviour in a 

landscape with the barrier.  
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The effect of a barrier in the middle of a 10-patch-landscape 

In a first experiment, 10 patches are distributed randomly in each landscape and a barrier with 

64 units is used. The position of all target patches are categorised as either on the same side of 

the barrier as the start patch or on the opposite side of the barrier. This categorisation is not 

only determined by the barrier itself but also by its imaginary prolongation. The resulting 

patch accessibility values are plotted against the calculated ones (calculated with relation (3.6) 

and the parameters derived from the homogeneous landscape) marked regarding the position 

of start and target patch in relation to the barrier. In Fig. 6.3, it can be seen that most of the 

values are on the identity line (r2 = 0.93) with only a few being close to zero, showing only a 

slight effect of the barrier. By comparing the results of the regression analyses for values 

divided regarding the patch position in relation to the barrier, it can be seen that those patch 

combinations with start and target patch being on the same side of the barrier (black dots) are 

less effected by the barrier (r2 = 0.96) than those combinations with start and target patch 

being on opposite sides (white dots, r2 = 0.27). From those patch combinations with start and 

target patch being on the same side of the barrier some patch accessibility values are above as 

well as below the identity line, indicating that some patch combinations benefit from the 

barrier while others lose. From those patch combinations being on opposite sides, derivations 

from the identity line are mainly below the line, indicating that the barrier reduces the patch 

accessibility of patches being on the opposite side of it. This can be due to the barrier 

blocking the animals’ path. This effect is strongest for those patches which are close to the 

start patch, but not reachable due to the barrier. Due to the fact that the barrier blocks the 

access to patches on its other side, some patches situated on the same side can benefit from 

the barrier as they have less competition of other patches.  

One may have expected a stronger effect of such a long barrier in the middle of the landscape. 

However, patches on opposite sides of a barrier are often far away from each other, having so 

only a low potential patch accessibility. Patches on the same side are often less distant to each 

other, having therefore on average a higher potential patch accessibility. This trend is 

intensified by the competition effect. Therefore, the patch accessibility of most patches being 

on opposite sides is already low without barrier so that the barriers blocking has for most 

cases no impact. 
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Figure 6.3 The effect of a 64-units-barrier in the middle of the landscape on the simulated patch accessibility rij. 

The linear regression shows a good correspondence between simulated and calculated values for those patch 

combinations being on the same side of the barrier (black dots, r2 = 0.96), but a weak correlation between 

simulated and calculated values for patch combinations being on opposite sides (white dots, r2 = 0.27).   

 

 

In the first experiment, we gained some understanding about the impact of a barrier. It is still 

an open question how the effects of barriers can be covered by the formula for the patch 

accessibility. In order to gain more insight into the barriers impact on the formula, a 

hierarchical approach, as in Chapter 3, is used. The potential patch accessibility subsumes all 

relevant movement details, and barriers alter the movement of individuals. We assume that 

the barrier acts primarily on the potential patch accessibility and that the competition effect 

only intensifies existing effects. Therefore, we focus first on a two-patch-system, using it as a 

reference situation for the multi-patch-system.  

 

The effect of a barrier in a two-patch-landscape  

In the second experiment, a landscape with only two-patches is considered. A start patch is 

fixed on one side of the 34-units-barrier (Fig. 6.4a), while the target patch is placed randomly 

in each landscape. The patch accessibility of the target patch and the distance are noted and 

plotted against each other.  

The resulting rij-dij-curves can be seen in Fig. 6.4b. As a reference, the potential patch 

accessibility function R(d) of a two-patch-landscape without barrier is shown (line). The rij-

dij-values of the simulations with barrier (black and white dots) are either on this line or below 

it. It looks like values are shaping two curves, one close to the line and one below.
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Figure 6.4 The effect of a barrier in the middle of the landscape with two habitat patches on opposite sides of the 

barrier. a) A scheme of the landscape with the funnel indicating which patches are counted as shadowed by the 

barrier. b) The simulated patch accessibility depending on the distance; rij-dij-relationships are shown for patch 

combinations with the target patch being either inside or outside the funnel (black and white dots), and for a 

landscape without a barrier (line).     

 

These two curves can be assigned to two different patch positions: We put a funnel in the 

landscape (Fig. 6.4a), derived by drawing a line from the start patch to the edges of the barrier 

and by elongating this line through the landscape. For a fixed position of the barrier the 

position of the start patch determines the shape of rij the funnel. By this funnel patches can be 

divided into two categories, namely patches which are shadowed by the barrier and patches 

which are outside the barriers shadow. With this method, the two curves in Fig. 6.4b can be 

explained. The flat curve (black dots) consists of the patches in the shadow of the barrier, 

while the other curve similar to the one without barrier (white dots) consists of the less 

effected patches outside the funnel. This analysis shows that the barrier effects mainly patches 

inside the funnel. Therefore, it is more important whether patches are in the shadow of the 

barrier rather than on which side of the barrier they are. 

 

How to include the effect of barriers into the formula for patch accessibility?  

One possibility to include the barrier effect into the formula would be to calculate the 

potential patch accessibility R(d) by using two different parameter sets. While patches outside 

the funnel (regardless of which side of the barrier they are) can be fitted by the R(d)-function 

with the standard parameters of the movement pattern (black dots), a fitting of patches inside 

the funnel R(d)bar (white dots) results in other parameter values, namely a = 0.5755, 

95 



Chapter 6: Prospects 
 

b = 0.0595. The two resulting functions for the potential patch accessibility can be inserted in 

relation (3.6), using for each patch outside the funnel R(d) and for each patch inside the funnel 

R(d)bar.    

To test whether this approach is able to predict the patch accessibility in a landscape with 

barrier, we perform a simulation in a 10-patch-landscape. The start patch is fixed in order to 

calculate the funnel easily, while all other patches are distributed randomly.  

In Fig. 6.5, the resulting simulated vs. calculated plots can be seen for two different positions 

of the start patch (Position 1: start patch in the middle of the barrier (Fig. 6.5a and 6.5c), 

Position 2: start patch close to the end of the barrier (Fig. 6.5b and 6.5d), see also drawing in 

the left upper corner). In Fig. 6.5a and 6.5b, the patch accessibility is calculated by using the 

original R(d) function only with the parameters fitted for the movement pattern without 

barrier. As in Fig. 6.3, values are scattered (Position 1: r2 = 0.85, Position 2: r2 = 0.92). In Fig. 

