
Helmholtz Zentrum für  
Umweltforschung – UFZ

Permoserstraße 15 
04318 Leipzig
www.ufz.de

NICHT ZUM VERKAUF BESTIMMT.

D
IS

S
ER

TA
TI

O
N

 1
|2

01
8

ISSN 1860-0387

H
el

m
ho

ltz
 Z

en
tr

um
 fü

r 
U

m
w

el
tf

or
sc

hu
ng

 –
 U

FZ
D

ep
ar

tm
en

t o
f E

co
lo

gi
ca

l M
od

el
lin

g

Se
ba

st
ia

n 
Le

hm
an

n 
| 

Li
nk

in
g 

pa
tt

er
n 

an
d 

pr
oc

es
se

s 
in

 n
at

ur
al

 fo
re

st
s:

 in
no

va
tiv

e 
m

od
el

lin
g 

...
D

IS
SE

RT
AT

IO
N

 1
|2

01
8

Sebastian Lehmann

Linking pattern and processes in natural 
forests: innovative modelling methods 
across scales

1|2018



Linking pattern and
processes in natural forests:

innovative modelling methods across scales

Sebastian Lehmann

A cumulative thesis submitted for the degree of
Doctor of Natural Sciences (Dr.rer.nat.)

University of Osnabrück
Institute of Environmental Sciences

Department of Mathematics/Computer Science

Leipzig, July 2017



Linking pattern and processes in natural forests:
innovative modelling methods across scales

PhD dissertation
Sebastian Lehmann (sebastian.lehmann@ufz.de)
Helmholtz Centre for Environmental Research - UFZ
Department of Ecological Modelling
Leipzig, Germany

University of Osnabrück
Department of Mathematics/Computer Science
July 2017

Supervisor
Prof. Dr. Andreas Huth (UFZ Leipzig, University of Osnabrück)
Dr. Thorsten Wiegand (UFZ Leipzig)

Publications
Lehmann, S., Huth, A. (2016). “Fast calibration of a dynamic vegetation model with
minimum observation data”. Ecological Modelling, 301, 98-105.

May, F., Wiegand, T., Lehmann, S., Huth, A. (2016). “Do abundance distributions and
species aggregation correctly predict macroecological biodiversity patterns in tropical
forests?”. Global Ecology and Biogeography, 25(5), 575-585.

Brinck, K., Fischer, R., Groeneveld, J., Lehmann, S., De Paula, M. D., Pütz, S.,
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Abstract

The dynamics of ecosystems are often analysed by using the concept of processes. It
is essential to explore relations across scales and understand the linkage of pattern and
processes (e.g. using ecosystem modelling), because the scale at which an ecological
process acts may differ from the scale at which the process generates patterns. In this
thesis natural forest are the focus of investigation as they provide important services
like conservation of biodiversity and carbon storage. In the first chapter we give an
introduction on the different parts of a scientific inference framework in which this
thesis is embedded. We emphasize the importance of innovative modelling methods and
present in the following chapters three modelling studies in the context of forests.

In the first study we present an inverse modelling framework based on stochastic
search methods. This framework allows the fast calibration and uncertainty assessment
of vegetation models. The framework is tested using a dynamic forest model in a virtual,
single species and multiple species experiment. The developed methods were able to
provide reliable parameter and uncertainty estimates using 10 times less computational
resources than comparable methods based on Bayesian techniques.

In the second study we developed a neutral model of tropical rain forest including
size structure and neighbourhood competition. The model was able to explain the main
dynamics of six spatial and non-spatial biodiversity patterns using a single parameter
set. This includes the species abundance distribution, the species-area relationship and
the individual tree size distribution. A global sensitivity analysis revealed a highly
correlative structure between mortality, dispersal and migration, which points to possible
model enhancements.

In the third study we focused on the quantification of global deforestation, as this is
the main driver for biodiversity loss and species extinction. We present results regarding
the structure and state of forest fragments on a global scale and in three different forest
biomes using an innovative cluster detection algorithm, unique data compression meth-
ods and high-resolution (30 m) forest cover maps. The analysis showed that the forests
worldwide contain 409 million forest fragments and 36% of forested area lies within
100 m of forest edges. Additionally, the fragment size and shape index frequency distri-
butions have a similar shape across the forest biomes, which can be described through
power-laws.

This thesis demonstrates that complex questions regarding the understanding of nat-
ural forests can be answered using innovative modelling methods in conjunction with
recent advances in available observation data. The developed methods are formulated
in such a general way that they can serve as a basis to test future hypotheses about
ecological communities and vegetation dynamics.
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Chapter 1

Introduction

Linking pattern and processes is a fundamental method for scientific inference and also
used in ecology to understand which mechanisms shape our ecological environment (Rick-
lefs and Miller, 1990; Grimm et al., 1996; Hilborn and Mangel, 1997). This approach
can be better understood when viewed as a multi-step framework with separated but
connected tasks. In the following, we describe different steps of this framework briefly
in the context of ecology.

Observation and data acquisition

Depending on the scale of the observation different techniques are used, where varying
difficulties can emerge. On a local scale in classical field ecology, observation is usually
carried out with the help of measurement teams. For example, the CTFS-ForestGEO
is a worldwide network of over 60 forest inventories with a focus on tropical regions
based on sample plots, where a plot is typically between 25 ha and 50 ha in size. In each
plot, all free-standing trees with a trunk-diameter (at breast height) of at least 1 cm are
identified to its species, tagged and measured every 5 years (Anderson-Teixeira et al.,
2015). The CTFS-ForestGEO network thus monitors the growth and survival of about
6 million trees and 10 000 species.

As field observations are the basis of ecology, the number of variables requiring obser-
vation increases (McRoberts and Tomppo, 2007) and thereby the complexity, cost and
time which is necessary to conduct the inventories. With recent technological improve-
ments in earth observation systems large amounts of remote sensing data are publicity
available. For example: NOAA/NASA pathfinder 8-km land data set (Smith et al.,
1997), US Geological Survey (Clark et al., 2007), ALOS Palsar (Rosenqvist et al., 2007),
NASA reverb (Cechini et al., 2011) and ESA Sentinel (Veefkind et al., 2012). The avail-
ability of such data reduces costs and increases precision on temporal and spatial scales.
Recent advances in remote sensing make it even possible to estimate various soil prop-
erties using hyper spectral data (Ge et al., 2011). Although processing and analysing
high resolution remote sensing data requires large amounts of computational resources,
sometimes only available to larger institutes with high performance clusters, recent re-
search accounts for the facilities by combining data from field plots with remote sensing
data to draw inference (Rödig et al., 2017).
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Chapter 1 Introduction

Pattern extraction

The extraction of a pattern is some form of pre-procession and-or aggregation of the raw
observational data in a form that is understandable and interpretable (Wiegand et al.,
2003; Grimm et al., 1996, 2005). The perfect pattern represents a kind of repetitive
structure across multiple observations. Repetition implies that some form of predic-
tion is possible (MacArthur, 1972). Especially power-laws attract scientific interest, as
their scale invariance1 exposes an universality which certain mechanisms can generate
(Mitzenmacher, 2004). Key examples for patterns in the field of ecology are for ex-
ample, the hollow-curved relative species abundance distribution (RAD) (Fisher et al.,
1943; Preston, 1962; Hubbell, 2001) on a specific trophic2 level and the species-area re-
lationship (SAR) which can be described through a power-law on intermediate scales
(Arrhenius, 1921; Preston, 1962) or a tri-phase curve over continental scales (Rosenzweig,
1995; Rosindell and Cornell, 2007). The search for a pattern is supported by ecological
hypotheses of relationships one expects under the current theoretical understanding of
the ecological system. A pattern thus exposes itself some kind of “law” at minimum as
a “data trend”.

Ecosystem modelling

An ecological model is an abstract representation of an ecological system through the
description of interacting processes in a preferable mechanistic or process-based way.
Its spatial scale can vary from the individual level of a plant cell to a global scale.
A model is usually formulated quantitatively in terms of a mathematical formalism
including equations, state variables and their relationship through a set of rules. Models
which are analytically tractable have the desirable property of mathematical elegance
and high explanatory power. Most ecological models are only analytically tractable to a
certain extend due to their process complexity (Wissel, 1992). As complexity increases,
modelling approaches typically shift from analytical to simulation based (Acevedo, 2012).

A simulation model includes numerical techniques to solve problems for which analyt-
ical solutions are impractical or impossible. A simulation model can be deterministic,
where the modelling outcome is fully determined by its parameters and initial state. Or
stochastic, where the outcome possesses inherent randomness (Tangirala, 2014). For a
simulation model the formal description is transfered into a computer language. This
poses challenges and opportunities. It can be difficult to find suitable algorithms in terms
of numerical stability and coding complexity to solve the problem at hand (e.g. partial
differential equation). This also includes questions for the practicability of a numerical
algorithm in terms of computational resources (Süli and Mayers, 2003). Often the best
compromise has to be found between the accurateness of a numerical solution and the
computational resources needed for this solution (Press et al., 1982). This compromise
also depends on the scientific question, its temporal and spatial scales and includes the

1Scale invariance is related to the concept of self-similarity, where features of objects do not change
with scale.

2The trophic level of an organism is its position within the food chain.
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1.1 The need of innovative modelling methods

careful identification of modelling parts where major computing time is spend and which
parts need an accurate numerical representation to minimize the bias on the modelling
output.

Experiments

Experimentation in the context of ecology denotes the task of varying system processes
in such a degree that one is able to accept or decline a priori stated hypotheses about
the systems behaviour and mechanistic relationships between processes. For a field
ecologist an experiment is carried out under well-defined conditions (e.g. experimental
drought experiments in forests (Davidson et al., 2004; Nepstad et al., 2007)). Important
field experiments include the evidence of faunistic equilibrium (Simberloff and Wilson,
1969); the Park Grass experiment (Silvertown et al., 2006) as a resource for questions
of biodiversity and natural selection; grassland biodiversity experiments as the JENA
Experiment (Weigelt et al., 2010) or the diversity/productivity experiments by Tilman
and Downing (1994); Tilman et al. (2001) and the functional trait experiments by Kraft
and Ackerly (2010). The execution of field experiments is costly in human and technical
resources. Either because it is difficult to observe a system in isolation without external
influences, or depending on the temporal and spatial scale of the process under view, it
may take considerable efforts to observe an ecological system as a whole.

There is also the possibility to perform experiments based on simulation models.
This includes the extensive analysis of the models behaviour in terms of parameter
sensitivity, process interaction and comparison of the model output with existing field
observations. Additionally, it is possible to investigate the dynamics of experiments on
much larger time frames (hundreds to thousand of years) or test the systems response
under scenarios which are either impossible or impractical in reality (e.g. IPCC scenarios
of climate change, Pachauri et al. (2015)). Experiments based on computer simulations
can thus either reveal how ecological processes interact, which processes are represented
too simplistic in the model or by improving our understanding of processes which can not
be observed directly. Computer simulations can therefore complement field experiments
for increasing insights about ecological systems.

1.1 The need of innovative modelling methods
As available computer resources roughly doubles each year (Moore et al., 1998), there
is an increasing effort in solving complex modelling problems using advanced methods
based on computer programs. Examples include the combination of remote sensing
and local observations to derive biomass maps (Saatchi et al., 2007; Avitabile et al.,
2016) as part of “pattern extraction” or to apply vegetation models on spatial scales
above plot size (e.g. global vegetation models, Sitch et al. (2003)) as part of “ecosystem
modelling” or the structural analysis of ecosystem models under different scenarios as
part of “experiments” (e.g. evaluation of vegetation models under climate scenarios,
Cramer et al. (2001)).

3



Chapter 1 Introduction

With increasing amount of available computer resources answers are usually not re-
trieved faster, but one seeks answers to more complex questions. It is therefore essential
to carefully design methods which use computing resources effectively or improve upon
existing methods by relaxing assumptions and dependencies. The basis of this thesis are
thus a synthesising collection of innovative modelling methods or the establishment and
adaptation of methods from fields other than ecology. Each single chapter of this thesis
covers in detail a part of the inference framework, where the developed methods are used
to answer specific questions in the context of forest ecosystems. In the following we will
present the background to the topics that were analysed in this thesis (Section 1.1.1 -
Section 1.1.3).

1.1.1 Inverse modelling
Inverse modelling can be described as the task of finding the casual factors that produced
a certain set of observations. Confronting a model with data is done through several
components. This includes: model calibration, identifiability, uncertainty and sensitivity
analysis (Tarantola, 2005). Model calibration aims to estimate unknown model parame-
ters in a way that the model output matches reference or observation data (Brown, 1994).
It is therefore an indirect modelling approach to quantify processes through parameters.
This serves different purposes in ecology modelling. At first, it is an important but not
necessary model validation and evaluation strategy to test the models plausibility. If the
calibrated model is able to predict the observation data under a specified error tolerance
level, one assumes that the internal model processes are a reasonable approximation
of the underlying processes that generated the observation data. This approach can
further be used as a hypothesis testing framework, where conflicting theories (models)
are discriminated by their ability to reproduce the observations (Wiegand et al., 2003;
Grimm et al., 2005). Additionally, an existing and validated model can be calibrated
against specific local environmental conditions to serve as a starting point for the actual
modelling experiments.

The challenge of calibration depends on the model complexity. For models, where
a direct mathematical formulation is available, calibration is usually done through a
statistical fit using standard software like R, SPSS, Matlab or Mathematica. This is
vastly different for simulation based computer models, where standard software does
not provide a useful and easy to use framework. Until recently, computer models in
ecology were often manually calibrated. That means important parameters are changed
by hand and tested whether the model is able to better explain the observations than
before the parameter adjustment. This is a highly time consuming and difficult task,
as modern simulation models include often nonlinear and interactive processes. The
change of the dynamic of one process has direct consequences on the dynamics of other
processes. Manual calibration is therefore tiresome and only an option in the absence of
other available methods.

Recently, Bayesian techniques entered the field of inverse modelling in ecology (El-
lison, 2004; McCarthy, 2007). In Bayesian statistics parameter values are viewed as
probability distributions instead of the frequentist view of specific but uncertain true

4



1.1 The need of innovative modelling methods

parameter values. With assumptions about the models structure and observation errors
a (approximative) likelihood function is constructed. The likelihood of a model using a
specific parameter(-set) is equal to the probability of the observation given the parame-
ters (Beaumont et al., 2002; Tarantola, 2005). In combination with a priori assumptions
about the distribution of parameters one calculates, through the use of Bayes’ theo-
rem, the posterior model distribution. The posterior is proportional to the likelihood
multiplied by the prior (Lee, 2012).

As the calculation of the necessary normalization factor for the posterior distribution
is difficult in practise, the posterior is approximated through sampling with Markov-
Chain-Monte-Carlo methods (MCMC). The desired posterior is then the equilibrium
distribution of the Markov chain (Andrieu et al., 2003). A standard MCMC method is
the Metropolis-Hastings algorithm, where a random walk is generated using a proposal
density and a method to reject some of the proposed moves (Hastings, 1970). This con-
cept has been successfully applied for the automatic model calibration and uncertainty
assessment for forest models (Van Oijen et al., 2005b; Hartig et al., 2014). Depending on
the dimension of the parameter space and process correlations through model complex-
ity, MCMC methods need large amounts of computational resources (105 − 106 model
evaluations). That means a modern forest model like FORMIND (Köhler and Huth,
1998; Fischer et al., 2016) needs months for full calibration. Possible parallelization is
also limited by the sequential construction characteristic of a Markov chain. Because
of this practical limitations of the MCMC methods, there is a need for methods which
allow fast calibration of dynamic vegetation models by reducing the amount of model
evaluations. This framework should be applicable to different models and multiple types
of observation data.