6.5c and 6.5d, the patch accessibility is calculated by using the two different R(d)-functions, 

R(d) for patches outside the funnel and R(d)bar for patches inside the funnel. Using the two 

functions, values are less scattered and the regression analysis reveals a strong 

correspondence between simulated and calculated values (Position 1: r2 = 0.98, Position 2: 

r2 = 0.97). Therefore, the formula is able to consider landscape heterogeneity due to barriers 

by using two different parameter sets for the potential patch accessibility function. However, 

this is only possible, because a barrier allows to classify patch positions into two categories, 

namely shadowed and not shadowed by the barrier. Landscape heterogeneity that acts more 

gradually allows no separation of matrix types and is therefore not covered by this approach.   
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Figure 6.5 How can the patch accessibility be calculated in a landscape with a barrier? The start patch is either 

positioned in the middle of the barrier (Position 1, Fig. 6.5a and 6.5c) or positioned at the end of the barrier 

(Position 2, Fig. 6.5b and 6.5d).  

6.5a and 6.5b) The patch accessibility is calculated by the original formula using the same potential accessibility 

R(d) for target patches which are shadowed by the barrier (inside the funnel) and  for target patches which are 

outside the funnel. 

6.5c and 6.5d) The patch accessibility is calculated by using different potential accessibilities depending on 

whether the target patch is shadowed by the barrier (R(d)bar) or not (R(d)).   

 

1.3 Heterogeneous matrix: the effect of gradually changing topography 

Another source of matrix heterogeneity is a gradually change of landscape topography as 

given by the relief of a landscape. A prominent example for a species reaction to topography 

are hilltopping butterflies (Shields 1967). Hilltopping is a mate-searching strategy in which 

males and virgin or multiple-mating females seek a topographic summit to meet and mate 

there. Having left the reproduction habitat (patches of host plants), males and virgin females 

ascend to summits and congregate there. After mating, females disperse from the summits in 
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search of patches of host-plants. This behaviour drives animals out of habitat patches and 

therefore facilitates and directs a dispersal-like movement.  

Pe’er et al. (submitted a) used the formula for patch accessibility (Chapter 3) to analyse the 

effect of topography on summit accessibility, i.e. the ascendance of males and virgin females 

to summits. This study was done in cooperation with Guy Pe’er from the Ben Gurion 

University, Israel. The model was developed by Guy Pe’er, the application of the formula on 

the model results was done by myself and the analyses of the overall results were discussed 

together during Guy Pe’er’s stay at the UFZ-Centre for Environmental Research. 

This study differs in some aspects from the investigations done in this thesis so far. Instead of 

focusing on the probability that emigrants reach a specific patch, we focus on the probability 

that individuals reach a specific summit to find mating partners there. Furthermore, the 

simulation model developed for investigating the effect of topography differs considerably 

from the model used for deriving the formula (Chapter 3). Therefore, the following study 

reveals not only whether the formula is able to predict patch (resp. summit) accessibility when 

animals’ movement is influenced by topography. It also can be seen as a test whether and how 

the formula can be applied in situations completely different to the original one. 

To analyse the effect of topography, Pe’er et al. (submitted a) developed an individual- and 

gridbased simulation model, where landscapes with heterogeneous elevation could be 

considered. Since this model differs in some aspects from the one presented in Chapter 3, it is 

explained in the following a little bit more thoroughly. 

 

A model for hilltopping butterflies 

The model consists of two components: a landscape generator for creating virtual, 

topographically heterogeneous, patchy landscapes on a grid basis, and an individual-based 

model for simulating the movements of hilltopping butterflies in these landscapes. The model 

is based on simplified behavioural rules obtained from field observations in the hilltopping 

butterfly Melitaea trivia (Pe'er et al. in press). 

Landscape – We assume that landscape heterogeneity solely results from topography. We use 

landscapes of 200 x 200 unit cell size, including six summits. We place summits with an 

elevation of 10000 units randomly. The elevation of each cell is calculated based on its 

distance to the closest summit. We use a Gaussian function to create ’bell-shaped’ hills. Since 

this leads to even hills without small regional summits or valleys, we provide the possibility 

to add additional landscape variation in elevation. This additional landscape variability in 

elevation is added to each cell independently as a random value with a normal distribution 
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around 0. The magnitude of variability lv is determined by the standard deviation as a 

percentage of summit elevation (e.g. a standard deviation of 4% summit height) and varies as 

parameter for different experiments. To reduce edge effects, we restrict the location of 

summits and release points to the middle 100 x 100 cells. Since this middle area is always 

higher than the outer surrounding, animals which respond to topography cannot be lost to the 

edges. 

Movement rules – As a basic movement without considering topography, individuals move 

through the landscape by choosing randomly one of the eight neighbouring cells at each step. 

Hilltopping behaviour in topographically heterogeneous landscapes is simulated by 

probability: at each step, a butterfly can move upward towards the neighbouring cell with the 

steepest slope with a probability of q, or move randomly with a probability of 1-q.  The 

probability q varies regarding the butterflies response to elevation. In simulation runs with 

individuals showing no response to topography, q is set to 0 (random movement), in 

simulations with individuals showing a very strong response to topography, q is set to 0.6 

(highly directed by topography). In each simulation run, all butterflies have the same level of 

response to topography. Individuals can recognise a summit (the peak) from each of the 8 

neighbouring cells. Upon spotting one butterflies move towards it and stay there.  

Simulation run - In each simulation run, 500 butterflies were released at a random ‘release 

point’ and move through the landscape according the movement rules described above until 

they die or reach a summit. Each butterfly has a maximum life span of 10,000 steps, its 

probability of dying in each step being 0.001. For every parameter value, we repeat the 

simulation runs 200 times, simulating therefore 200 different landscape configurations and 

release points. This experiment was done for different parameter values of q and different 

levels of landscape variability. Summit accessibility was noted as proportion of individuals 

arriving at a summit and the distances between release point and all summits were recorded. 

 

How does animals’ response to topography influences summit accessibility? 