We show that the task of calibration can be accomplished efficiently by stochastic
search methods. Parameter and predictive uncertainty can then be assessed through the
asymptotic normality of the likelihood using Taylor expansion around the parameter
estimate (Hogg and Craig, 1995).

1.1.2 Modelling biodiversity and neutral theory
Understanding the mechanisms and processes that determine the patterns of biodiversity
is a fundamental question in ecology. A potential approach to explain species diversity
within species rich communities is provided by neutral theory, where dispersal and demo-
graphic stochasticity are the main mechanisms which shape the structure of a community
(Hubbell, 2001). Neutrality means that at a given trophic level species are equivalent
in birth, death, dispersal and speciation rates. Differences between species are thus ir-
relevant to their success. Neutral theory does not claim, that the assumption are per se
true, but to analyse the consequences about these assumptions (Rosindell et al., 2011).

Initial studies using spatially implicit neutral models focused on the explanation of
the species abundance distribution (SAD) (McGill et al., 2007; Volkov et al., 2003, 2005;
Alonso and McKane, 2004; He, 2005; Etienne and Alonso, 2005, 2007; Etienne et al.,
2007b; Rosindell et al., 2010). The SAD is a key pattern of diversity, where the number of
species with a certain number of individuals is counted and aggregated into classes (his-
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Chapter 1 Introduction

torically to the power of two, Preston (1962)). The lasting debate about which and how
mechanisms should be included into neutral models to explain the SAD demonstrated,
that this pattern alone cannot be used to discriminate between different biological as-
sumptions. Later spatially explicit models were able to reproduce beta-diversity patterns
(Condit et al., 2002) and species-area relationships (SAR) (Rosindell and Cornell, 2007,
2009; O’Dwyer and Green, 2010). The theoretical framework was recently extended by
the incorporation of size structure in an analytically tractable manner (O’Dwyer et al.,
2009) but without including interactions through neighbourhood competition.

In addition to the analytical analysis of neutral models, spatially explicit simulation
models were used to understand which mechanisms explain the maintenance of species
diversity. To test for some ecological hypotheses, Alonso and Sole (2000) used an indi-
vidual based niche model of diverse tropical forest. The model included size structure, as
demographic process can vary with size (Peters, 1986), and neighbourhood competition.
Chave et al. (2002) used a neutral model against a niche-based trade-off model to test the
effect of density dependence on spatial patterns and species richness. Both approaches
worked on a lattice and were not tested extensively against field observations.

The capability of a model to simultaneously explain several ecological patterns at
once (with a single parameter set) helps discriminating contrasting models and theories.
It is also an important indicator of possible misspecification of mechanisms, as a sin-
gle pattern only provides limited information about the underlying ecological processes
(Wiegand et al., 2003; Grimm et al., 2005). Recently, this has been tested for a neu-
tral model, where trees are placed continuously in a local plot and mortality increases
through neighbourhood competition (May et al., 2015). This approach was able to ex-
plain several spatial and non-spatial patterns of diversity but was not able to explain
the species-area relationship and the distance decay of similarity simultaneously (May
et al., 2015, 2016).

Within the framework of neutral theory, two aspects denote important extensions of
the current setting. To reflect the complex nonlinear interactions present in forests, the
inclusion of size structure should be linked through competition with other processes.
This rises the question what new patterns can be explained and if such an approach
improves upon previous limits of simultaneous pattern prediction. The possibility to
answer this question depends also on the availability of advanced calibration methods
previously discussed. To disentangle process interactions and nonlinearities, it is im-
portant to understand the global sensitivity of model parameters and processes on each
specific pattern. A comprehensive task which has not been done so far for neutral mod-
els. The availability of methods for global sensitivity analysis (using a limited amount
of model evaluations, Morris (1991)) makes such a systematic analysis feasible.

1.1.3 The state of global deforestation
Global forests cover about 30% of total land surface (Bonan, 2008; Hansen et al., 2010).
Estimates of global forest area from remote sensing data range from 3.5 billion ha
(Hansen et al., 2010) to 4 billion ha (FAO, 2015). Forests provide important ecosystem
services such as carbon storage, regulation of the hydraulic cycle and forest products

6



1.2 Main objectives of the thesis

such as timber (Bonan, 2008). Global forests are classified in different biomes3 depend-
ing on their environmental conditions (Olson et al., 2001b). The tropical forest biome
plays an important role in forest research, as it represents the largest terrestrial pool
of global carbon budget (Bonan, 2008; Baccini et al., 2012) and accounts for 50% of
the carbon stored in the global vegetation (Houghton et al., 2009; Pan et al., 2011).
Moreover tropical forests have a special role in the conservation of biodiversity. They
are home of the majority of species of plants and animals on earth (Wilson et al., 1988;
Raven, 1988). For example, it has been estimated that there exist more than 53 000 tree
species in the tropics (Slik et al., 2015).

Deforestation and fragmentation of forests by human activities is the main driver for
biodiversity loss and species extinction (Pereira et al., 2010; Rands et al., 2010). Frag-
mentation leads to altered microclimate conditions in forest edges (Ewers and Banks-
Leite, 2013), such as higher light incidence, reduced humidity and higher temperatures.
This results in increased tree mortality and subsequently lower above-ground carbon
stocks in edges (Laurance et al., 2002; Harper et al., 2005; Broadbent et al., 2008; Lau-
rance et al., 2011). The alteration of forest structure has not only an impact on global
carbon budgets, it also affects habitat quality as a result of changing forest dynamics
within forest edges (Groeneveld et al., 2009; Pütz et al., 2014). Thus, quantifying the
state of forest fragmentation is an important task for monitoring the progress of global
deforestation and change in habitat conditions.

Previous studies aimed at the analysis of forest fragmentation were conducted on low-
resolution remote sensing data (Wade et al., 2003; Riitters et al., 2000). Studies using
high-resolution forest cover maps evaluated only local structural quantities of forest
fragments using moving window methods (Riitters et al., 2016), nearest neighbourhood
methods (Haddad et al., 2015) or were conducted on a regional scale (Pütz et al., 2014).

Improving upon these studies requires a deeper insight into the global distribution of
forest fragment quantities. This can be archived using cluster analysis and classification
methods, where a forest fragment is seen as a single independent cluster. The avail-
ability of global high resolution (30 m) forest cover maps (Hansen et al., 2013; Sexton
et al., 2013) makes this a difficult task in terms of available computing resources. To
make such an analysis feasible, existing algorithms for cluster analysis like the Hoshen-
Kopelman algorithm (Hoshen and Kopelman, 1976b) have to be extended to work on
such large data sets. Additionally, classification maps, which visualize state variables of
deforestation, require the handling of large intermediate processing results. A task that
can be accomplished by data compression methods.

1.2 Main objectives of the thesis
The objective of this thesis is to develop three independent modular frameworks. Each
presented study focuses on a specific part of the scientific inference framework presented

3A biome is a community of organisms that share common characteristics depending on the environ-
ment they exists in.
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in Chapter 1. The individual frameworks are then used to answer specific ecological
questions. We describe the main objectives of each chapter in the following briefly.

1.2.1 Chapter 2
The objective of this chapter is to develop a framework for fast calibration and uncer-
tainty assessment of forest simulation models. This task can be seen as a component
of the “experiments” part of the scientific inference framework (Chapter 1). We give
an overview over the steps needed for the successful calibration of vegetation models
and answer three specific questions. (1) Are methods of stochastic optimization able
to correctly identify parameters values for a dynamic model of tropical rain forest? (2)
What is the minimum amount of observation data needed to make reasonable parameter
estimates? (3) Are these estimates made from observations at one point in time able to
make predictions about the temporal behaviour of the vegetation model?

1.2.2 Chapter 3
The objective of this chapter is to incorporate the aspect of individual size into a neutral
model of tropical forest. This task can be seen as a component of the “ecosystem
modelling” part of the scientific inference framework (Chapter 1). This is archived
through the incorporation of neighbourhood competition in a way, that size structure
has an effect on all ecological processes. We compare the model predictions to a set
of spatial and non-spatial field observations from Barro Colorado Island (Panama) and
analyse the sensitivity of processes on different biodiversity patterns. In the course
of this we answer the following questions: (1) How can size-structure be incorporated
into a spatially explicit neutral model tropical rain forest while linking the effect of size
growth to other community processes? (2) What are emerging new patterns and is the
model able to explain various patterns of diversity in a case study? (3) How does the
model parameters and processes affect these patterns? (4) What are the consequences
on neutral theory? (5) Is the model a useful extension to the current framework of
neutral theory?

1.2.3 Chapter 4
The objective of this chapter is to analyse forest fragmentation on a global scale using
high resolution forest cover maps. This task can be seen as a component of the “pat-
tern extraction” part of the scientific inference framework (Chapter 1). The aim is to
characterize the structure and condition of each forest fragment, irrespective of its size.
Within this study we answer the following questions: (1) How is it possible to construct
an efficient cluster analysis method using standard computational resources? (2) How
can the structure of forest fragmentation be characterized on a global scale and for three
forest biomes? Can we observe differences between the biomes? (3) How can the condi-
tion of forest fragments be characterized and is it possible to visualize this in a global
state map?
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Chapter 2

Fast calibration of a dynamic
vegetation model with minimum
observation data

This chapter has been published as Lehmann, S., Huth, A. (2016). “Fast calibration
of a dynamic vegetation model with minimum observation data”. Ecological Modelling,
301, 98-105. DOI: https://doi.org/10.1016/j.ecolmodel.2015.01.013

Abstract
The estimation and uncertainty analysis of parameters for dynamic vegetation models is
a complex process. If one is mainly interested in parameter estimation, this can be done
with simple global stochastic search methods, while uncertainty analysis is carried out
with traditional first-order analysis, which significantly reduces the number of needed
model evaluations. Within a nonlinear regression framework, where the misfit between
model and observations is expressed as a sum of weighted squares, we model the dynamics
of tropical forest with a size-structured Sinko-Streifer model and demonstrate the general
calibration procedure on a virtual data set. A second case study on real data for a single
species shows that surprisingly total stem number, basal area and aboveground biomass
are the minimum observations needed for successful calibration. A third case study on
real data for a three species group shows the prediction of successional states while only
using the former reduced set of observations for calibration. The methodology is well
suited for time consuming models, where only limited amount of forest site observations
are available.

2.1 Introduction
The calibration of dynamic vegetation models is a complex and time consuming process.
Calibration refers to the procedure of adjusting the models parameters in such a way
that the models response matches experimental observations. In the past this often has
been done through manual calibration, making this a difficult task, especially if these
models are complex and parameters may affect many processes at once. Recent research
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has applied Monte Carlo techniques under a Bayesian context to estimate parameter
properties (Van Oijen et al., 2005a, 2013; Hartig et al., 2013), but this needs a large
amount of model evaluations to make reliable estimates of the underlying posterior
distributions, because ecological models often have strong parameter correlations. If
one is primary interested in parameter estimates and uncertainty assessment is less
important, methods of global stochastic optimization in a frequentist context offer an
alternative solution. The here presented methods are widely used in other research
fields, particularly in the field of hydrological models (Duan et al., 1993; Tolson and
Shoemaker, 2007a; Gallagher and Doherty, 2007) although their application is new in
the field of ecology.

In this study we give an overview over the steps needed for successful calibration of
vegetation models and answer three specific questions. (1) Are methods of stochastic
optimization able to correctly identify parameters values for a model of tropical rain
forest. (2) What is the minimum amount of observation data needed to make reasonable
estimates. (3) Are the parameter estimates made from observations at one point in time,
able to make predictions about the temporal behaviour of the vegetation model in the
past for a multi-species version of the model (succession).

2.2 Material and methods
In this section we give, among others, a more general introduction into methods, as-
sumptions, possibilities and expected results for ecological model calibration within a
statistical framework. This should help readers with a basic understanding to broaden
their view on the underlying concepts.

2.2.1 Nonlinear regression model
We assume that the observed data vector y with dimension |y| = n can be written in
the following parametric form

y = m(θ) + ε (2.1)

where m(θ) is the output of a (deterministic) model m with the to-be-estimated param-
eter vector θ ∈ Θ with dimension |θ| = k and ε ∼ N(0, S) is an additive multivariate
normal distributed error term including systematic and measurement error. The dis-
tribution of y is the result of convoluting the error with the point mass δm(θ), there-
fore, y ∼ N(m(θ), S). We further assume independent observations, which means that
S = σ2SW , where SW = diag(1/w1, 1/w2, . . . , 1/wn) is a diagonal matrix representing
relative weights.

10
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2.2.2 Parameter estimation
The unknown parameter vector θ gets estimated through maximum-likelihood estimation
(MLE). The likelihood of y can be written as

L(θ|y) = 1√
(2π)n|S|

exp
(
−1

2u
TS−1u

)
(2.2)

where u = y −m(θ). Taking the logarithm of L(θ|y) and leaving out constants that do
not affect the location of the maximum results in the objective function

Q(θ) = uTWu (2.3)

=
n∑
i=1

wi (yi −m(x)i)2 (2.4)

where W = S−1
W = diag(w1, w2, . . . , wn) and m(x)i is the i-th component of the model

output m(x). Hence maximizing L(θ|y) is equivalent to minimizing Q(θ) and the pa-
rameter estimate θ̂ gets now determined through

θ̂ = arg min
θ∈Θ

Q(θ) (2.5)

The first question that arises is, how to assign values to the weights wi, if the variances
in the observation data are unknown beforehand? Generally little is known about the
distribution of measuring error in ecological settings, albeit the use of the normal dis-
tribution is often justified from either the central limit theorem or as an approximative
distribution. The situation gets more difficult, if one is trying to calibrate a model
against different types of data, like stem-diameter-distribution, basal area or biomass.
Also subjective requirements of the modeller may play an important role, like robustness
(Huber, 2011) of the estimates or the minimization of a certain goodness of fit measure.

If nothing is known about the variances a method known as IRLS (iteratively recursive
least squares) is applicable (Green, 1984). As an iterative procedure one starts with
constant weights which get successively refined after each calibration step until the
estimated parameters eventually converge. The refinement is based on the residuals
where, in its simplest form, the squared residuals uTu of one estimation step serve as
inverse weights for the next step. It can be shown that this results in the highest
likelihood for the likelihood function (Equation 2.2).

Following such an approach multiple full calibration steps are needed, which are time
consuming and impractical for the here considered case of complex models.

A simpler approach is to assume an existing functional relationship like wi = |yi|−ξ
with ξ ≥ 0 between the observations and the weights. Three values for ξ are frequently
adopted. For ξ = 0 we have the case of constant variance, which is often assumed
or acceptable to use after a suitable transformation (e.g. Box and Cox (1982)). For
Poisson distributed field data with large rate parameter λ (> 10) , ξ = 1 serves as an
good approximation. In Van Oijen et al. (2005a, 2013) ξ = 2 is used, which implies that
the standard deviation of the errors are proportional to the observations.

11
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The second question is how to find the minimum of Q? Traditional nonlinear opti-
mization algorithms like gradient descent or quasi newton methods are only local search
methods which additionally rely on the ability of computing first and/or second-order
derivatives. The first property enforces one to make multiple optimization trials for
multimodal problems and the second one is impractical due to the need for additional
costly model evaluations. Hence we use a set of randomized search methods which do
not exhibit the mentioned problems and do not take much effort to be implemented in
an appropriate programming language.

• Adaptive Simulated Annealing (ASA): A parameter-free variant of the well known
simulated annealing algorithm (Kirkpatrick, 1984). In contrast to the original
annealing algorithm, a candidate solution gets sampled from a Cauchy distribu-
tion and the cooling schedule is adapted to a fixed number of allowable function
evaluations (Ingber, 1993, 1996).

• Dynamically dimensioned search (DDS): A simple algorithm originally developed
for the calibration of watershed models, where a random candidate solution is
drawn around the current best solution with the search radius r being the only
free parameter. Through the successive reduction of the number of simultaneously
perturbed parameters, DDS is also efficient for high dimensional problems (Tolson
and Shoemaker, 2007a).

• Adaptive Differential Evolution (JADE): An improved variant of the population
based differential evolution algorithm (Storn and Price, 1997). Except the popula-
tion size NP all other parameters are adjusted dynamically to the problem (Zhang
and Sanderson, 2009).

2.2.3 General calibration procedure
Under the assumption of an existing simulation model the general calibration procedure
is as follows:

First individual parameter ranges define the parameter space Θ, including expert
knowledge regarding the ecological meaningfulness. An error model is specified according
to available observation data or suitable assumptions about the error distribution. A
random candidate solution θ ∈ Θ is sampled from the parameter space, its objective
function value Q(θ) is evaluated and successively improved through one of the stochastic
search methods (Section 2.2.2) until a maximum number of simulations is reached.

For further analyses the determined maximum likelihood estimate θ̂ can be used to ac-
cess uncertainty and identifiability properties. Either by estimating confidence intervals
for θ̂ and the prediction m(θ̂), which requires a numerical approximation of the Jacobian
at θ̂, or by estimating profile likelihoods using multiple calibration trials. See Section A.1
for a detailed description and Section A.2 for the proper handling of identifiability issues.

For selecting a model from a set of candidate models we use the Akaike information
criterion (AIC) (Section A.3).
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2.2.4 Modelling the dynamics of tropical forest
For modelling the dynamics of tropical forest we use a size-structured Sinko-Streifer
model (Muller-Landau et al., 2006; Kohyama, 1991; Condit, 1998; Moorcroft et al.,
2001). Let ni(t, x) (cm−1 m−2) be the number of trees per area of species i at time t
with a diameter at breast height (DBH) of x cm. The time evolution of species i is then
described through the following partial differential equation (PDE):

∂ni(t, x)
∂t

= −∂gi(t, x)ni(t, x)
∂x

−mi(t, x)ni(t, x) (2.6)

With the boundary conditions ni(0, x) = 0 cm−1 m−2 and ni(t, x0)gi(t, x0) = ri(t), which
implies that we start with fallow land and assume a seedling input rate at the smallest
stem diameter x0 from outside. Where gi(t, x) (cm a−1) is the stem diameter grow
function, mi(t, x) (a−1) is the mortality function and ri(t) (m−2 a−1) is the recruitment
function of species i.

If the limits gi(x) := lim
t→∞

gi(t, x), mi(x) := lim
t→∞

mi(t, x) and ri := lim
t→∞

ri(t) exist, then
the equilibrium solution ni(x) can be written as

ni(x) = ri
gi(x0) exp

(
−
∫ ∞
x0

mi(y)
gi(y) dy

)
(2.7)

where the variable of integration y (cm) represents a stem diameter interval. The number
of trees Ni(xa, xb) (m−2) of species i in the diameter class [xa, xb] is

Ni(xa, xb) =
∫ xb

xa
ni(y) dy (2.8)

and thus the total number of trees Ni (m−2) is Ni := Ni(x0,∞). The probability density
in equilibrium pi(x) can then be written as pi(x) = ni(x)/Ni.

Important statistics about a species include the cumulative basal area BAi(t, x) (m2 ha−1)
of trees larger than x which is

BAi(t, x) =
∫ ∞
x

y2ni(t, y) dy (2.9)

From this it follows that the basal area of trees larger than x in the whole stand
is BA(t, x) = ∑

i BAi(t, x). Additionally the aboveground biomass of species BMi(t)
(t ha−1) can be approximated through a power law

BMi(t) = c ·
∫ ∞
x0

ydni(t, y) dy (2.10)

where c and d are site specific constant. Again the biomass of the whole stand is
BM(t) = ∑

i BMi(x).
For some combinations of grow, mortality and recruitment functions analytical ex-

pressions for the equilibrium solution can be derived. For example, if grow, mortality
and recruitment are constant the probability distribution pi(x) reduces to an ordinary
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exponential distribution with rate parameter mi/gi. For additional examples see Muller-
Landau et al. (2006). In this study we also use constant mortality and constant recruit-
ment but a grow function of the following form

gi(t, x) = (1− αi(t, x))gi (2.11)

αi(t, x) =
1 if β−1

i BA(t, x) > 1
β−1
i BA(t, x) else

(2.12)

In this formulation the constant grow gi of a species gets linearly reduced through the
time dependend factor αi(t, x). The amount of reduction is directly proportional to the
basal area above a certain diameter in the whole stand as a factor of light competition
through the species specific constant βi (m2 ha−1). Hence the equilibrium distribution
can be written as

ni(x) = ri
g∞i (x0) exp

(
−
∫ ∞
x0

mi

g∞i (x)

)
(2.13)

pi(x) = ni(x)
Ni

= mi

ri
ni(x) (2.14)

where g∞i (x) denotes the mean diameter grow in equilibrium. As this model does not
have a closed analytical solution we use a numerical approximation using a finite differ-
ence upwind scheme (Courant et al., 1952).

2.2.5 Data generation
The dynamic forest model is calibrated against three different data sets.

Virtual data

A virtual 1 ha inventory using a single species is generated from the forest model in
its equilibrium state (Section 2.2.4) with the following parameters: g = 1 cm a−1,
β = 30 m2 ha−1, m = 0.02 a−1, r = 100 m−2a−1 and x0 = 1 cm. The model output
is summarised into 11 DBH classes each 10 cm wide, except the last class which is 50 cm
wide, consisting of the number of individual trees in the corresponding stem diameter
class i.e. d = {N(0, 10), N(10, 20), . . . , N(100, 150)}. See Fig. 2.1 and Fig. 2.2 for a
graphical representation.

A structural analysis of the model equations results in non-unique identifiability. It
can be seen from Equation 2.13 and Equation 2.14 that the shape of the distribution
only depends on m/g∞(x) and its scale on r/m. Thus, as there is always a representation
for g∞(x) in the form g∞(x) = λg′∞(x), the parameters g, β,m and r are structurally
unidentifiable. Therefore, we fix the specific mortality rate m = 0.02 a−1 to its true
value, as it is an easy to measure parameter for a forest ecologist and are left with 4
parameters for calibration.
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Figure 2.1: Stem-diameter-distribution in equilibrium from the dynamic forest model
using the virtual data set.
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Figure 2.2: Basal area over time from the dynamic forest model using the virtual data
set.
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Real data - single species group

The study area is represented by a 50 ha tropical forest inventory from Barro Colorado
Island (BCI), Panama (N52°10′, W79°51′) with observation data from the years 1985-
2010 (6 censuses). This plot mainly consists of old growth lowland moist forest that hosts
more than 300 tree and shrub species with more than 1 cm in diameter at breast height.
Observation data includes the diameter stem distribution over all species in classes each
10 cm wide, averaged over all censuses. Classes are merged with their neighbouring
classes until a single class does not have less than 5 trees. Additionally the average
basal area BA=33.89 m2 ha−1 and the aboveground biomass BM=310.82 t ha−1 over all
species is included. The biomass is approximated through a power-function (Chave
et al., 2005) where BM(d) = 10 · d2.6 (t ha−1) is the biomass of a single tree with a DBH
of d (m). This results in the 11 classes (N(0-10], N(10-20], N(20-30], N(30-40], N(40-50],
N(50-60], N(60-70], N(70-90], N(90-350],BA,BM).

As the same model structure as for the virtual data is used, we fix the mortality to
m = 0.02 a−1, which is well known value for tropical forests (Phillips and Gentry, 1994).

Real data - three species group

The same tropical forest inventory from BCI with the same rules for data generation is
used, but species get partitioned into three plant functional types (PFT) according to
their maximum height and diameter growth. This results in the following data classes:

• PFT0: 9 classes, (N(0-10], N(10-20], N(20-30] ,N(30-40], N(40-50], N(50-70], N(70-
350], BA=13.50 m2 ha−1, BM=146.84 t ha−1)

• PFT1: 8 classes, (N(0-10], N(10-20], N(20-30], N(30-40], N(40-50], N(50-260],
BA=14.22 m2 ha−1, BM=93.10 t ha−1)

• PFT2: 7 classes, (N(0-10], N(10-20], N(20-30], N(30-40], N(40-330],
BA=6.17 m2 ha−1, BM=70.89 t ha−1)

We fix the individual mortality rates to mean estimates from the field data: m0 =
0.017 a−1,m1 = 0.023 a−1 and m2 = 0.056 a−1 for PFT0, PFT1 and PFT2 respectively.

2.3 Results
2.3.1 Virtual data test case
We test the ability of the three proposed random search methods to find parameters
estimates in a vegetation model test case with known error structure. For that pur-
pose we consider the virtual 1 ha inventory from Section 2.2.5 with 4 to-be-estimated
parameters.

We generate the virtual data y through a single realization of y = d + ε where ε ∼
N(0, 0.12 · diag(d1, d2, . . . , d11)) is a multivariate normal distributed error with Poisson-
like error structure. We fit the model by starting every search with a random estimate
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within the given parameter ranges, use a budget of 5000 model evaluations and give
the median estimate (in reference to the objective function) of five runs for each of the
different algorithms. For the DDS algorithm with use a search radius of r = 0.2 (Tolson
and Shoemaker, 2007a) and for the JADE algorithm a population size of NP = 20.

All three algorithms give similar estimates (Table 2.1) for the three parameters g, β
and r within the given budget, which are in relation to the error structure, at a reasonable
distance to the true values. From a convergence point of view all algorithms show similar
behaviour at the beginning of the optimization process. The population of the JADE
algorithm needs more time to converge but, at the end, surpasses the other algorithms
and gives the largest likelihood value (Fig. 2.3 and Table 2.1). The constant radius of
the DDS algorithm prevents it from improving the parameter estimate further, although
Tolson and Shoemaker (2007a) suggest to use a second search with a smaller radius in
such a situation. Although the ASA algorithm performs quite well for this example, its
performance will decrease with increasing number of parameters as all components of
the candidate solution get perturbed at once.

Contrary to the estimation of the other parameters the estimation of x0 deviates
largely from the true value. The reason for this is a high correlation of x0 with g and
β (Table 2.2). This uncertainty is also represented as a flat valley from [0, 5] in the
corresponding profile plot (Fig. 2.4).

Our analysis shows that the proposed random search methods are all able to find
reasonable parameter estimates and a high level of data aggregation does not prevent
this. Secondly the presented methods in Section A.1 are successfully able to quantify
parameter uncertainties and identifiability issues even in a small sample scenario.
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Figure 2.3: Convergence graph of the different optimization algorithms for calibrating
the virtual data shown on a log-log scale.
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Figure 2.4: Negative log-likelihood profile for the parameters x0 and g. The valley
between [0, 5] for x0 indicates poor identifiability.

Table 2.1: Median parameter estimates and log-likelihood for five independent opti-
mization runs for the different algorithms.

Range True DDS JADE ASA
x0 (cm) 0− 5 1 0.26 0.35 1.43
g (cm a−1) 0− 5 1 0.96 0.99 1.01
β (m2 ha−1) 0− 100 30 29.00 29.30 29.89
r (m−2 ha−1) 0− 200 100 99.87 99.86 99.87
logL(θ|y) -11.36 -4.64 -8.14

2.3.2 Real case - single species group
In this section we examine the ability of the presented forest model from Section 2.2.4
in predicting a real forest structure with different aggregation stages. For this we use
inventory data from a forest on Barro Colorado Island (BCI) representing a single species
group (Section 2.2.5). For the calibration process we always use the JADE algorithm,
with a population size of NP = 20 and a budget of 5000 model evaluations, as it has
shown slight advantages in convergence characteristics (Section 2.3.1).

Weight assignment

In our error model formulation in Section 2.2.2 we introduced different ways to specify
data specific weights in the formulation of the objective function Q. We test different
assumption about the error model and their impact on the goodness of fit, represented by
the bias corrected Aitken information criterion (AICc) and the mean absolute percentage
error (MAPE). Additionally we include the mean coefficient of variation CV as a measure
of uncertainty and the mean correlation coefficient CC as a measure of identifiability
over all parameters. We test four different models: weights inversely proportional to the
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Table 2.2: Approximative coefficients of variation (CV), 95% confidence intervals (CI)
and pairwise correlation values estimated using the true values for the model and error
structure.

CV (%) 95% CI x0 g β r
x0 26.0 [0.49, 1.51] 1
g 4.4 [0.91, 1.09] -0.88 1
β 2.0 [28.82, 31.18] 0.87 -0.56 1
r 0.1 [99.72, 100.28] -0.03 -0.03 0.06 1

variance of the data (calculated from the 6 repeated measurements), constant weights
(ξ = 0), weights inversely proportional to the squared data (ξ = 2) (Van Oijen et al.,
2005a, 2013) and an IRLS model with two iterations (doubling the number of model
evaluations).

The underlying assumptions about the error model affect results regarding uncertainty
(CV) and identifiability CC (Table 2.3). Regarding the relative error (MAPE) all mod-
els give similar results which is a consequence of good agreement between the model
and the observations, irrespective a specific weighting approach (Fig. 2.5). Looking at
AICc values misleads in this case, as one would prefer the IRLS model, which assumes
that nothing is known about error variances. The distribution of variances from mul-
tiple measurements and the estimated ones from the IRLS model differ (p = 0.22 in a
two-sided K-S test), but are in agreement with variances proportional to the squared
observations (p = 0.83). Hence in absence of known error variances the usage of the
latter model is appropriate.

Table 2.3: Effect of different assumptions about the error model on goodness of fit
represented by the mean absolute percentage error (MAPE) and a bias corrected Aitken
information criterion (AICc). Estimates on parameter uncertainty are represented by
the mean coefficient of variation (CV) and estimates on parameter identifiability by the
mean correlation coefficient (CC) over all parameters.

Weights MAPE (%) AICc CV (%) CC
∝ Var(data)−1 8.39 81.92 13.21 0.36
∝ data−2 7.23 78.95 8.23 0.40
constant 8.13 59.84 2.71 0.80
IRLS 9.26 37.70 5.20 0.90

Model selection

For the model selection we test three cases using weights inversely proportional to the
data variance. The first model includes all parameters, namely x0, g, β and r. In
the second case we fix x0 = 0 cm and in the third one we additionally disable diameter
grow reduction through setting β = 0 m2 ha−1. For model comparison we use the Akaike-
weights calculated through the AICc (see Section A.3). It can be seen from Table 2.4 that

19



Chapter 2 Fast calibration of a dynamic vegetation model

N
0-

10
cm

N
10
-

20
cm

N
20
-

30
cm

N
30
-

40
cm

N
40
-

50
cm

N
50
-

60
cm

N
60
-

70
cm

N
70
-

90
cm

N
90
-

35
0c

m

B
A
@m

²�h
aD

B
M
@t
�h

aD

10

100

1000

10 000

N
um

be
ro

f
in

di
vi

du
al

sH
N
L

B
as

al
ar

ea
HB

A
L
�

B
io

m
as

sH
B

M
L

Figure 2.5: Prediction of the forest model against field data on a log-scale in a single
species experiment using weights inversely proportional to the data variance. Filled bars
indicate mean observations for diameter steam distribution, basal area and aboveground
biomass. Error bars indicate the approximative 95% confidence interval for the marked
prediction.

the model with x0 fixed has the highest weight among the three models. The increase
in parameter dimensionality of the full model does not justify the slightly better fit.
In contrast the model without grow reduction is not able to provide an acceptable fit
quality.