To analyse the effect of the animals’ response to topography q on the formula for patch 

accessibility, we varied the parameter q in a first experiment using values of q = 0 (no 

response to topography), q = 0.1 (slight response to topography), q = 0.3 (strong response to 

topography) and q = 0.6 (very strong response to topography). The resulting simulated values 

for the summit accessibility were plotted against the values predicted by relation (3.6). Since 

the movement behaviour is considerably influenced by the response to topography, for each 

value of the parameter q, the formula’s parameters a and b were fitted first at the 
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corresponding “two-patch” (in this case one-releasepoint-one-summit)-landscape (compare 

Chapter 3, Section 3.1).  

In Fig. 6.6a, the resulting plot for the case that individuals show no response to topography 

(q = 0) can be seen. In this case, the formula is able to predict the simulated values 

qualitatively and quantitatively sufficient (r2 = 0.89). This is not surprising, since animals 

move randomly and therefore the formula should be able to predict the summit accessibility. 

Compared with the result of the regression analysis for uncorrelated random walk of the 

original model (r2 = 0.99, Chapter 3), the results of the regression analysis indicate here, 

however, a quite bad predictive power. This is probably due to the fact that the model used for 

this investigation runs on a grid and therefore measured distances (from point to point) 

diverge from really moved distances (from cell to cell). 
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Figure 6.6 The effect of animals’ response to 

topography on patch accessibility. Simulated vs. 

calculated patch accessibility when different 

degrees of response are assumed: (a) no response 

to topography (q=0), (b) weak response to 

topography (q=0.1), (c) strong response to 

topography (q=0.3). White dots represent values 

belonging to summit closest to the release point 

of one landscape, black dots represent all other 

summits in one landscape.   
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In Fig. 6.6b, values are plotted for the case that individuals show a slight response to 

topography (q = 0.1). Here, we find a rather sigmoidal than linear relationship between 

simulated and calculated values although the predictive power of the formula is quite high 

(r2 = 0.91). The sigmoidal effect becomes strongly intensified when a strong or even a very 

strong response to topography is assumed (q = 0.3, Fig. 6.6c and q = 0.6, Fig. 6.7a). In this 

case, there is not at all a linear relationship, rather a step function with two ranges of almost 

constant values: one with very high accessibility values (rij ≈ 1) and one with very low 

accessibility values (rij ≈ 0). Between the areas with either very high or very low patch 

accessibility values, there is a certain overlap region, where we find for one given calculated 

patch accessibility very low as well as very high values for the simulated patch accessibility. 

Such an overlap can not be covered by any function. The corresponding regression analysis 

shows that the predictive power of the formula is low (r2 = 0.56 for q = 0.3 and r2 = 0.37 for 

q = 0.6). Therefore, the formula is not able to predict the summit accessibility when animals 

exhibit a strong response to topography.  

Although we are not able to provide a formula that can cover all the effect of topography, we 

can explain this effect and give a first clue how the accessibility can be predicted 

nevertheless. In Fig. 6.6, values are marked regarding the summit they belong to: white dots 

indicate that the accessibility value belongs to the summit with the shortest distance to the 

release point, while black dots indicate that the reached summit is one of the summits which 

are further away from the release point. It can be seen that almost all accessibility values 

belonging to the closest summit exhibit an extremely high accessibility (for most cases 

rij = 1), higher than predicted by the formula. In contrast, all accessibility values belonging to 

summits which are further away show a much lower accessibility than predicted (ri j= 0). This 

can be explained by the fact that a strong response to topography leads to a highly directed 

movement where animals follow the slope towards the summit. Such a directed movement 

completely changes the way competition acts between summits. Almost all animals are 

moving to the closest summit, while almost none arrive at another summit. Therefore, for a 

strong response to topography, we do not need a formula for predicting summit accessibility, 

but can estimate the accessibility by the following simple rule:  

 

⎪⎩

⎪
⎨
⎧

≈
summitclosest  for the            1

   summitsother  allfor             0
ijr  
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Back to random movement: how landscape variability effects summit accessibility 

In the second experiment, we want to investigate how an additional variability of landscape 

elevation effects the summit accessibility. In each cell, an additional elevation is added, 

randomly drawn from a distribution determined by the level of additional landscape 

variability lv (see above). We used three different levels of lv, namely 0%, 4% and 10% 

landscape variability and we assumed a strong response to topography (q = 0.6). The resulting 

simulated values for the summit accessibility were plotted against the values calculated with 

relation (3.6). For calculating the accessibility, we estimated the formulas parameter a and b 

again from the one-releasepoint-one summit-landscape.  
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Figure 6.7 The effect of topography in landscapes 

with different levels of variability in landscape 

elevation: (a) no landscape variability (lv = 0%), (b) a 

intermediate level of landscape variability (lv = 4%), 

(c) high level of landscape variability (lv = 10%). 

White dots represent values belonging the summit 

closest to the release point of one landscape, black 

dots represent all other summits in one landscape.  In 

all simulations, we used a strong animals’ response to 

topography (q = 0.6).   
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In Fig 6.7, the results for the three different levels of landscape variability lv can be seen. 

Without additional landscape variability (lv = 0%), the plot results in a step function familiar 

from Fig. 6.6 (r2 = 0.37). By adding a slight landscape variability (lv = 4%), the relationship 

between simulated and calculated values becomes sigmoidal and the predictive power of the 

formula better (r2 = 0.80). For a high level of landscape variability (lv = 10%), we regain a 

linear relationship and the predictive power is high (r2 = 0.94). This shows that the formula 

can predict the summit accessibility even for animals with strong response to topography as 

long as the movement occurs in a landscape with a high level of landscape variability. In such 

a landscape, the movement is less directed despite topography. Therefore, the competition 

between summits acts as it is described by the formula and the formula can predict the 

accessibility. 

The overall study shows that the formula which has been originally developed for predicting 

the accessibility of patches in landscapes with homogeneous matrix can be widened to a 

certain extend to topographically heterogeneous landscape. As long as animals’ response to 

topography is low or landscape variability is high, the formula can be used to predict the 

accessibility of patches (resp. summits). However, the formula cannot be used for predicting 

highly directed movements as they result from a strong response to topography in a landscape 

without additional landscape variability. But even in situations where the formula cannot be 

used for predicting, it can be taken as a reference situation to gain understanding on how 

certain landscape elements change patch (resp. summit) accessibility. In the study presented 

here, the formula helped to understand how topography influences the summit accessibility 

and how this summit accessibility can be predicted when a strong response to topography is 

considered.  