Table 2.4: Effect on the AICc and corresponding weights when model complexity is
reduced. As an addional measure of goodness of fit the mean absolute percentage error
(MAPE) is included.

Model k MAPE (%) AICc Weight
full 4 8.39 81.92 0.14
x0 fixed 3 8.94 78.30 0.86
x0, β fixed 2 47.80 114.07 ∼ 0

Data selection

We try to estimate the minimum amount of observation data needed to give reliable
parameter estimates for the model of tropical rain forest. For this we subsequently
reduce the amount of data, against which the model will be calibrated. We consider
four specific cases:
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2.3 Results

Set 1. Full data set (11 classes)
(N(0-10],N(10-20],N(20-30],N(30-40],N(40-50],N(50-60],N(60-70],N(70-90],
N(90-350]),BA,BM)

Set 2. DBH data (N(0-10],N(10-30],N(30-350]) (3 classes)

Set 3. Total stem count N , basal area, biomass (3 classes)

Set 4. Total stem count N , biomass (2 classes)

Set 5. Biomass, basal area (2 classes)

We compare the fits by evaluating the MAPE against the full data set as a measure of
goodness of fit, the mean coefficients of variation (CV), the mean of the absolute pairwise
correlation values (CC) and the mean bias of the parameter estimates in comparison to
the estimates using the full data set. We use the calibration method from Section 2.3.2,
where x0 is fixed, weights inversely proportional to the data variance and check the
uniqueness of the solution by doing multiple full optimization trials.

The results can be seen in Table 2.5. Using Set 2 or 3 increases parameter uncertainty
by 44% and 74% respectively, but Set 2 worsens the goodness of fit including a noticeable
bias in the parameter estimates. Hence, using only total stem count, basal area and
biomass is enough to give reliable estimates, but using less than that results in partial
non-identifiability of model parameters.

Table 2.5: Effect of observation data reduction to the models predictions represented
by the mean absolute percentage error (MAPE), the mean of the coefficents of variation
(CV), the mean of the absolute pairwise correlation values (CC) and the mean bias of
the parameter estimates in comparison to the estimates using the full data set.

Set MAPE (%) CV (%) CC Bias (%)
1. 8.94 13.78 0.29 -
2. 16.61 19.86 0.37 20.9
3. 7.39 23.99 0.35 5.9
4. g not identifiable
5. r not identifiable

2.3.3 Real data case - multiple species group
In this section we examine the ability of our forest model from Section 2.2.4 in predicting
a real forest structure using multiple species using inventory data from BCI representing
a multiple species group (Section 2.2.5). Results from the single species experiments
are adopted, hence we use the reduced model with 3 parameters per species, weights
inversely proportional to the data variance and only calibrate against total stem count,
basal area and biomass per species resulting in a reduction from 24 classes to 9 classes.
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Figure 2.6: Biomass over time for the three species model, calibrated against stem
count, basal area and biomass. Dots represent field data measurements.

For the increase of parameter dimensionality we adjust the maximum number of model
evaluations to 50000 and use a population size of NP=50.

Using three species groups clear successional states can be observed in the simulation
(Fig. 2.6). Although we only used 9 classes for calibration, a comparison of the prediction
with 24 classes results in a MAPE of 9.2% showing good agreement (Fig. 2.7).

2.4 Discussion
The here proposed calibration framework using methods of stochastic optimization is
formulated in such a general way that it has a wide area of applicability. It can be applied
to any ecological (simulation) model with defined input parameters and model output
which can be related to field observations. That does not mean that all parameters have
to or can be inversely calibrated nor that every model output has to have a corresponding
field observation. We have hereby shown the successful application of this framework
for a simple dynamic model of tropical rain forest. Nonetheless, the ecological model
complexity or general model structure does not matter, as long as the mismatch between
model output is represented as a valid (e.g. enough to identify the parameters) objective
function.

There exist numerous classes and variants of other optimization algorithms. What
is “best” depends on specific requirements and is additionally problem dependent, but
promising more complex techniques include algorithms like Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 2001) and response surface
assisted techniques (Regis and Shoemaker, 2005). Using only a quadratic approximation
in a maximum likelihood framework for uncertainty assessment, gives a speed advantage
of a factor of 10 to 100 compared to MCMC techniques, which explore the complete
posterior distribution. Furthermore the MLE corresponds to the maximum a posteri-
ori (MAP) estimate in a Bayesian framework with uniform prior and in conjunction
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Figure 2.7: Prediction of the equilibrium model on a log-scale in a three species experi-
ment denoted by their plant functional type (PFT), using weights inversely proportional
to the data variance and calibrated using total stem count, basal area and biomass per
species. Filled bars represent mean observations and dots model predictions.

with the estimated covariance matrix can be used as an initial estimate for the poste-
rior distribution, if more precise uncertainty analyses are needed through the use of a
MCMC.

We have emphasised the importance of correct specification of the error model, as
this has a strong impact on parameter estimates, uncertainty and identifiability mea-
surements. Thereby iteratively reweighted least squares (IRLS) is a useful technique,
when nothing is known about error variances. We suggest that, for the here considered
case, the variance of multiple measurements can be approximated through a functional
relationship, where the variances are proportional to the squared mean observations,
neglecting the need for multiple calibration trials as in the IRLS case. The remaining
scale parameter s can be estimated from the residuals (Equation A.2 in Section A.1) and
must not be specified a priori (Van Oijen et al., 2005a, 2013), as this distorts uncertainty
estimates additionally .

Our most important finding is that, for the here considered Sinko-Streifer model, the
minimum amount of observation data needed to give reliable parameter estimates are
total stem count N, basal area BA and aboveground biomass BM at the cost of higher
parameter uncertainty. It is surprising and a highlight of this study that only this min-
imum amount observation data is needed. Using a lower number of observations results
in partial unidentifiable parameters. As every of the observations contributes a different
type of information, a further reduction in the number of observations is possible by
fixing additional parameters to direct measurements, as in the inevitable case of the
mortality parameter m. For example, through the relationship N = r/m, one could use
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Chapter 2 Fast calibration of a dynamic vegetation model

an estimated recruitment number r and use only basal area and biomass for estimat-
ing the remaining parameters mean growth g and growth reduction β. Another way of
circumventing identifiability issues is the usage of penalization terms in the objective
function Equation 2.4 like Tikhonov regularization, which again has a direct interpreta-
tion in a Bayesian context. It should be investigated in future studies to which extend
this special findings are applicable to other vegetation models as well.

The parameter estimates made from observations at one point in time, are able to
make predictions about the temporal behaviour of the vegetation model in the past
for a multi species version of the model, where we used 9 observations to make 24
model predictions, as long as there exist estimates for the specific mortality rates. The
reliability of the successional states and their transient behaviour should be evaluated
in future studies.

Therefore, the presented methods can also be carried out at forest sites where a
limited number of observations in time and space are available. After a careful structural
examination of the model and the observation data a combination of direct and inverse
modelling will lead to successful calibration results.
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Chapter 3

Size-structured neutral theory explains
multiple diversity patterns in a tropical
forest

Abstract
Neutral theory has been used to explain the maintenance of species diversity within
communities. While previous attempts mainly focused on the prediction of species-
abundance distributions and species-area relationships, we incorporate size-structured
demography as a community assembly mechanism. We show that the linkage of re-
production, dispersal, mortality, size growth and local competition successfully predicts
a wide variety of macroecological patterns. It is the first neutral model that is able
to match the species-abundance distribution, species-area relationship, distance-decay
of similarity, pair-correlation function and individual size distribution simultaneously,
when compared to the Barro Colorado Island (BCI) tree community. However, the
model was able to match the number of species in a specific size class only partly. A
global parameter screening revealed a highly sensitive and correlative structure between
mortality, species richness and dispersal. We conclude that dispersal through a single
dispersal kernel has to be enhanced to account for the complex spatial composition of
species in tropical forests. Our study demonstrates the importance of confronting mod-
els simultaneously with multiple patterns. Embedding the model into a framework of
fast model calibration and sensitivity analysis additionally advances the possibilities of
hypothesis testing and process understanding.

3.1 Introduction
Understanding the mechanisms and processes that determine the patterns of biodiver-
sity is a fundamental question in ecology. One approach to explain the maintenance of
species diversity within species rich communities is provided by neutral theory, where
dispersal and demographic stochasticity are the main drivers that shape the community
structure (Hubbell, 2001). The theory initiated a controversal debate in community
ecology. The objective of neutral theory is not to assume that the assumptions are
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Chapter 3 Size-structured neutral theory

per se true, but rather about the consequences of making these assumptions (Rosindell
et al., 2011). First results using spatial implicit models focused only on the mechanistic
(or statistical) explanation of the species abundance distribution (SAD) (McGill et al.,
2007). This includes proper analytical results (Volkov et al., 2003; Alonso and McKane,
2004; Etienne and Alonso, 2005, 2007), the analysis of different speciation modes other
than point-mutation (Etienne et al., 2007b; Rosindell et al., 2010) and investigations
whether the exclusion of the regional species pool and additional density dependence
can lead to similar results (He, 2005; Volkov et al., 2005). Results demonstrates that
the species abundance alone cannot be used without additional information, to dis-
criminate between different biological assumptions. Later spatially explicit models were
able to reproduce realistic beta-diversity patterns (Condit et al., 2002) and species-area
relationships (SAR) (Rosindell and Cornell, 2007, 2009; O’Dwyer and Green, 2010). Re-
cently the theoretical framework was extended by the incorporation of size structure
(O’Dwyer et al., 2009). Although the individual size growth was modelled independent
from the other processes (excluding neighbourhood competition), this helped resolving
the non-random sampling bias (Rosindell et al., 2012) introduced through the arbitrary
determination of a reproductive size threshold.

It has been shown that the capability of simultaneous predicting several ecological
patterns helps discriminating contrasting models and theories (May et al., 2015; Xiao
et al., 2016), because a single pattern only provides limited information (Wiegand et al.,
2003; Grimm et al., 2005). This approach has seemingly found its limits by failing to
predict the species-area relationship and the distance decay of community similarity
simultaneously in tropical forests under neutral assumptions (May et al., 2015, 2016).
As this might be an indicator of non-neutral effects in macro-ecological patterns, it is
crucial to understand the interaction of ecological processes and how they drive specific
biodiversity patterns. As demography can vary with size (Peters, 1986), theory should
capture the variation in demographic rates with size. The inclusion of size structure
in biodiversity models dates back to the niche-based DivGame simulator of rainforest
(Alonso and Sole, 2000), but it is an extension for simulation models based on neutral
theory.

This study takes on the two aspects of individual size and simultaneous prediction of
patterns by incorporating size structure in a individual based spatially explicit neutral
model of tropical forest. This is done in a way that size structure has an effect on all
the other ecological processes. We additionally compare the model predictions to a set
of spatial and non-spatial field observation from Barro Colorado Island (Panama) and
analyse the sensitivity of processes on different biodiversity patterns. In the course of
this we answer three specific questions: How can size structure be incorporated into a
spatially explicit neutral model tropical rain forest while linking the effect of size growth
to other model processes? (2) What are emerging new patterns and is the model able
to predict various patterns of diversity using a single parameter set? (3) If so, how do
model parameters/processes affect these patterns? (4) What are the consequences on
neutral theory? (5) Is the model a useful extension of the current framework of neutral
theory?
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3.2 Material and methods
3.2.1 Study site
The tropical forest on Barro Colorado Island (BCI), Panama (9.15° N, 79.85° W) is a
15 km2 island located in Lake Gatun, an artificial water body created by the construction
of the Panama Canal (Condit et al., 2001). It is covered with semi-deciduous tropical
lowland rainforest and estimations on the minimum forest age range from 300 to 1500
years (Bohlman and O’Brien, 2006; Meyer et al., 2013; Lobo and Dalling, 2014). The
climate is characterized by average daily maximum and minimum temperatures of 30.8
°C and 23.4 °C and an annual precipitation sum around 2600 mm with a dry season from
January to April (Condit et al., 2001). A 50-ha rainforest observation plot is located on
the central plateau of the island, with terrain altitudes varying between 120 and 160 m
above sea level (Lobo and Dalling, 2014). Since its establishment in the early 1980s,
each tree in the 1000 m x 500 m area with a minimum stem diameter at breast height
(DBH) of 1 cm has been measured during censuses in five years intervals (Condit, 1998;
Hubbell et al., 1999, 2005). Estimates of mean canopy height are 24.6 ± 8.2 m and mean
above ground biomass (AGB) are 281 ± 20 t/ha (Chave et al., 2003).

3.2.2 The size-structured spatially explicit neutral model
Our stochastic simulation model is a direct extension of the classical spatially implicit
neutral model from Hubbell (2001). We maintain the distinction between a non-spatial
metacommunity (regional species pool) and the local community. Our model differs in
important aspects from previous approaches. Individuals in the local community are
placed in continuous space, thus allowing a direct comparison with spatially explicit
forest census data using point-pattern analysis. Temporal dynamics are typically con-
strained by a zero-sum assumption to account for competition of space, where a dead
individual is instantly replaced with a new individual, hence keeping the total popula-
tion size constant. In our approach the population size is allowed to vary through the
separation of birth/immigration and mortality. The model explicitly models the size
grow of each individual tree, therefore each tree has an individual impact on the com-
petition dynamics in its neighbourhood. The modelling of tree size additionally allows
the prediction of new patterns.

In the model each tree i is characterized by a set of properties namely its position in
space (xi,yi), its DBH di and its species identity Si. The model internals can be best
described through a set of interacting building blocks: metacommunity, competition,
recruitment, mortality and size growth, which are described in the following.

Metacommunity

We use a new concept for constructing a non-spatial metacommunity. Previous ap-
proaches used either a dynamic metacommunity, which develops over longer time peri-
ods than the local community (Hubbell, 2001), or were based on a sequential construc-
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tion scheme (Etienne and Alonso, 2005). The former needs the explicit computation
of metacommunity dynamics including a “burn-in”-phase to stabilize the species distri-
bution, whereas the latter approach yields only a fixed abundance distribution for the
metacommunity, needing multiple simulation trials for accurate predictions in the local
community (May et al., 2015).

In our approach species are sampled from the metacommunity according to their
expected species rank abundance. The distribution of the metacommunity is based on
the Fisher log-series, as it is the limiting distribution of a metacommunity for high
diverse systems (Etienne and Alonso, 2007). This results in two free parameters: the
number of species S and the ratio of birth-to-death p (instead of Jm, the fixed size of the
metacommunity and θ the “fundamental” biodiversity number). For the Fisher log-series
the two concepts are linked through the formula θ = −S/ log(1−p). The expected species
rank abundance (SRA) distribution is analytically difficult to determine. Therefore, we
use a specific construction algorithm as a numerical approximation.

The construction algorithm is defined through the following steps, where an example
is shown in Fig. 3.1: 1) Creation of a single metacommunity with S species, where
the number of species which have n individuals is distributed according to a log-series
distribution with parameter p. 2) The S species are sorted in decreasing order with
respect to the number of their individuals. Each species is assigned to a rank, where
the rank results directly from its sorted position (the species with the highest number
of individuals has the first rank). This step results in a single SRA distribution. 3)
Several random SRA distributions are created through step 1) and 2) and the expected
SRA distribution is calculated over this set of random distributions. The construction is
terminated when the estimated mean is stable, where the stability is determined through
the maximum relative deviation between two estimates.