 

1.4 Summary 

We exemplarily included landscape heterogeneity in three different ways: (i) by 

heterogeneously sized patches, (ii) by barriers and (iii) by animals’ response to a gradually 

changing topography. Our results showed that all the three different ways of including 

landscape heterogeneity effect the accessibility of patches. Consequently, this reduces the 

predictive power of the original formula for patch accessibility derived for landscapes were 

heterogeneity only occurs due to patch configuration (relation (3.6)). For most cases, 

however, we regained a better predictive power of the formula by discovering ways of 

including the respective landscape heterogeneity in our calculations. We showed that the 

effect of heterogeneously sized patches can be widely covered by the formula by simply 
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correcting for the distances between patches. The effect of a barrier in the landscape can be 

included in the formula by fitting and using two different potential patch accessibilities 

depending on the position of start patch, target patch and the barrier (Eckhardt et al. 

unpublished data). We found no way to change the formula in that respect that it can cover 

every effect of landscape topography (Pe’er et al. submitted a). Nevertheless, we were able to 

determine the range of parameter values for which the formula is still valid. In the range of 

parameter values were the formula cannot be used as tool for prediction, it still can be applied 

as a reference for the homogeneous case. By comparing the formulas results with the results 

of the simulation model, the effect of topography could be filtered. Therewith, we understood 

how patch accessibility can be roughly predicted in the parameter range where the formula 

cannot be used. We therefore showed that the formula is a useful tool for analysing the three 

situations of landscape heterogeneity simulated here: The formula can be either used in a 

modified way to predict patch accessibility or it can be at least applied for gaining a better 

understanding of the situation investigated. 

In the investigations presented in this chapter, we examined only some specific situations of 

landscape heterogeneity. We still do not know how other elements of landscape heterogeneity 

(for example corridors (Merriam 1991, Gustafson & Gardner 1996, Haddad & Baum 1999, 

Berggren et al. 2002) change patch accessibility. Furthermore, it is an open question how 

patch accessibility reacts when we combine several elements of landscape heterogeneity. And 

lastly, in the approaches presented here, we could just provide solutions that are valid for the 

specific case of landscape heterogeneity investigated. In order to use the formula on a variety 

of heterogeneous landscapes without bothering about the source of it, we need to find ways 

how landscape heterogeneity can be included in the formula for patch accessibility in a more 

general way. These three questions are important subjects to further research.  

 

2 How can the formula be compared with MRR-data? 
So far, we compared the patch accessibility resulting from the formula with the simulation 

results. Doing so, we found that the formula predicted the simulated patch accessibility values 

with high congruence. In discussions with field ecologists, the question aroused whether and 

how the formula’s results can be compared with data from the field, namely Mark-Release-

Recapture (MRR) –data widely collected for butterflies (Dowdeswell et al. 1949, Brakefield 

1982, Wahlberg et al. 2002). MRR-data are collected by catching individuals in the field, 

marking and releasing them to recapture them again in the next time step. With this method, 
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ecologists can determine how far individuals move between time steps (intervals of 

recapture).  

In order to compare such MRR-data with the results of the formula derived here, the field data 

have to fulfil some requirements. As these requirements can be rarely found in MRR-data, I 

will not perform this comparison within this thesis. Nevertheless, I would like to explain what 

has to be taken into account by collecting MRR-data in order to make them comparable with 

the formula. Furthermore, I will give some ideas, how such a comparison can be made, what 

the difficulties are and how they can be solved.  

 

What kind of MRR-data are needed? 

For every MRR-study, it is important that population size and observer capacity are related to 

each other. If the population is too small, we will not get enough data for our analysis. On the 

other hand, if the population size is too large, we will catch each time new individuals, but we 

will not recapture already marked individuals. It is also important for every MRR-study that 

depending on the individuals’ dispersal range, the dimensions of the landscape, especially the 

distances between habitat patches, are in the range needed for the question. 

To be able to compare MRR-data with the formula’s results, two aspects are especially 

important when performing a MRR-study: (i) For a first comparison it would be best to have 

MRR-data from an as homogeneous as possible landscape, i.e. a landscape without barriers or 

directing elements in the matrix and with rather homogeneous patch sizes. (ii) One problem is 

that animals may visit many habitat patches before being recaptured. Therefore, it would be 

important to observe the patches in equal intervals in order to keep the rate of continued 

migration constant. 

MRR-data collected under these circumstances can be used for a comparison with the 

formula. In the following, I will give first ideas how such a comparison can be made. 

 

Comparing MRR-data with the formula: some problems 

MRR-data declare how many of the individuals found at day one in patch i have been 

recaptured at day two in patch j. In contrast to the results of the formula and the simulation 

which give the probability that an emigrant starting at patch i reaches patch j, we have here 

some unknown factors:  

(i) How many of the individuals found at day one in patch i did leave this patch (emigration 

rate)? 
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(ii) How many of the emigrated individuals did directly go to patch j, how many did go via 

patch k to patch j? Or via patch j to patch k or back to patch i (rate of continued migration)? 

Since we cannot choose discretionary small time step, the risk that we miss movements is 

always present. 

(iii) How many of the individuals arriving at patch j can be recaptured by the ecologist 

(catching rate)?  

When we now compare MRR-data with the formulas results, we have to consider that our 

field data bear all these unknown factors, i.e. the emigration rate, the rate of continued 

migration and the catching rate. To make them comparable, we have to know more about the 

effect of these factors. 

I exemplarily show for the catching rate how we can learn more about this factor. I perform a 

small simulation study with a virtual ecologist to demonstrate how the catching rate 

influences the resulting data set. 

 

A virtual ecologist catching butterflies 

Field ecologists doing MRR-studies on butterflies can never assume that they catch all 

individuals of the study area. Therefore, they miss some of the butterflies’ movements 

between patches. How does this gap in data changes our result when we want to compare 

field data with modelling results? To tackle this question, I sent a virtual ecologist into the 

model developed and used in Chapter 3. 