The expected SRA distribution is used to sample species from the metacommunity,
which immigrate into the local community. The higher the expected rank of a certain
species, the higher its probability of being sampled. Therefore, the identification number
of a specific species is fixed for the whole simulation process.

Competition

Inter-and intraspecific competition is an important aspect in our model and has an
effect on individual size growth and the probability of dying. We model the general
competition index Ci,j(α, σ) of a tree j on a focal tree i (i, j = 1, . . . , n) through a
two-dimensional isotropic gaussian function (see also Brown et al. (2011)):

wi,j(σ) = exp
(

(xi − xj)2 + (yi − yj)2

−2σ2

)
(3.1)

Ci,j(α, σ) = α · wi,j(σ) , (3.2)

where α is the amplitude and σ (m) the standard deviation (control of width) of the
function wi,j. The function wi,j weights the competition exerted by tree j on the focal
tree i. As amplitude we use the basal area Bj (m2) of tree j, hence αj := Bj = π/4 · d2

j .
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Figure 3.1: Based on the log-series distribution of species (a) the species rank abun-
dance (SRA) distribution (b) is constructed as described in Section 3.2.2. The SRA
distribution is used to sample species from the metacommunity, which immigrate into
the local community. For this example we used S = 200 species and a birth-to-death
ratio of p = 0.98.

The modelling of neighbourhood competition through weighted power-scaling on tree
diameter is a widely used concept (Uriarte et al., 2004, 2010; Canham et al., 2004),
where the weighting and scaling can be formulated in different ways (e.g. assuming
sensitivity on the size of the target tree i or asymmetric competition for modelling
shading). The total net competition effect Ci(σ) (m2) on tree i is then the sum of the
competition indices of all neighbouring trees:

Ci(σ) =
n∑

j=1,i 6=j
Ci,j(Bj, σ) (3.3)

The effect of competition is thus a crowding effect that influences size growth and mor-
tality, where we do not make difference between conspecific and heterospecific effects.
For both processes we used different neighbourhood ranges (σg for competition effects
on growth, σm for competition effects on mortality). In a practical implementation only
trees are considered that are within a distance R, where the weight wi,j is larger than a
predefined constant. R typically ranges up to 15 m (Uriarte et al., 2004).

Mortality and individual size growth

We model the decrease of survival probability of a tree i with an exponential decay
depending on the amount of experienced competition. This results in a mortality prob-
ability of

mi = 1− (1−mb)e−αmCi(σm) , (3.4)
where mb is the annual base mortality, αm (m−2) the reduction factor and σm (m) the
standard deviation of the competition kernel (see Section 3.2.2). Likewise, we model the
decrease in potential size growth g (cm a−1). This results in an individual size growth
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gi (cm a−1) of
gi = g · e−αgCi(σg) , (3.5)

where αg (m−2) is the reduction factor and σg (m) the standard deviation of the competi-
tion kernel. Competition is thus parameterised by four parameters: αm, σm for mortality
and αg, σg for size growth.

Recruitment

Recruits can be offspring of mother trees or immigrants from the metacommunity. Each
year a constant number of n (a−1) recruits enter the local community. With immigration
probability m an individual recruit is a sample from the metacommunity and placed
randomly within the simulated plot area. With probability 1−m a random mother tree
is selected, from which a seed is dispersed according to a radially symmetric log-normal
dispersal kernel (Greene et al., 2004) with parameters (dm, ds), where dm (m) is the mean
dispersal distance and ds (m) is the dispersals standard deviation. The local community
is assumed to be a torus (periodic boundary conditions) for seedlings which disperse
outside the plot bounds.

3.2.3 Linking model and data
A way to test the ability of the models simplified processes to capture the main dynamics
of a tropical forest is to calibrate its parameters against a set of field observations.
This is not just an exercise in model fitting but a complex and time consuming task
of structural fitting the internal model dynamics. It is essential that a set of several
observable patterns is selected which provide enough information to make all parameters
identifiable with as least uncertainty as possible. If the model is able to successfully
reproduce the observed patterns, we assume that the model processes are a (possible)
valid representation of the main processes which shape the structure of community
assembly for the considered study site.

Macroecological patterns

We selected three non-spatial and three spatial macroecological patterns against which
the model is calibrated. Each pattern provides structural information regarding specific
processes (with partial informational overlapping) and represents contrasting aspects of
forest structure.

As patterns for non-spatial structure we selected the species abundance distribution
(SAD), the diameter stem size distribution (SSD) and the species-individual distribution
(SID). The species abundance distribution (SAD) (Hubbell, 2001) is a direct measure
of species diversity, where the number of species with a specific number of individuals
is counted and aggregated through grouping in classes to the power of 2 (Preston oc-
tave curve, Preston (1948)). The diameter stem size distribution (SSD) describes the
distribution of individual tree size. We use classes with a width of 10 cm for trees with
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a DBH < 100 cm and one class for trees which are larger. The species-individual distri-
bution (SID) combines informations from the previous two patterns. It uses the same
size classes as the diameter stem size distribution but represents the mean number of
individuals per species in each size class.

As patterns for spatial structure we selected the pair-correlation function g(r), the
distance decay of community similarity F (r) and the species-area relationship SAR.
The pair-correlation function g(r) describes how the neighbourhood density of trees,
irrespective of its species, varies as a function of distance from a reference tree (Wiegand
and Moloney, 2013). Values of g(r) = 1 indicates complete spatial randomness (CSR),
g(r) < 1 dispersion and g(r) > 1 aggregation. The distance decay of similarity F (r), as
a measure of beta-diversity, estimates the probability that two randomly selected trees,
which are a distance of r (m) apart, belong to the same species (Condit et al., 2001).
It quantifies species mixing versus intraspecific aggregation. For independent species
patterns F (r) = 1 − D = ∑S

i=1 p
2
i , where D is the Simpson diversity index and pi is

the proportion of species i on all species S (Condit et al., 2001; Wiegand and Moloney,
2013). The species area relationship (SAR) quantifies the number of different species
within a certain area, and it has been empirically shown that this relationship follows
systematic mathematical relationships (Preston, 1962). While both F (r) and the SAR
consider the position and species identity of each individual, the SAR is more affected
by rare species and F (r) is dominated by the most abundant species (Morlon et al.,
2008).

We estimated the six patterns Siobs(t) (i, t = 1, . . . , 6) from six BCI censuses (1985-
2010 in 5 year steps) using all living trees with a diameter at breast height that is larger
than 10 cm as a reproductive size threshold, because neutral theory applies only to adult
trees (Hubbell, 2001). The pair-correlation function and the distance decay of similarity
were estimated for all distances 1− 50 m. This covers the scale at which trees compete
for light and resources (Stoll and Newbery, 2005) and where seed dispersal takes place
(Muller-Landau et al., 2008).

The observed patterns Siobs = 1/n∑n
t=1 S

i
obs(t) were estimated as the mean from all

censuses and the simulated patterns as the mean of subsequent observation within a
simulation of 2000 years, starting at 1000 years with a 100 year observation interval.
This ensures that the model is in a steady state and shows lower uncertainty for the
predicted pattern mean.

Quantification of model deviation

For a specific parameter set x the mismatch between an observed pattern Sobs, which is
also called “summary statistic” (Beaumont et al., 2010), and a simulated pattern Ssim
is quantified using the mean relative error MRE (Tofallis, 2015):

MRE(Sobs, Ssim(x)) = 1
n

n∑
j=1

∣∣∣∣∣Ssimj
(x)− Sobsj

Sobsj

∣∣∣∣∣ , (3.6)

where Sobsj is the j-th element of the observed pattern, Ssimj
(x) is the j-th element of

the simulated pattern for the parameter set x and n = dim(Sobs). The mean relative
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error MRE(x) for a parameter set x and m patterns Siobs, Sisim(x) with i = 1, 2, . . . ,m is
then our objective function Q(x):

Q(x) := MRE(x) =
m∑
i=1

wi ·MRE(Siobs, S
i
sim(x)) with

m∑
i=1

wi = 1 , (3.7)

where the wi are specific weights given to each of the n different patterns. In this study
we use the trivial case of equal weights: wi = 1/n for i = 1, 2, . . . ,m, but other weight-
ings including knowledge about measurement uncertainty or prediction preferences are
possible.

Model calibration

For the model calibration we rely on algorithms that only need a small amount of simu-
lation runs and are applicable at a distributed computing system (e.g. high performance
cluster (HPC)). This renders most MCMC techniques obsolete, as their possible paral-
lelisation is limited and they usually need about 106 simulation trials. Instead we use
stochastic search methods which have proven to be efficient to calibrate dynamic forest
models (Lehmann and Huth, 2015). We decided to use the JADE method (Zhang and
Sanderson, 2009). It is a population based approach that is especially suited for parallel
processing. We use a maximum of 105 simulation trials on 50 parallel threads, which
needs about 2 days for completion. There are 12 free parameters, which are summarised
in Table 3.1. To see what is the best possible prediction the model is capable of, we did
not fix any parameters by estimates from field data or previous studies and only chose
meaningful parameter ranges based upon this data. The calibration method yields a set
of best parameters x̂ found and a list of parameters (points in parameter space) visited.
Additional to the best set of parameter values, we form a list L, by using all sets of pa-
rameter values whose model deviation (see Section 3.2.3) is less than 5% to the deviation
of the best set found. If we assume that the model using x̂ is a reasonable approximation
to the processes which generated the field observations, then L provides parameter sets
which also give reasonable approximations. This enables us to further quantify the mod-
els structure. We then estimate the correlation matrix of L and calculate the marginal
distribution for every parameter (Hartig et al., 2011).

To simplify the analysis, we apply a classification scheme to the correlation matrix
and the marginal distributions. For each parameter let cn be the number of parameters
(excluding the parameter itself) which have an absolute correlation coefficient > 0.5
and CV the coefficient of variation of its marginal distribution. The correlation of the
parameter is then assumed to be “high” if cn > 3, “moderate” if cn = 3 and “low” if
cn < 3. The uncertainty of the parameter estimate is assumed to be “high” if CV > 10%,
“moderate” if 5% ≤ CV ≤ 10% and “low” if CV < 5%.

Global sensitivity analysis

To quantify the global sensitivity of the model parameters and patterns we use the
elementary effects method of Morris (1991) and its recent developments (Campolongo
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Table 3.1: Overview of the 12 free models parameters, their units and plausible input
ranges for the chosen study site.

Name Description Unit Range
S Number of species in the regional pool - 200-1000
n Number of local recruits a−1 450-550
θ Fundamental biodiversity number - 40-60
m Immigration probability % 1-20
dm Mean dispersal distance m 1-50
ds Std.-dev. of dispersal distance m 1-50
g Potential stem diameter growth cm a−1 0.1-2
cg σ of growth competition kernel m 0.1-5
cm σ of survival competition kernel m 0.1-5
αg Reduction factor on growth m−2 0-2000
αm Reduction factor on survival m−2 0-2000
mb Base mortality % a−1 0.1-10

et al., 2007) as a qualitative screening framework. The method estimates which param-
eters (input factors) have insignificant, linear/additive or nonlinear/interactive effects.
For each input factor two sensitivity measures are calculated: the absolute mean µ∗ of
elementary effects, as a measure of overall influence and its standard deviation σ, as a
measure of higher order effects. The approach is explained in detail in Section B.1.1.

To analyse the results of the screening process, one inspects the µ∗, σ-plot for each of
the six patterns. To simplify the potential conclusions, we apply additional aggregations
on the plots. First, we calculate the row-wise mean of the µ∗, σ-matrices to get an
overall µ∗, σ-plot of parameter sensitivity over all patterns. This is further aggregated by
grouping parameters into four distinct process classes: migration (S, θ, m, n), dispersal
(dm, ds), size growth (g, cg, αg) and mortality (mb, cm, αm). This results in an µ∗, σ-plot
of process sensitivity over all patterns. At last, we calculate the column-wise mean of
the µ∗, σ-matrices to get an overall µ∗, σ-plot of pattern sensitivity over all parameters.

Model schedule

Each simulation starts with an empty local community and a pre-calculated expected
rank-abundance distribution for the metacommunity. For a predefined number of 2000
years a timeloop is executed, where for each year the following schedule takes place: 1)
the total net competition effect for every individual is calculated, 2) probability of dying
for every individual is calculated and evaluated, 3) individuals which survived, growth
in diameter size, 4) local recruitment takes place. A flow-chart of this scheduling can be
seen in Fig. 3.2.

33



Chapter 3 Size-structured neutral theory

Figure 3.2: Flow-chart of model processes with a snapshot from above of a simulated
model output. The snapshot shows the local community with an area of 1000 m·500 m =
50 ha. Circles denote single trees, where the circles diameter equals the stem diameter
of a tree resized by a factor of 5.

3.3 Results
3.3.1 Prediction of ecological patterns
The model calibration is performed as explained in Section 3.2.3. An overview of the
resulting parameter estimates is shown in Table 3.2. Some of the estimates can be com-
pared to previous estimates from the literature or field data. The estimated number of
local recruits n = 516 a−1 is close to the mean number of recruits (with a DBH > 10 cm)
of 497.76 a−1 from the study site over all six censuses. The base mortality of 1.2 %/a in
conjunction with competition results in an effective mortality of 2.05 %/a which is in the
range of the observed mortality of 2.34 %/a (mean over five censuses). The estimated
potential stem diameter growth of 0.7 cm/a is close to the mean observed potential stem
diameter growth of 0.76 cm/a, where potential diameter growth was estimated as the
mean stem size growth for trees with a stem diameter from 50 cm to 100 cm. The mean
dispersal distance of 23.8 m is lower than values from the literature based on seed trap
data. For example Condit et al. (2002) estimated a mean dispersal distance of 39 m for
65 tree species in BCI and Muller-Landau (2001) estimated a mean of 39.5 m for 81 tree
species. The fundamental biodiversity number of 56.9 is higher and the immigration
probability of 3.7% is lower than previous estimates on the same study site, e.g. 47.2
and 10% (Volkov et al., 2003), 50 and 10% (Hubbell, 2001), 48.5 and 7.9% (McGill,
2003). Through geometrical properties of the plot, it is possible to functional link the
immigration rate to the dispersal distance through m ≈ Pdm/(πA) (Chisholm and Lich-
stein, 2009), where P = 3000 m is the plots perimeter and A = 500 000 m its area. This
results in an estimate of m = 4.5% which is in agreement with our estimate.

We use all parameter sets that are within a 5% bound of the best parameter set
found, as a measure of interactive effects and uncertainty of parameter estimates (see
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Table 3.2: Summary of calibration results for the 12 free parameters. The last two
columns show the uncertainty and correlation classification based on the scheme from
Section 3.2.3.

Name Description Unit Estimate Uncertainty Correlation
S Number of species in the regional pool - 653 moderate low
n Number of local recruits 1/a 516 low low
θ Fundamental biodiversity number - 56.9 low high
m Immigration probability % 3.7 high high
dm Mean dispersal distance m 23.8 low moderate
ds Std.-dev. of dispersal distance m 21.2 high moderate
g Potential stem diameter growth cm/a 0.7 low high
cg σ of growth competition kernel m 1.3 low low
cm σ of survival competition kernel m 0.4 moderate moderate
αg Reduction factor on growth m−2 617 high moderate
αm Reduction factor on survival m−2 344 high moderate
mb Base mortality %/a 1.2 low moderate

Section 3.2.3). The full correlation matrix is shown in the appendix (see Fig. B.2). The
parameters with the highest correlation (absolute linear correlation > 0.5) are the funda-
mental biodiversity number θ (correlates with S, m, dm and ds), immigration probability
m (correlates with S, θ, dm and ds) and potential diameter growth g (correlates with
cg, cm, αm, αg and mb). The complete marginal parameter distributions are shown in
the Appendix (Fig. B.3). The parameter estimates with the highest uncertainty are m
(CV = 13%), ds (CV = 16%), αm (CV = 11%) and αg (CV = 25%).

The individual errors of the model predictions against each pattern are shown in
Table 3.3 and result in a mean relative error of 10.9%. Albeit its simplicity, the model
is able to reproduce five out of six, and the general properties for each observed pattern
(see Fig. 3.3). This includes: the hollow-curved SAD, the fat-tailed distribution of
individual size (which can not be approximated by an exponential distribution for this
study site), the decreasing number of individuals per species with increasing size, the
power-law behaviour of the SAR on a local scale, the observed dispersion effect for small
radii around focal trees, represented by the pair-correlation function and the decay of

Table 3.3: Relative error of the best found parameter set against each individual pat-
tern.

Pattern Description Relative error (%)
SAD Species abundance distribution 12.4
SSD Diameter stem size distribution 5.6
SID Species individual size distribution 29.0
SAR Species area relationship 12.1
F Distance decay of similarity 4.8
G Pair-correlation function 1.2
Mean 10.9
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Figure 3.3: Visualization of the model predictions against the mean field observations
for the six observed patterns: species abundance distribution (SAD), species-area re-
lationship (SAR), species-individual distribution (SID), stem size distribution (SSD),
distance decay of similarity (F) and the pair-correlation function (G).
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Figure 3.4: Shown is the a) Species size distribution including the observation data, a
fitted theoretical exponential distribution and the result from the simulation model b)
Stem diameter growth of observation data, the potential stem diameter growth and the
realized stem size growth of the simulation model.

similarity with increasing distance.
The Species-individual distribution has the highest relative error of 29.0% over all

patterns. The number of individuals per species is always lower for trees with a DBH >
20 cm. Inspecting results from diameter growth shown in Fig. 3.4 reveals that the realized
stem diameter growth is lower and that the number of species within a certain size class
is higher than observed. Just increasing the potential size growth g has almost no effect,
as the effective size growth is limited by the reduction factor.

3.3.2 Global parameter screening
The qualitative model screening is carried out as explained in Section 3.2.3. The heat
meap of µ∗-values shown in Fig. 3.5 is a first indicator that cm, dm, mb and m are
the most sensitive parameters, while the SAD and F are the most sensitive patterns.
The aggregated screening results shown in Fig. 3.6 allows a closer examination. All
parameters, processes and patterns show nonlinear behaviour and/or interaction effects
indicated by the boundary line µ∗/σ (based on a classification scheme proposed by
Sanchez et al. (2014)). The overall most sensitive parameters and patterns conform
with our estimates from the heat map, while parameters and patterns related to size
growth are the least sensitive. Individual µ∗,σ-plots on each pattern are shown in the
Appendix Fig. B.1. Aside mortality related parameters the two most additional sensitive
parameters on each individual pattern are: the fundamental biodiversity number θ and
the immigration probability m on the SAD, the number of species in the metacommunity
S and the potential diameter growth g on the SID, the potential diameter growth g and σ
of the growth competition kernel on the SSD, the dispersal mean dm and the immigration
probability m on all spatial patterns G, F and SAR. Grouping the parameters into
process classes as discussed in Section 3.2.3 shows that the ranking of processes is:
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mortality, dispersal, migration and size growth, from most to least sensitive.
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Figure 3.6: Global model screening results on all parameters, patterns and processes.
Points above the boundary line show nonlinear behaviour and/or interaction effects. The
patterns shown are the species abundance distribution (SAD), species-area relationship
(SAR), species-individual distribution (SID), stem size distribution (SSD), distance de-
cay of similarity (F) and the pair-correlation function (G).
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3.4 Discussion
In this study we extended the classical neutral theory by incorporating individual tree
size. In contrast to previous studies (O’Dwyer et al., 2009) tree size is in our model di-
rectly connected to mortality through intra&inter-specific crowding competition, based
on actual tree diameter as assumed in statistical neighbourhood models (Uriarte et al.,
2004). Individual tree size is therefore affected and effects the processes in its local
neighbourhood. The model also extends beyond previous simplifications of simulation
models based on neutral theory (Chave et al., 2002). As the model does not rely on
constant community size (zero-sum), the number of individuals fluctuate in time. This
can be interpreted as non-constant resource availability (Etienne et al., 2007a). Addi-
tionally, we presented a new construction scheme for the metacommunity by sampling
from a mean rank abundance curve. This avoids the inevitable uncertainty regarding
model predictions by not sampling from a specific realisation.

Recent advances in the calibration of dynamic vegetation models (Lehmann and Huth,
2015) enabled us to evaluate the ability of the model to reproduce observational patterns
within a short time-frame using high performance computing clusters. This is especially
useful in the context of future hypothesis testing on community models, as this technique
allows to discriminate between conflicting theories rapidly.

The introduction of tree size allows the prediction of new biodiversity patterns. As
examples we used in this study the individual tree size distribution, the species size
distribution and as a structural conjunction: the species-individual distribution. We
found that the model is able to predict the main dynamics of all six spatial and non-
spatial patterns simultaneously (using a single parameter set) and fits five of the six
patterns within a narrow error bound. That means that the presented model, despite
its simplicity, incorporates enough mechanism to correctly predict several fundamental
diversity pattern. It is therefore a possible realistic representation of the dominant
ecological processes which shape the structure of diverse tropical forest communities.

From our perspective a highlight of this study is the combination of model calibration
and global model behaviour screening to identify uncertainties, correlations, sensitivities,
nonlinear and interactive effects among parameters and processes. We estimated that
the fundamental biodiversity number θ, the immigration probability m and the potential
stem diameter growth g are highly correlative parameters, while the estimate of m is
also highly uncertain. The parameters θ and m correlate the most with the number of
species in the metacommunity S and both dispersal kernel related parameters. As the
dispersal is a sensitive process on all spatial patterns their exists an indirect link to the
prevalent species composition. The same effect can be observed on the potential stem
diameter growth g, which correlates with all mortality related parameters. That means,
even through size growth is estimated to be the least sensitive process in the model
its indirect connection to mortality (the main driver in shaping community structure)
reveals its importance on the overall dynamics.

We detected that the observed species size distribution can be perfectly described
through an exponential distribution (see Fig. 3.4a) for trees with a DBH ≤ 100 cm at
the study site. This distribution can be interpreted as the equilibrium distribution of a
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one dimensional transport equation, where individual species recruit into the smallest
diameter class, grow in size and die at a constant rate. However, the model was not able
to correctly predict this distribution and the directly linked size distribution of individu-
als per species in a simultaneous framework. We found through additional analysis that
the local mortality and the effective stem size growth rate are too slow. Nonetheless,
this results in a good prediction of the stem size distribution. Additionally, we estimated
a lower immigration rate, higher diversity and lower mean dispersal distance than pre-
vious studies. Such an effect is also seen in May et al. (2015) for the parameters that
represented the best compromise in fitting all patterns simultaneously. Increasing the
immigration rate (while decreasing diversity) or mean dispersal distance would distort
the spatial structure and directly affects competition indices and thus size growth and
tree mortality. We argue here that the representation of dispersal through a single local
dispersal kernel and random placement through immigration might be too simplistic.
This illustrates the importance of confronting the model with several patterns at once,
as each carries different aspects of the underlying ecological processes and provides the
basis for subsequent identification of misspecified mechanisms (Wiegand et al., 2003;
Grimm et al., 2005).

The results let us conclude that the presented model is an important extension of
existing models in the context of neutrality. It is the first neutral model to date that
is able to predict various spatial, non-spatial and size-related biodiversity pattern si-
multaneously. We presented a complete framework including the combination of model
calibration and global screening, which can be used to test future hypotheses about
community structure in forests. In the future more complex dispersal and competition
modes can be tested, as the model has shown some limitations regarding the interaction
of growth, dispersal, mortality and species composition. As this points to the possible
involvement of non-neutral processes, future work could rely on the framework of Uriarte
et al. (2010) and Fortunel et al. (2016).
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Chapter 4

The global state of forest
fragmentation: linking high-resolution
maps and innovative cluster analysis

This chapter is currently under review as Lehmann, S., Fischer, R. Huth, A. (2017).
“The global state of forest fragmentation: linking high-resolution maps and innovative
cluster analysis”. Landscape Ecology

Abstract
Cluster analysis of forest cover is a fundamental method for quantifying the state of
forest fragmentation. High demands on computing resources are needed for current high
resolution forest cover maps. We demonstrate how important features of forest fragmen-
tation can be captured using an innovative method for cluster analysis in combination
with data compression. We present for the first time results regarding the structure and
size of all forest fragments using a 30 m map, globally and in three biomes: tropical,
temperate and boreal forests. Our results show that the forests worldwide contain 409
million fragments and that 36% of global forest area lies within 100 metres of forest
edges. By providing a world map showing the global state of forest fragmentation, we
discover that the forest area in poor condition is twice as high in temperate and boreal
forests as in tropical forests.

4.1 Introduction
Global forests cover 30% of total land surface (Bonan, 2008; Hansen et al., 2010). Forests
provide important ecosystem services such as carbon storage, regulation of the hydrologic
cycle and forest products (Bonan, 2008). Deforestation and fragmentation of forests by
human activities occurs worldwide and is the main driver for biodiversity loss and species
extinction (Pereira et al., 2010; Rands et al., 2010). Fragmentation leads to altered
microclimate conditions in forest edges (Ewers and Banks-Leite, 2013), such as higher
light incidence, reduced humidity and higher temperatures. This results in increased tree
mortality and subsequently lower above-ground carbon stocks in edges (Laurance et al.,
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2002; Harper et al., 2005; Broadbent et al., 2008; Laurance et al., 2011). The alteration
of forest structure has an impact not only on global carbon budgets, it also affects habitat
quality as a result of changing forest dynamics within forest edges (Groeneveld et al.,
2009; Pütz et al., 2014). Thus, quantification of forest fragmentation is an important
task for monitoring the progress of global deforestation and change in habitat conditions.

Previous studies aimed at forest fragmentation were either evaluating local structural
quantities using moving windows (Wade et al., 2003; Riitters et al., 2000, 2016), nearest
neighbour approaches (Haddad et al., 2015) or concentrated on a regional scale (Pütz
et al., 2014) only. Non of these studies provide a deeper insight into the global distribu-
tion of forest fragment quantities.

In this study we analyse forest fragmentation at a global scale based on maps of forest
cover (Hansen et al., 2013). In the course of this, we answer three specific questions. (1)
Is it possible to construct an efficient method using standard computational resources
to calculate properties of each forest fragment on a global scale? (2) How can forest
fragmentation be characterized at global scale and for three forest biomes? Can we
observe differences between the biomes? (3) How can the condition of forest fragments
be characterized and can this be visualized in a global map? On one hand the answers to
these questions provide a theoretical insight into the inherent structure and an outlook
about underlying ecological processes of forest fragmentation. On the other hand a global
view on deforestation provides informations on future decisions regarding conservation.

4.2 Material and methods
4.2.1 Database: Hansen’s forest cover map
To demonstrate our developed methods we analysed the high resolution forest cover
map from Hansen with tree cover data from 2000 (Hansen et al., 2013). The map
has a resolution of 1 arc second per cell (pixel) (≈ 30 m at the equator) and is based
on Landsat data. The map extends from 80°N,180°W to 180°E, 60°S with a total of
1 440 000 · 560 000 pixels (≈ 108 pixels, 51.3 GB compressed GeoTIFF size). The map’s
surface area of 47 174.12× 106 ha is 3718.22× 106 ha less than the WGS-84 ellipsoid
surface area of 50 892.34× 106 ha due to missing data around the poles. Following
Hansen et al. (2013), we also used a bi-level forest/non-forest classification threshold
value of 50% forest cover for the main analysis in order to match the published results
for the total forested area. Other values reported in the literature are 0% (Riitters et al.,
2016) and 30% (Sexton et al., 2013).

4.2.2 The advanced cluster analysis algorithm
The classical Hoshen-Kopelman algorithm (Hoshen and Kopelman, 1976a), as a special
case of the union-find algorithm and its recent developments (Bailey and Johnston,
2007), serve as a basis for our new developed cluster analysis algorithm.

The bi-level forest/non-forest grid is considered a graph, in which each forest pixel
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is a single vertex. The cluster analysis algorithm performs a top-down raster scan on
the map grid and assigns labels (represented as integers) to occupied (forest) cells. As
multiple labels can refer to the same cluster (e.g. U-shaped clusters), a set of labels
which refer to the same cluster is termed an “equivalence class”, while a representative
element of this class is termed “root”.

Each time an occupied cell is encountered a check is done to determine, whether
this cell has any occupied neighbouring cells (here: 4-connected, cardinal directed cells
N/S/E/W), which have already been scanned. If so, a union operation is performed to
specify that this neighbouring cell belongs to the same equivalence class. Then a find
operation is performed to find the representative member of the equivalence class with
which to label the current cell. If the current cell has no neighbouring cells occupied
by forest it is assigned a new, previously unused label. For analyses that go beyond
the numerical characterisation of forest fragments (see Section 4.3.2) the grid has to be
scanned a second time, where only find operations are used to re-label cells with their
final assignment of the representative element. For details on the used data structures see
Section C.1. The cluster analysis algorithm and its subsequent modules are implemented
as a C++ program and is available on request.

4.2.3 Compression of labelled forest fragment maps
In case of a full two-pass cluster analysis a map with temporary labels is created in a first
pass and a map with final labels in the second pass. For modern high-resolution maps
the labelled images take up large amounts of space. For example, the 30 m label map
from Section 4.2.1, using 64-bit labels for the worst case checkerboard scenario, would
consume about 6000GB (1.440.000 · 560.000 · 8/10244) of space - too much to be held
in random access memory (RAM). Even if we have a hard drive that can hold the map,
reading it completely would take more than 8 hours, at an average sequential reading rate
of 200MB s−1. So, we are limited, both by storage size and access speed. To overcome
these limitations an online compression mechanism has been used. It compresses at
least enough to compensate the additional processing time needed for decompression in
comparison to using no compression. The here developed method is specially adapted
for correlations in labelled maps and is possible to reduce the size of the labelled map
from Section 4.2.1 from 6TB down to 8.8GB, a reduction factor of ∼ 680. Details on
the algorithm are presented in Section C.2.

4.2.4 Forest fragment characteristics
We used an equirectangular projection of the forest cover map using the WGS84 ellipsoid
(EPSG:4326 projection), which enables us to use simple methods to calculate length
and area of each map element (cell or pixel). To calculate distances, we can not use the
famous Vincenty formula (Vincenty, 1975), because this method measures distances on
a geodesic between two points on an ellipsoid and not along a circle of latitude (rows in
equirectangular projection) or along a meridian (columns in equirectangular projection).
Nonetheless, exact formulas for the calculation of pixel length and area along a circle
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of latitude do exist (see Section 4.2.4 and Section 4.2.4). As pixel edge lengths and
pixel areas stay the same along a circle of latitude in equirectangular projection, we
precalculate pixel lengths and pixel areas for every row of the map to enable faster
processing.