As in Chapter 3, individuals started at a patch i in a randomly generated landscape and moved 

through it with the loop-like movement pattern. The proportion of emigrants starting at patch i 

and arriving at patch j were counted. In contrast to the original simulation model, butterflies 

in this analysis could start again from the former target patch j to search for a new target 

patch. I assumed that emigrating, searching and finding of a new habitat patch happens in one 

time step, the emigration from this new habitat patch (and again the searching and finding) 

happens in the next time step. Once per time step, the virtual ecologist walks through the 

habitat patches and notes all the butterflies he catches. The probability that he catches a 

specific butterfly depends on the catching rate that can be varied in the model. I choose values 

of 90 % (high catching rate), 50 % (intermediate) and 20 % (low catching rate). If the 

ecologist catches a butterfly during one time step, he considers the current patch of the 

butterfly as the butterflies start patch for the next time step. If a butterfly is not caught by the 

ecologist at one time step, the patch where it was caught last is taken by the ecologist as the 

butterfly’s start patch at the next time step. This procedure obviously bears the risk of getting 
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a bias in data. However, if all data where the actual start patch is exactly known were omitted 

data sets would become very small. Therefore, this procedure of assuming the patch where the 

butterfly was found last as start patch is usually practised. On the basis of the ecologist’s 

observations the patch accessibility values were calculated and compared with the simulated 

patch accessibility values based on all data.        

The simulation is done for one landscape with 10 patches, releasing in the beginning 1000 

individuals per patch. 

In Fig. 6.8, the simulated patch accessibility assessed by the ecologist (white dots) with 

different catching rates and the simulated patch accessibility determined by the complete 

knowledge of movements are plotted against the distance (Fig. 8a, 8c, 8e) and against the 

patch accessibility calculated by relation (3.6) (Fig. 8b, 8d, 8f). Data are presented as mean 

over all time steps. 

By comparing the ecologists patch accessibility with the complete patch accessibility, we can 

see the following: 

For small and intermediate distances (respective high and intermediate calculated accessibility 

values), the patch accessibility determined by the ecologist is lower than the patch 

accessibility determined on the basis of all movements. This effect strongly increases with 

decreasing catching rate. Both data sets, the complete data as well as the ecologist’s data 

increase linearly with increasing calculated patch accessibility, but with a flatter slope. 

Therefore, the differences between the ecologist’s results and the real results increase with 

increasing calculated patch accessibility. 

For large distances (and therefore small calculated accessibility values), a few data points of 

the ecologist exceed the real patch accessibility data (this can be especially well seen at the 

simulated values vs. distance plots). This may be due to the fact that the ecologist missed the 

patches which were visited by the butterfly in between the seen start patch and the seen target 

patch. However, this effect is difficult to determine, because also some of the real simulated 

patch accessibility values fitted less good to the calculated patch accessibility data than in 

former figures. This can be explained as follows: At the beginning of the simulation 1000 

individuals were released per start patch. After some time steps, the distribution of individuals 

changes completely depending of the accessibility of a patch: patches with a high accessibility 

may have more than 1000 emigrating individuals, while patches with low accessibility may 

have only a few starting individuals. Furthermore, some individuals die between time steps. 

Therefore, the statistic becomes worse after some time steps, since the sample size decreases. 

 

107 



Chapter 6: Prospects 
 

 

 

1

real exchange 

0 20 40

si
m

ul
at

ed
 p

at
ch

 a
cc

es
si

bi
lit

y 
r ij

0

1

distanc
0 20 40 60

si
m

ul
at

ed
 p

at
ch

 a
cc

es
si

bi
lit

y 
r ij

0

1

0 20 40

si
m

ul
at

ed
 p

at
ch

 a
cc

es
si

bi
lit

y 
r ij

0

1

Catching rate:
90 %

Catching rate:
90 %a b 

 

Figure 6.8 The simulated patc

patch accessibility (Fig. 6.8b, 

seen. White dots indicate that 

(90 % (Fig. 6.8a and 6.8b), 50

exchange events between patch

 

108 
0 1
0

events
seen exchange
events 

60 80 100

e dij
80 100 120 140

calculated patch accessibility rijcalc
0 1

0

1

60 80 100 0 1
0

1

Catching rate:
50 %

Catching rate:
50 %

Catching rate:
20 %

Catching rate:
20 %

 

d c 

e f 

h accessibility versus the distance (Fig. 6.8a, 6.8c, 6.8e) and versus the calculated 

6.8d, 6.8f). Black dots indicate that all exchange events between patches can be 

the ecologist caught only some of the individuals according to the catching rate 

 % (Fig. 6.8c and 6.8d) and 20 % (Fig. 6.8e and 6.8f)) and therefore saw not all 

es.  



Chapter 6: Prospects 

We have seen how the catching rate influences the resulting patch accessibility data. Since the 

most important effect of the catching rate can be clearly identified, we should be able to 

identify these effects in the MRR-data as well. By means of the analysis, we can also estimate 

the strengths of the error due to catching rate. For the case that the catching rate can be 

estimated from field observations (for example Hanski et al. 2000) this intention would be 

even more feasible.   

This analysis gives also a first idea how the catching rate can be included into the formula in 

order to compare it with field data. Since the analysis showed that there is still a linear 

relationship between calculated patch accessibility and the patch accessibility found by the 

ecologist, we can include the catching rate by multiplying a simple prefactor with the original 

formula (relation (3.6)): 

 

ij
MRR

ij rcr *=            (6.3) 

with c being the catching rate. 

With this additional parameter for the catching rate, the formula could be fitted to field data. 

Note, that we assumed one catching rate to be valid for the whole landscape. One could also 

assume that the catching rate depends on the patch (that, for example, the vegetation of one 

patch is more open and therefore the rate of catching higher than in another patch). Then the 

parameter c has to be replaced by a parameter cj. 

This analysis is only a first rough idea of how the formula can be related to appropriate field 

data. Further work is now needed to transfer theory into praxis. 

 

3 Dispersal behaviour and the metapopulation’s patch incidence 
In the model used in Chapter 5, we assessed metapopulation viability of landscapes by 

determining the mean metapopulation lifetime Tm.  In the field, metapopulation viability is 

often determined by using the incidence pattern of patches (Hanski 1994). The patch 

incidence gives the probability of a patch being occupied by a subpopulation. It is an indicator 

of the role a patch plays within the landscape: most important to metapopulation persistence 

are those patches with a high incidence. The patch incidence also indicates the importance of 

a certain connectivity pattern (Frank et al. 2002).  