Forest edge detection and edge length calculation

The von Neumann neighbourhood (N/W/E/N) serves as a basis for the analysis of
neighbouring cells. To be recognised as an edge of an forest fragment, each of the
four sides of a forest pixel is tested, to determine whether at least pe pixels are non-
forest pixels in the specific cardinal direction. See Fig. C.1 in the supplementaries for a
graphical explanation. If a pixel is classified as an edge of a forest fragment, its length
is calculated depending on whether it is an edge along the meridian at a certain latitude
(vertical) or along a circle of latitude at a certain longitude (horizontal). The selection
of pe effects results regarding edge length and edge affected area. The obvious choice of
pe = 1 pixel at the equator is not useful for high resolution maps, as the length of a pixel
on such a map corresponds to 30 m near the equator. We choose pe to be the number of
pixels which equals a distance of ≈ 60 m. This results in pe = 2 vertical and horizontal
pixels at the equator and up to pe = 12 horizontal pixels near the poles. The question,
how considering diagonal pixels in the edge detection algorithm changes result, is not
part of this study.

To calculate the horizontal distance dh (m) at latitude φ (rad) for a longitudinal
difference of ∆λ (rad) we use an exact formula (Osborne, 2013):

dh(φ,∆λ) = a√
1.0− e2 · sin2(φ)

· cos(φ) ·∆λ , (4.1)

where a (m) is the length of the semi-major axis of the WGS84 ellipsoid and e2 (m) is
its squared eccentricity. To calculate the vertical distance dv (m) on the meridian of a
latitude pair φ1 and φ2 we use a polynomial approximation (see e.g. Osborne (2013)):

v(φ) = a0 sin(φ)− a2 sin(2φ) + a4 sin(4φ)
− a6 sin(6φ) + a8 sin(8φ)

dv(φ1, φ2) = v(φ2)− v(φ1)
(4.2)

The coefficients are a0 = 6367449.156, a2 = 16038.509, a4 = 16.833, a6 = 0.022 and
a8 = 0.00003 in metre.

Fragment area calculation

Although approximate methods like the trapezoid formula can be used to calculate pixel
area, we use the exact formula for improved accuracy. Because a priori tabulated values
are utilised during the analysis, there is no additional negative impact on the running
time of the program. Calculation of the surface area A(φ,∆λ) (m2) of a latitude-
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longitude rectangle from latitude φ to zero using the exact formula (Mularie, 2000)
yields:

t =
√

1.0− b2/a2

zm = 1.0− t · sin(φ)
zp = 1.0 + t · sin(φ)

A(φ,∆λ) = 2∆λ · b2 tanh−1(t · sin(φ))
t

+ sin(φ)
zp · zm

,

(4.3)

where a (m) is the length of the semi-major axis of the WGS84 ellipsoid and b (m) the
length of its semi-minor axis. The area of a rectangle from latitude φ1 to φ2 is then
simply the difference A(φ1, φ2,∆λ) := A(φ1,∆λ)− A(φ2,∆λ).

Estimation of edge-affected area

To estimate the edge-affected area of a fragment we use the Didham&Ewers core area
model (Didham and Ewers, 2012). The edge-affected area depends on the shape of the
fragment: the higher the perimeter-to-core ratio, the higher the fraction of edge-affected
area. The size index (Patton, 1975)

SI = P

2
√
πAT

, (4.4)

where P (m) is the fragment’s border length (perimeter) and AT (m2) its total area,
is a scale independent measure to quantify the deviation of a fragment’s shape from
circularity. It ranges from 1.0 for a circle to +∞ for increasing shape complexity. The
edge-affected area AE (m2) is estimated using the size index SI depending on the edge
effect depth dE (m2):

AE ≈ dEP − S2
Iπd

2
E (4.5)

This formula has its maximum at PdE = 2AT . When PdE > 2AT we set AE = AT .
The spatial range for edge effects varies from 10 m to more than 1000 m (de Paula

et al., 2016). Throughout this study we use an edge effect depth dE of 100 m as a rather
conservative (Laurance, 2000; Laurance et al., 2011), but not important choice, because
we do not evaluate additional habitat impacts like carbon loss through edge effects.

4.2.5 Structural fragment analysis for different ecoregions
In addition to analysing the forest cover map, we intersected the forest fragment map
with a map of 14 terrestrial ecoregions (Olson et al., 2001a) rasterised at 90 arc seconds.
The eight forest biomes are merged into three zones: tropical (tropical and subtropi-
cal moist broadleaf forests, tropical and subtropical dry broadleaf forests, tropical and
subtropical coniferous forests), temperate (temperate broadleaf and mixed forests, tem-
perate coniferous forests) and boreal (boreal forests/taiga). This results in four maps,
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where each analysis can be done in a single pass over the forest cover map (see Sec-
tion 4.2.2). This takes ∼ 01:30h on a 3.20Ghz CPU using at most 150MB of system
memory. For this part of the study we calculated for every forest fragment the size,
edge length, edge area and the shape index. Based on this we derived four distributions,
where the independent variable in each case is represented by 10 fragment size classes
[0− 1), [100 − 101), ..., [108 − 109) in ha:

1. number of fragments (fragment size distribution)

2. forest area (fragment area distribution)

3. forest edge area (fragment edge area distribution)

4. mean shape index (fragment shape index distribution)

For the calculation of edge-affected area we assume an edge depth of dE = 100 m. (see
Section 4.2.4). To test how the fragment distribution and the shape index distribution
can be described through a functional relationship, we fit a power law p(x) ∼ x−α via
maximum likelihood method (Virkar et al., 2014) to all bins except the first and the
last. This selection minimized the test statistic of a two-sample Kolmogorov–Smirnov
test.

4.2.6 Mapping forest conditions in relation to fragmentation
For a graphical representation of forest fragment condition we created a 4-colour map
showing the relation of forest fragment core area to the total fragment area, as an
index of local forest condition. This value ξ, ranging from 0 to 1, expresses the relative
amount of edge-affected area from each forest fragment. Higher values represent better
fragment conditions, as the fraction of unaffected core area is higher. For better visual
differentiation, we grouped these values into 4 distinct classes:

1. “poor”: ξ ≤ 25% (core area/total fragment area)

2. “moderate”: ξ ≤ 50%

3. “good”: ξ ≤ 75%

4. “very good”: otherwise

The calculation of the classification map needs two passes over the forest cover map (see
Section 4.2.2) and uses the developed compression scheme (Section 4.2.3) for efficient
procession of intermediate results. For presentation purposes the classification map has
been resampled using a factor of 1:250 (≈ 6 km pixel length at the equator, Fig. 4.4).
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Table 4.1: Summary of results for the forest fragment analysis using a threshold of
50% for forest/non-forest classification and dE = 100 m edge effect depth. Note that
the global results are not the summation of the individual biomes, but the result of a
separate analysis including non-forest biomes.

Feature Unit Boreal Temperate Tropical Global
Num. of Fragments 106 122.97 73.78 83.76 409.22
Land surface area 106 ha 1512.10 1691.34 2349.38 47174.12
Forested area 106 ha 710.49 679.33 1452.38 3300.24
Edge length 106 km 60.02 51.65 51.58 221.20
Edge area 106 ha 317.37 304.00 294.85 1177.26
Edge area / % 44.7 44.7 20.3 35.7
total forested area

4.3 Results
4.3.1 Global analysis of forest fragment structure for the year 2000
For the forest fragment analysis we analysed forest cover at global scale and separately
for the three forest biomes (temperate, boreal and tropical). For every fragment we
calculated fragment size, fragment area, fragment edge area and the shape index (see
Section 4.2.5).

A summary of the analysis results is shown in Table 4.1. Total forested area is esti-
mated to be 3300.24× 106 ha which matches the result from other studies (Hansen et al.,
2010). The largest proportion of forested area lies within the tropical biome (62% of
its surface area), while its fragmentation condition is the best among the other biomes,
indicated by the relation of edge area to total forested area. 35.7% of the global forest
area lies within 100 m of forest edges (20.3% for tropical, 44.7% for temperate and 44.7%
for boreal forests). An additional analysis using a different threshold for vegetation cover
is shown in the Appendix (Table C.1).

Table 4.2: Summary of power-law fits to the a) fragment size distribution and (Fig. 4.1)
and b) shape index distribution (see also Fig. 4.3) of different forest biomes. Shown is
the estimated scaling exponent α, its approximative 95% confidence interval and p-value
using a two-sample Kolmogorov-Smirnov test. All values indicate strong evidence for
the assumption of a power-law distribution.

(a)

Biome α 95% CI p-value
Global 1.86 [1.86, 1.86] 1
Tropical 1.87 [1.87, 1.87] 1
Temperate 1.80 [1.80, 1.80] 1
Boreal 1.92 [1.92, 1.92] 1

(b)

Biome −α 95% CI p-value
Global 1.35 [1.34, 1.35] 1
Tropical 1.30 [1.29, 1.30] 1
Temperate 1.33 [1.32, 1.33] 1
Boreal 1.39 [1.39, 1.40] 1
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Figure 4.1: Number of forest fragments for different size classes on a log-log scale,
classified by forest biome. (a) boreal, (b) temperate, (c) tropical, (d) global
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Figure 4.2: Core and edge area for different fragment size classes on a log-log scale
classified by forest biome where (a) boreal, (b) temperate, (c) tropical, (d) global. Per-
centages show the portion of core area within the fragment size class.
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Figure 4.3: Analysis of forest fragments (a) Probability distribution of the shape index
(values > 20 are omitted) and (b) mean shape index in relation to fragment size classes
(shape index distribution) on a log-scale, for each biome and global forests.
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Fig. 4.1 displays the derived fragment size distribution for the boreal, temperate and
tropical biome. The number of fragments shows a similar steep decline with increasing
fragment size. A fitted power law is in good agreement with the data, while the scaling
exponent α lies in all biomes between 1.8 and 1.9 (see Table 4.2a). Fig. 4.2 shows how
forest area is distributed over different fragment size classes for the boreal, temperate
and tropical biome. Total forested area is increasing with fragment size class for each
biome, except for the given largest fragment size class in temperate and tropical forests.
With increasing fragment size an increasing portion of its area is estimated to be core
area, while for small forest fragments almost the whole area corresponds to edge area.
The largest fragment size class (108 − 109 ha) reaches a core area of 72% , 77% and
94% in the boreal, temperate and tropical forests. A better insight into the structure
of forest fragmentation is given by the distribution of the shape index in Fig. 4.3. More
than 97% of the global forest fragments have a shape-index < 2 and thereby a more
circular shape. The circular shape is dominant for small fragments. Fragments larger in
size also increase in shape complexity. Nearly 30% of the global forest fragments have
a shape index < 1. This is plausible because an edge of a forest fragment has to have
a minimum distance to another edge to contribute to the edge-length according to our
method (Section 4.2.4). This indicates a large amount of small non-isolated fragments
across the landscape. A fitted power law is in good agreement with the mean shape index
distributions, while the scaling exponent α is in all biomes around −1.3 (see Table 4.2b).

4.3.2 Global analysis of forest fragment condition for the year 2000
The map (construction details in Section 4.2.6) shown in Fig. 4.4 gives a simplified
overview of the condition of forest fragments across the world, while a more detailed
summary is shown in Table 4.3. Within the tropical biome most of the fragments are in
very good conditions with a small amount of edge-affected area (73.5% of total forested
area). Only 6.7% of the forested area in the tropics is in poor condition. For temperate
forests, an area subject to strong anthropogenic influences, 69.1% of total forested area
is in good or very good condition (Table 4.3). However, the fraction of forest area in
poor condition is with 14.2% more than twice as high as in the tropics. This is also the
case for the boreal biome, where 15.4% of total forested area is in poor condition and
69.4% is in good or very good condition, with larger unaffected areas in Russia’s boreal
forest.

For a detailed view of forest condition we derived a cumulative distribution (Fig. 4.5a),
where the fraction of core area to total area of each forest fragment is binned and its
area accumulated in relation to total forested area. For example, the probability that
the area of a tropical forest fragment has a core area ≤ 80% (20% of its area lies within a
100 m edge) is about 25%, while the probability that the area of a boreal forest fragment
has a core area ≤ 80% is about 95%. The fragment state distributions for temperate
and boreal forests are rather similar and are always above the distribution for tropical
forests. This illustrates the results from Table 4.3 that forest fragments in the tropical
biome are in a general better state than in the temperate or boreal biome.

The proportion of forest area that lies within different distances to the forest edges
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Figure 4.5: Condition of forest fragments globally and classified by forest biome. (a)
Fraction of core area to total area of a forest fragment in relation to total forested area,
as an index of fragment state (edge effect depth of dE = 100 m), (b) Proportion of forest
area that lies within different distances to the forest edges.
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Table 4.3: Proportion of forest fragment area in a certain condition expressed as frag-
ment core area versus total fragment area assuming an edge effect depth of dE = 100 m.

ξ (fragment core area / total area)
poor moderate good very good

Biome ≤ 25% ≤ 50% ≤ 75% > 75%
Global 13.4% 11.5% 30.0% 45.0%
Tropical 6.7% 4.9% 14.9% 73.5%
Temperate 14.2% 16.8% 48.7% 20.4%
Boreal 15.4% 15.1% 38.8% 30.6%

(Fig. 4.5b) emphasises these findings. For the temperate and boreal biome nearly 100%
of forest area lies within 1000 m of forest edges, while this holds only for 68% of tropical
forest area.

4.4 Discussion
Here we have presented a global fragment analysis based on high-resolution forest cover
maps. This analysis was possible by using a new methodological framework including
an advanced cluster analysis algorithm combined with a unique data compression. The
practicability of the method was demonstrated through the analysis of a global 30 m
forest cover map (Hansen et al., 2013). Thereby it is possible to conduct global forest
fragment analysis for edge detection, connectivity, thresholding and intersection with
general maps (e.g. elevation or fire data) in a short time frame on a desktop computer.
Unlike previous global studies on the structure of forest fragments (Wade et al., 2003;
Riitters et al., 2000, 2016; Haddad et al., 2015) the method presented here is able to
explicitly capture the individual properties of each single fragment (area, circumference,
edge-area etc.), independent of the fragment size.

The calculation of edge-affected area is an important aspect of the fragment analysis,
which includes the detection and evaluation of forest edges. As forest fragmentation can
occur on small spatial scales (< 100 m) our study benefits from the high (30 m) resolution
of the tree-cover map. Future studies could include more sophisticated methods for
fragment and edge detection to avoid cases where either almost isolated forest areas are
counted as single fragments or small clusters of non-forest area in undisturbed forest
areas contribute to the estimated forest edge length.

One of our main findings, that 35.7% of the global forest area lies within 100 m of
forest edges, highlights the importance of current observation and conservation efforts,
because the increased fraction of 44.7% in temperate and 44.7% in boreal forests in
comparison with 20.3% for tropical forests is an indicator for anthropogenic impacts on
the structure of tropical forests. For better comparability, we additionally estimated
that 76% of global forest area lies within 500 m of forest edge, a value higher than the
estimates from previous studies using different methods (60% within 700 m (Haddad
et al., 2015) and 62% within 700 m (Riitters et al., 2016)).
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4.5 Conclusion

While the forest fragments core and edge area is heterogeneously distributed across the
different forest biomes the fragment size distribution and the shape index distribution
have a similar shape, where each can be described through power-laws. This could be
an indicator for a dominant underlying ecological process, which shapes the structure of
forest fragmentation.

4.5 Conclusion
The here presented approach to quantify global forest fragmentation is an important
extension of existing methods. Through the combination of an advanced cluster-analysis
algorithm with a unique data compression scheme it is now practicable to estimate
properties of each single forest fragment on a global scale using high-resolution maps.
The method has a broad range of applications not covered in this study. It can be used
to quantify fragmentation of other ecosystems or additional analysis by combining it
with ecological informations from other available maps (e.g. fire or elevation data).