We have seen in Chapter 5 that the mean metapopulation lifetime Tm of a landscape depends 

strongly on the movement pattern of dispersing animals. We did not investigate whether the 

movement pattern also effects the incidence of patches. Does the patch incidence pattern 

change if we assume different underlying movement patterns? And do patch incidence and 
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the mean metapopulation lifetime react in the same way, allowing to conclude from the 

reaction of one to the reaction of the other? I address this question here exemplarily on two of 

the landscapes used in Chapter 5.  

We obtain the patch incidence by the analysis described in Chapter 5 (Section 2), inserting 

colonisation rates according to movement pattern and landscape in META-X (Frank et al. 

2002) and running the simulation. I used the same four movement patterns as in Chapter 5, 

(loops, uncorrelated random walk, fairly correlated random walk and correlated random walk) 

and the same 10 randomly generated landscapes. The incidence of patches is calculated by 

META-X by dividing the number of years a patch is occupied by the total number of years for 

which the patch is observed.  

By the way of an example, I pick up here two of the 10 landscapes which demonstrate two 

extremes in the way their patch incidence pattern and Tm react to different movement pattern, 

namely Landscape 9 (Chapter 5, Section 3.1) and Landscape 6 (Chapter 5, Section 3.1). In 

Fig. 6.9, we can see the incidence pattern of these landscapes assuming different underlying 

movement patterns. 

The patch incidence pattern of Landscape 9 is the same for different underlying movement 

patterns, only the magnitude of values changes. Nevertheless, as we have seen in Chapter 5 

(Figure xy), this landscape shows an extreme shift regarding its landscape ranks: While 

Landscape 9 is one of the landscapes with the highest mean metapopulation lifetime Tm if we 

assume uncorrelated and correlated random walk, it has one of the lowest Tm if loops or fairly 

correlated random walk are taken as underlying movement pattern. Landscape 6, in contrast, 

shows a strong shift in the patch incidence pattern for different dispersal behaviours. For 

example, Patch 6 of this landscape has a relatively low incidence for correlated random walk, 

but a high incidence for all other movement patterns. As another example, Patch 2 has a 

higher incidence than Patch 1 and Patch 3 if the loops are taken as dispersal behaviour, but a 

lower incidence as those patches for all other movements. Unlike the incidence pattern, the 

landscape rank of Landscape 6 regarding Tm changes only slightly (Chapter 5, Figure xy). 

These examples show that the landscape ranking regarding Tm can stay constant, while the 

patch incidence patterns exhibit large shifts for different movement patterns, or reverse. 

Therefore, it is impossible to draw conclusions from the reaction of the patch incidence to the 

reaction of the mean metapopulation lifetime or the other way around. 
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Figure 6.9 The patch incidence pattern of landscape 9 and landscape 6 (for landscape configuration see chapter 

5, Figure xy) for different dispersal behaviours: while the incidence pattern of landscape 9 does not change 

between the movement patterns, that of landscape 6 varies noticeable. 

 

 

 

Tm and the patch incidence pattern are both used as measure for metapopulation persistence. 

While we already roughly understood how Tm reacts to different landscapes and dispersal 

behaviours (Chapter 5), the reaction of the incidence is not yet clear. Here, further 

investigations are needed to understand the reaction of the patch incidence for different 

movement patterns. This could also help in finding some connection between the reaction of 

Tm and the reaction of the patch incidence in order to be able to conclude from one to the 

other.
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Overview over the central results  

 
 To get an impression about individual movement 

behaviour, we performed a field experiment on the 

movement of the bog fritillary butterfly Proclossiana 

eunomia. 

Butterflies were found to orient towards a habitat patch 

from at least 100 m away. 

Most of the paths of the individual butterflies display a 

dispersal pattern different from random walk 

Different individuals of the same species can exhibit 

different movement patterns. 

 

 
FIELDWORK  ON 
PROCLOSSIANA 

EUNOMIA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To investigate the effect of dispersal in fragmented landscapes on 

patch accessibility (the probability of a certain patch being reached 

by individuals starting at another patch), we developed an individual 

based simulation model for simulating different landscape 

configurations and dispersal behaviours. 

Our model analyses show that competition between patches for 

migrants is an intrinsic consequence of dispersal in multi-patch 

landscapes and has an important effect on patch accessibility. 

As a key result of this thesis, we derived a formula for the patch 

accessibility. This formula is structurally simple, but covers 

important effects such as the competition between patches for 

migrants. It was found to predict the patch accessibility for a variety 

of movement patterns. The formula can be integrated in other 

models and used for further analyses. 

We found fitting functions for the functional relationships between 

the parameters of the formula and several details of the movement 

behaviour. We derived measures for an ecological interpretation of 

these relationships. 

 

  
DEVELOPING A
MODELLING 

FRAMEWORK 
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We incorporated the formula for patch accessibility in a 

stochastic metapopulation model to analyse the effect of 

dispersal behaviour on metapopulation viability.  

We found that ranking orders among landscapes regarding the 

viability of the hosted metapopulation change when different 

dispersal behaviours are assumed. This has implications for 

metapopulation theory, modelling and management. 

The competition between patches for migrants is an important 

factor driving the shift in landscape ranks. 

When analysing the effect of the landscape structure on 

metapopulation viability, the individuals’ dispersal behaviour 

has to be incorporated in an adequate way. 

The parameters of the patch accessibility formula can be used 

for a classification of dispersal behaviours which result in the 

same landscape ranks. 

METAPOPULATION 
DYNAMICS & DISPERSAL 

BEHAVIOUR 

 
 

We analysed the applicability of the formula for the patch accessibility 

to situations with additional sources of landscape heterogeneity. 

We found correction terms with which the formula can be applied to 

landscapes with heterogeneously sized patches or barriers in the 

landscape matrix. 

Given topographical heterogeneity, the formula was found to work in 

the case of weak individuals’ response to topography or moderate 

landscape noise. In all other cases, the formula loses its predictive 

power, but still codes important information on the resulting movement 

patterns. 

We give first ideas how the formula can be compared with field data. 

By comparing incidence pattern and mean lifetime of metapopulations, 

different sensitivities to the dispersal behaviour were found. This 

indicates that incidence patterns are of limited use as measure for 

(stochastic) metapopulation persistence. 

WHERE TO GO 
FROM HERE? 
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Zusammenfassung 

Zusammenfassung 
 

Die Überlebensfähigkeit von Populationen in fragmentierten Landschaften hängt maßgeblich 

von der Fähigkeit der Individuen ab, sich zwischen Habitatfragmenten bewegen zu können. 

Teilhabitate, in denen eine Population ausgestorben ist, können durch die Ausbreitung von 

Individuen wieder besiedelt werden. Dadurch kann eine Art regional überleben, obwohl die 

einzelnen Teilpopulationen einem hohen Aussterberisiko ausgesetzt sind. Das Konzept, dass 

verschiedene, vom Aussterben bedrohte Teilpopulationen durch gegenseitige 

Wiederbesiedlung eine überlebensfähige Gesamtpopulation bilden, nennt man 

Metapopulationskonzept.  

Für die Überlebensfähigkeit einer Metapopulation ist es nicht nur wichtig, dass ein 

migrierendes Individuum irgendein neues Habitat erreicht, sondern auch welches Habitat es 

erreicht. Um es aus der Habitat-Perspektive zu formulieren: es ist entscheidend, mit welcher 

Wahrscheinlichkeit ein bestimmtes Habitat j von einem Emigranten erreicht wird, der von 

einem anderen Habitat i startet (Erreichbarkeit eines Habitates). Ob ein Individuum ein 

bestimmtes Habitat erreicht, hängt von der Landschaftsstruktur und dem 

Ausbreitungsverhalten des Individuums ab. Letzteres ist besonders wichtig bei Tieren, die 

sich aktiv durch die Matrix, den Raum zwischen den Habitaten, bewegen können. Den Weg, 

den ein Tier durch die Matrix nimmt, kann von einer Reihe von Faktoren abhängen: von 

Landschaftselementen, welche die Wanderug der Tiere durch die Landschaft erleichtern 

(Korridore) oder aufhalten (Barrieren), von der Wahrnehmung des Tieres, die es ihm 

ermöglicht, sich gezielt in Richtung des Habitates zu bewegen (Wahrnehmungshorizont), oder 

auch von einer dem Tier eigenen Suchstrategie, mit der es die Umgebung systematisch nach 

Habitaten absucht. Ein solches aktives Ausbreitungsverhalten kann die Erreichbarkeit der 

Habitate und damit die Überlebensfähigkeit der Metapopulation deutlich beeinflussen. 

 

Diese Arbeit beschäftigt sich damit, wie sich das Ausbreitungsverhaltens von Individuen auf 

die Überlebensfähigkeit von Metapopulationen auswirkt. Ein großes Problem dabei besteht 

darin, wie man diesen Effekt auf einfache Weise analysieren kann. Um die Konsequenzen von 

Ausbreitung auf die Überlebensfähigkeit einer Metapopulation bestimmen zu können, werden 

häufig Modelle verwendet. Damit solche Modelle verständlich bleiben, werden die Prozesse, 

welche die Metapopulation beeinflussen, möglichst einfach dargestellt. Ausbreitung wird in 

der Regel als zufällige, diffussionartige Bewegung angenommen. Systematische 

Suchstrategien oder die Existenz eines Wahrnehmungshorizontes werden nicht oder nur grob 
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berücksichtigt. Deshalb wird in dieser Arbeit mit Hilfe eines Simulationsmodells ein 

Modellierrahmen entwickelt, mit dem das individuelle Ausbreitungsverhalten detailliert 

genug, aber doch strukturell einfach in Modellen dargestellt werden kann. Dieser 

Modellierrahmen wird dann in ein existierendes Metapopulationsmodell eingesetzt, um zu 

analysieren, wie das Ausbreitungsverhalten auf die Überlebensfähigkeit der Metapopulation 

wirkt. Der Entwicklung des Modellierrahmens ist eine Freilanduntersuchung vorangestellt, 

die anhand einer Fallstudie zeigt, wie sich Tiere in der Matrix bewegen. 

 

Die Arbeit besteht aus 3 Teilen, die unabhängig voneinander lesbar sind. Im ersten Teil wird 

untersucht, wie sich Tiere in der Matrix bewegen. Der Randring-Perlmuttfalter, Proclossiana 

eunomia, wird als Beispiel herangezogen, um nicht nur zu zeigen, wie sich dieser 

Schmetterling ausbreitet, sondern auch, wie man das Ausbreitungsverhalten von Individuen 

messen und analysieren kann. Dafür wurden Individuen in der Matrix freigelassen und ihr 

Weg auf der Suche nach einem Habitat festgehalten. Zwei Fragen standen hierbei im 

Vordergrund: (i) Wie groß ist die Distanz, von der aus P. eunomia Habitate entdecken kann? 

(ii) Bewegt sich P. eunomia zufällig in der Matrix oder benutzt der Schmetterling eine 

systematische Suchstrategie? Die zweite Frage wurde analysiert, in dem das beobachtete 

Verhalten mit einem Modell für “correlated random walk“ (korreliertem Zufallslauf) 

verglichen wurde. Die Ergebnisse zeigen, dass P. eunomia sich in der Matrix aus einer 

Distanz von mindestens 100 m in Richtung des Habitates orientieren konnte. Einige Pfade der 

Individuen konnten mit dem “correlated random walk“-Modell beschrieben werden, während 

die meisten nicht damit beschrieben werden können. Das zeigt, dass sich verschiedene 

Individuen einer Art unterschiedlich ausbreiten können. Da Wahrnehmungshorizont und 

Ausbreitungsstrategie die Erreichbarkeit von Habitaten und damit die Überlebensfähigkeit 

von Metapopulation beeinflussen können, ist es wichtig, dass man das Ausbreitungsverhalten 

auch für andere Arten näher untersucht und in Metapopulationmodellen detaillierter 

berücksichtigt. 

 

Der zweite Teil handelt davon, wie der Effekt von individuellem Ausbreitungsverhalten in 

Metapopulationsmodellen analysiert werden kann. Im ersten Kapitel des Teils wird die Frage 

behandelt, ob und wie die Wechselwirkung von individuellem Ausbreitungsverhalten und 

Landschaftsstruktur auf die Erreichbarkeit von Habitaten in eine einfache Formel gefasst 

werden kann. Um den Effekt dieser beiden Faktoren auf die Erreichbarkeit untersuchen zu 

können, wurde ein Simulationsmodell entwickelt. Die Modellanalyse zeigte, dass es einen 
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wichtig intrinsischen Effekt der Wechselwirkung zwischen Ausbreitungsverhalten und 

Landschaftsstruktur auf die Erreichbarkeit gibt: wenn Migranten im ersten Habitat bleiben, 

das sie erreichen, konkurrieren die Habitate effektiv um Migranten. Außerdem gelang es uns, 

eine Formel für die Erreichbarkeit zu entwickeln. Diese Formel ist sehr einfach, kann aber 

dennoch die wichtigen Effekte aus dem Wechselspiel zwischen Ausbreitungsverhalten und 

Landschaftsstruktur, wie die Konkurrenz um Migranten, abdecken. Dies geschieht dadurch, 

dass sie nicht nur die Distanzen zwischen Starthabitat und Zielhabitat mit einbezieht, sondern 

auch die Distanzen zwischen dem Starthabitat und allen anderen Habitaten in der Landschaft. 

Die Formel zeigt eine hohe Vorhersagekraft für verschiedene Bewegungsmuster (Random 

walk mit verschiedenen Korrelationsgraden, Archimedische Spiralen, Schleifen) in jeder 

Landschaft mit homogener Matrix. Die Formel kann für verschiedene Zwecke genutzt 

werden: als Denkhilfe, um strukturelle Einsichten in die Konsequenzen des 

Ausbreitungsverhaltens zu bekommen, als Ausbreitungsfunktion in Metapopulationsmodellen 

zu weiterführenden Analysen und als Werkzeug zur Vorhersage von Austauschraten zwischen 

Habitaten im Naturschutz. 

Im zweiten Kapitel des zweiten Teils wird der Effekt von verschiedenen 

Bewegungsparametern auf die Formel untersucht. Das Verhältnis zwischen den aggregierten 

Parametern der Formel und den relevanten Details des Ausbreitungsverhaltens wird 

analysiert. Mit Hilfe des individuenbasierten Simulationsmodells wurden Fitfunktionen für 

den funktionellen Zusammenhang zwischen den Formelparametern und verschiedenen Details 

des Ausbreitungsverhaltens entwickelt. Zusätzlich wird eine ökologische Interpretation dieses  

Zusammenhangs gegeben. Die Untersuchung beschäftigte sich beispielhaft mit dem 

schleifenförmigen Ausbreitungsverhalten, das in der Natur an einigen Schmetterlingen 

beobachtet wurde. Der Ansatz, wie man Ausbreitungsverhalten in Ausbreitungsfunktionen 

integrieren kann ist jedoch generell und kann für eine große Bandbreite an 

Bewegungsmustern verwendet werden. Mit Hilfe solcher Untersuchungen kann der Bereich, 

in dem sich die Parameter einer Ausbreitungsfunktion für eine Art bewegen, besser 

abgeschätzt werden.  

 

Im dritten Teil wird die im zweiten Teil entwickelte Formel genutzt, um die Auswirkungen 

von Verhalten auf die Überlebensfähigkeit von Metapopulation zu untersuchen. Mit Hilfe von 

Metapopulationsmodellen können wir beurteilen, in welchem Maße eine Landschaft eine 

überlebensfähige Metapopulation tragen kann. Das Ausbreitungsverhalten von Tieren wird in 

solchen Modellen meist als zufällig angenommen. Ein artspezifisches systematisches 
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Ausbreitungsverhalten wird oft nicht berücksichtigt, obwohl es möglich ist, dass solch ein 

systematisches Ausbreitungverhalten die Überlebensfähigkeit einer Metapopulation deutlich 

ändert. Wir untersuchten, ob das Ausbreitungsverhalten die Beurteilung von Landschaften 

dahingehend beeinflusst, dass es die Rangfolgen, nach denen Landschaften bezüglich ihrer 

Fähigkeit eine lebensfähige Metapopulation zu tragen geordnet sind, verändert. Um die 

Überlebensfähigkeit von Metapopulationen in verschiedenen Landschaften für verschiedene 

Suchstrategien ermitteln und vergleichen zu können, nutzten wir META-X, eine bereits 

bestehende Software zur Metapopulationsanalyse. Um verschiedene Bewegungsmuster in 

META-X einzufügen, wurde ein Submodell benutzt, das die in Part II entwickelte Formel 

nutzt. Indem für jedes Bewegungsmuster die resultierende Mittlere Lebensdauer für 

verschiedene Landschaften verglichen wurde, erhielten wir für jedes Bewegungsmuster 

Landschaftsrangfolgen. Die Ergebnisse zeigen, dass sich diese Rangfolgen stark zwischen den 

einzelnen Bewegungsmustern unterscheiden. Diese Verschiebung zwischen den Rangfolgen 

ist vor allem durch die Konkurrenz zwischen den Habitaten um Migranten bedingt. An 

systematisch angelegten Landschaften mit wenigen Habitaten konnten wir sehen, welche 

Mechanismen wirken. Die Studie zeigt, dass das Verhalten seinen deutlichen Einfluß auf die 

Landschaftsrangfolgen hat. Deshalb sollte es in Metapopulationmodellen zur 

Landschaftsbewertung detailliert genug berücksichtigt werden, um diesen Effekt 

widerspiegeln zu können. 

 

Die Doktorarbeit endet mit einem Kapitel, das nicht nur mögliche Wege für weitere 

Forschungsarbeit darstellt, sondern auch erste Schritte auf diesen Wegen geht. Es werden 

erste weiterführende Ergebnisse dargestellt. Da die vorgestellten Themen jedoch zu komplex 

sind, um eingehend innerhalb der Doktorarbeit behandelt zu werden, ist hier weiter Forschung 

nötig. 

In diesem Kapitel werden verschiedene Möglichkeiten dargestellt, wie zusätzliche 

Landschaftsheterogenität mit der in Part II entwickelten Formel untersucht werden kann. Der 

Effekt von heterogenen Habitatgrößen und von heterogenen Matrixstrukturen wie Barrieren 

und eine sich graduell verändernde Topographie auf die Erreichbarkeit von Habitaten wird 

untersucht. 

Außerdem wird diskutiert, wie die Formel für die Erreichbarkeit mit Felddaten verglichen 

werden kann. Im letzten Absatz des Kapitels wird in Frage gestellt, ob das Besetzungsmuster 

von Habitaten ein guter Indikator für Veränderungen in den Landschaftsrangordnungen ist.  
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