Land-use causes fragmented landscapes all around the world. To maintain ecosystem
services and improve decisions regarding biodiversity conservation, a global monitoring
of forest fragmentation is important. We show that the state of forest fragmentation is
very heterogeneous across different forest biomes with a continuous need for conservation
and restoration. For this reason our developed high-resolution map of the global state
of forest fragmentation is a helpful tool for future decisions. In conclusion, our analysis
highlights the importance of forest fragmentation in forest ecology and conservation
biology.
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Chapter 5

Discussion and perspectives

In this thesis we have shown how innovative modelling methods help to improve upon
the existing knowledge of specific aspects of natural forests. At the core of each chapter a
modelling framework was developed. These frameworks, implemented in separate C++
programs (totalling over 30 000 lines of code), were already used in other studies and
can be applied to future ecological questions due to their general formulation. In the
following, we will address what has been archived, what are possible extension to the
frameworks, and what are future research directions.

5.1 Model calibration and uncertainty assessment
We have shown in Chapter 2 that simple methods of stochastic optimization are able to
properly identify parameters for a size structured model of tropical rain forest. These
methods are thus a practical alternative for computational more demanding methods
based on Bayesian calibration. Stochastic search methods do not rely on the ability to
calculate first and/or second order derivatives and are not prone to slow convergence or
trapping into local minima, if the objective function is non-smooth or otherwise patholog-
ical (Hoos and Stützle, 2004). We emphasised the importance of using a set of diagnostic
tools for inspecting parameter uncertainty, general identifiability and appropriate model
complexity. Our most important finding was that the minimum amount of observation
data needed to calibrate the forest model are total stem number, basal area and biomass.
That means, these three properties of forest structure carry enough information to make
a plausible estimate of the underlying stem size distribution. The framework can thus
be applied at forest sites where only a limited amount of observations is available. As
the developed framework is independent of the model under investigation, it has already
been applied in other studies (May et al., 2015; Rödig et al., 2017).

Theoretically, the number of model parameters that can be calibrated using this frame-
work is unlimited. For the dynamic vegetation model from Chapter 2, three parameters
per species (nine in total) were calibrated, May et al. (2015) calibrated six parameters
and for the neutral model from Chapter 3, 12 parameters were calibrated. With increas-
ing number of parameters one usually increases the number of realized model evaluations
to make accurate estimates. We used 10 000 times the number of parameters which have
to be calibrated as a rule of thumb, although one of the used calibration methods (Dy-
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namically Dimensioned Search, Tolson and Shoemaker (2007b)) was already applied
to a watershed problem with 30 parameters using only 2000 model evaluations. This
demonstrates that the calibration methods are applicable to high dimensional calibration
problems using a small amount of model evaluations, for example, a dynamic vegetation
model like FORMIND Köhler and Huth (1998); Fischer et al. (2016), which uses about
50 parameters.

If the available data to calibrate the model does not contain enough information
to distinguish all processes, multiple or even an unlimited number of solutions to the
calibration problem can exists. That means in this case (some) parameter estimates are
highly uncertain. Reducing this uncertainty further is a question of data availability
on specific scales. The usage of remote sensing data in combination with local field
measurements offers the possibility to infer parameters of previously imprecise described
processes.

We therefore advocate a future extension of the framework through a procedure which
automatically identifies unidentifiable parameters and what patterns contain informa-
tion for which model processes. As this can be a time consuming task one possibility
is to use computational inexpensive meta modelling techniques. In a meta modelling
framework the simulation model is only executed at specific design positions (e.g. based
on Latin Hypercube sampling, McKay et al. (2000)) in the parameter space. The models
response between the design points is then interpolated. This approach would provide
the following improvements to the existing framework: the usage of advanced stochas-
tic search methods for calibration based on radial basis functions and kriging methods
(Regis and Shoemaker, 2005; Gu et al., 2012) and fast execution of MCMC methods
using Gaussian processes (Conti et al., 2009; Fricker et al., 2013). The estimation of
parameters and processes, which are identifiable through available observations, is then
a task of automatic and fast evaluation of the meta model. Although experiments based
on these methods show promising results, their effectiveness depends on the complexity
(non-pathological, smoothness) of the underlying model response.

In addition to reducing uncertainty of parameter estimaters, quantifying uncertainty
in processes and parameters is also an important aspect of future extensions. As we
have only used linear approximation and error propagation at the estimated parameter
optimum, this played only a secondary role in our study. The quantification of uncer-
tainty should include the evaluation of structural model uncertainty, input parameter
uncertainty and measurement uncertainty of observations. A task which is hard to solve
satisfactorily. Recent developments in hydrology using sequential data assimilation and
particle filtering show promising results regarding the evaluation of different aspects of
uncertainty (e.g. Moradkhani et al. (2005) or Liu and Gupta (2007) for a review of
methods). These methods work in the context of state-space models, which can gen-
erate estimates of unobserved variables. A state-space model typically consists of two
equations: a measurement equation which links observed to unobserved state variables
and a transition equation which describes the dynamics of the state variables (Luo et al.,
2013).
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5.2 Understanding the mechanisms that shape
biodiversity

We have shown in Chapter 3 that a neutral model, where size-growth and mortality are
directly connected through competition for space, is able to explain various spatial, non-
spatial and size-related diversity patterns in a tropical forest. This has been archived
by a careful extension of the existing theory. In addition to the incorporation of plant
size growth, the metacommunity is represented through a static distribution to avoid
variations in the regional species distribution. And a variable number of individuals in
the local community reflects varying resource availability.

We evaluated the predictive power of the neutral model using the inverse modelling
framework from Chapter 2 and extended the framework through a qualitative global sen-
sitivity analysis based on the elementary effects methods (Morris, 1991). This allowed
the additional evaluation of uncertainties, correlations, sensitivities, nonlinear and inter-
active effects among parameters and processes. Albeit its simplicity, the model was able
to explain the main dynamics of six biodiversity patterns including the species abun-
dance distribution, the species-area relationship and the tree size distribution. However,
the model was not able to explain the number of species for different tree size classes
precisely. We found that there possibly exist missing or misspecified mechanisms. This
results in a local species richness which is slightly too diverse and an effective tree size
growth which is too low. This emphasizes the importance of confronting a model with
several patterns at once, as each pattern carries varying aspects of the underlying eco-
logical processes (Wiegand et al., 2003; Grimm et al., 2005).

The combination of fast model calibration and global sensitivity analysis can be used
to test future hypotheses about ecological communities and vegetation dynamics. This
includes advanced dispersal mechanisms, as the estimated dispersal parameters were
lower than expected. The difference of some patterns within our model points to possi-
ble non-neutral processes. Future work could therefore rely on the studies of Uriarte et al.
(2010) and Fortunel et al. (2016) to test the impact of species-specific neighbourhood
processes on size growth and mortality. Trait differences expressed as fitness differences
between species can be incorporated through species-specific competition coefficients.
The relation of niche differences (degree on which intraspecific competition exceeds in-
terspecific competition) in relation to fitness differences between species emerges new
patterns through which conditions for coexistence can be analysed (Kraft et al., 2015).

5.3 Analysis of high-resolution forest cover maps
We have presented in Chapter 4 a forest fragment analysis on a global scale using
high-resolution forest cover maps. This was possible using a new methodological frame-
work, where an advanced cluster analysis algorithm is combined with a specialized data
compression method. The feasibility of the framework was demonstrated through the
analysis of a global forest cover map with a resolution of 30 m (Hansen et al., 2013).

In contrast to previous studies (Wade et al., 2003; Riitters et al., 2000, 2016; Haddad
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et al., 2015) the developed method is able to explicitly capture individual properties
of each single forest fragment, e.g. area, cirumference or edge-area. One of our main
findings is that 35.7% of global forest area lies within 100 m of forest edges. On a biome
level, tropical forests show the best condition with 20.3%. This value is higher in tem-
perate (44.7%) and boreal (44.7%) forest. That could be an indicator for anthropogenic
impacts on the structure of forests in these areas. Additionally, we found that the forest
fragments core and edge area show different distributions across the three forest biomes,
while the fragment size and shape index frequency distributions have a similar shape
across the biomes. These two distributions can be described through power-laws, which
could be an indicator for a dominant underlying ecological process.

The present framework for forest fragment analysis has a broad range of future ap-
plications. It was already applied for the estimation of carbon loss in tropical forests
through deforestation (Brinck et al., 2017). This was archived through the additional
usage of three pan-tropical biomass maps (Saatchi et al., 2007; Baccini et al., 2012;
Avitabile et al., 2016), were we calculated the biomass of each single forest fragment and
estimated the expected carbon-loss through edge effects.

To analyse how the structure and state of forest fragmentation changes with environ-
mental factors, elevation, fire or climate data maps could be used for further classifica-
tion. The framework would be also applicable to time-series of global forest cover maps
to analyse how forest fragmentation changes with time. This task needs the accurate
estimation of forest gain and losses depending on the spatial origin within a fragment
(edge/core). The temporal analysis of forest fragmentation could be based on newly
available global PALSAR forest/non-forest maps with a resolution of 25 m (Shimada
et al., 2014).

The framework could be extended in several ways to better understand the main
ecological drivers that affect forest deforestation. This includes estimates of additional
metrics to characterize forest fragment structure, which improves the understanding of
the effects of fragmentation. Current metrics make estimates on an area, edge and form
level. Patch metrics like the proximity index using neighbourhood analysis can be used to
characterize the connectivity of the landscape (Rutledge, 2003). The proximity index is
inspired by island biography and quantifies the spatial context of a focal patch in relation
to its neighbours. The index has a large value when the focal patch is surrounded by
larger and/or closer patches and decreases as patches become smaller and/or more sparse
(Gustafson and Parker, 1994). Because the calculation of the proximity index depends on
neighbourhood distances, it is highly demanding in computing time for high-resolution
maps.

In addition to the estimation of the scaling exponent of the fragment size distribution
in Chapter 4, other spatial scaling characteristics could be estimated. This enables the
linkage with percolation theory, which makes predictions about several critical exponents
at a phase transition (Stauffer and Aharony, 1994). One of such properties is the fractal
dimension, which is a measure of geometrical structure and describes how the detail of
a pattern changes with scale (Mandelbrot, 1967).
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5.4 Outlook
The outlook of this thesis is the combination of the here presented methods into a large
scale modelling and analysis framework for natural forests. The basis of such a project is
the application of an extended neutral model from Chapter 3 on a regional or continental
scale (e.g. the Amazon or Congo basin). In the extended model tree size growth and
local species composition are not only depending on competition effects but also on
several other environmental conditions like light availability, soil properties, terrain and
climate conditions. The model dynamics should replicate observational dynamics on
spatial and also temporal scales. As data availability from field plots on such a scale
is typically sparse, multiple data sources have to be combined. From the available
data, including remote-sensing data, several patterns and aggregated statistics have to
be extracted. These patterns should describe fundamental ecological processes across
scales including spatial and non-spatial patterns of diversity. In addition to the usage of
directly extracted patterns from remote sensing using the framework from Chapter 4, we
advocate the implementation of an optimized 3D model for the simulation of radiative
transfer (e.g. DART, Gastellu-Etchegorry et al. (2004)). With such a model it could
be possible to estimate structural forest attributes along environmental gradients from
spectral remote sensing data. Calibration, validation and the process analysis of such
a complex model can then be performed with the already discussed extensions of the
calibration framework from Chapter 2.

An important application of this modelling framework is the quantification of the
impact of climate change and deforestation on species diversity on a regional or global
scale.
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A.1 Uncertainty assessment
A popular and fast way way to access parameter and prediction uncertainty is through
the asymptotic normality

√
n(θ̂ − θ) d→ N(0, I(θ)−1) for large samples of the maximum

likelihood estimator, where the covariance matrix I−1 is the inverse of the information
matrix. We approximate the covariance matrix through a first-order taylor expansion
around θ̂ using finite differences:

I−1 ≈ σ2(JTWJ)−1 =: X (A.1)

where J is the Jacobian of m(θ̂). An unbiased estimator for σ2 is the residual variance

σ̂2 = 1
n− k

Q(θ̂) (A.2)

The corresponding parameter correlation matrix C can be calculated through C =
DXD, where D = (In ◦ X)−1 with In the identitiy matrix of dimension n and ◦ the
Hadamard product.

An approximative confidence interval at the significance level α can then be con-
structed through

θ̂i ± tn−p,1−α2
√
Xi,i , (A.3)

where tn−p,1−α2 is the inverse CDF of a Student t distribution with n−p degrees of freedom
at level 1−α/2. Confidence intervals for the prediction m(x̂) can be constructed through
linear error propagation

Y := JXJT (A.4)

m(θ̂)i ± tn−p,1−α2
√
Yi,i (A.5)

If the sample size n is small or the confidence region is non-quadratic, a profile based
approach is better suited (Meyer and Hill, 1992), but can be expensive, if the simulation
evaluations are costly. For profiling the parameter vector θ = θ1 ∪ θ2 gets partinioned
into the parameter set θ1 of interest and the parameter set θ2 of nuisance. The profile
likelihood Lp of θ1 is then Lp(θ1) = L(θ1, θ̂2), where θ̂2 is the maximum likelihood
estimate of θ2 for given θ1.
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A.2 Identifiability
Proper identifiability is an important yet often disregarded problem in parameter esti-
mation. But it is a property a model must satisfy for correct inference. In this context
(unique) identifiability is denoted by a single global minimum of the objective function
Q.

Identifiability consists of two main parts which can be demonstrated at the following
simple population model:

ṅ(t) = αn(t)− βn(t)− γ with γ � (α− β) (A.6)

The two parameters α and β are structurally unidentifiable regardless of the quality
of observation data and is thus a model inherent property. One the other hand the
practical identifiability of γ depends on the accuratness of observation data.

There are different ways of inspecting identifiability:

• Run multiple minimization tasks from different starting points and check whether
Q(θ1) = Q(θ2) for θ1 6= θ2

• Detect structural unidentifiability from model equations (see Section 2.3.1 for an
example)

• Approximative singularity of the parameter covariance matrix X and detection of
strong pairwise linear dependence through high off-diagonal absolute elements in
the correlation matrix C

More systematic approaches include the usage of profile likelihoods (Raue et al., 2009)
and the detection of the most sensitive subset of identifiably parameters (Brun et al.,
2001).

A.3 Model selection
Selecting a model among a set of candidate models is an important task in science. Usu-
ally the selection criterion is based on the ability of explaining a fixed set of observations
(goodness of fit). To not overemphasize complex models, as this may lead to overfitting,
a trade off between the goodness of fit and the number of free parameters should be
made. This is for example achieved by the Akaike information criterion (Akaike, 1974),
which is defined as

AICi = 2ki − 2 logLi(θ̂|y) (A.7)

where ki is the number of parameters and Li(θ̂|y) is the (maximized) likelihood of the
i-th model for p candidate models. For small samples (rule of thumb n/k < 40) a
bias-corrected version AICc of the AIC should be used (Burnham and Anderson, 2002):

AICci = AICi + 2ki(ki + 1)
n− ki − 1 (A.8)
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The AIC value is only interpretable in comparison with different models, where the
preferred model is the one with the lowest AIC value. A discrimination among models
can be attained by using Akaike-weights wi, where

∆i = AICi − AICmin and wi = exp (−0.5∆i)∑p
k=1 exp (−0.5∆k)

(A.9)

The weights can be used to make multimodel inference by building a weighted average
model and interpreted as the probability of model i being the best model for the given
data set.
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B.1 Parameter screening
B.1.1 The morris method for global parameter screening
The morris method for global parameeter screening consists of randomised local one-at-
a-time (OTA) experiments, where each model input parameter xi is assumed to vary
over p levels or k parameters. The region of experimentation Ω is thus a k-dimensional
p-level grid. Let x+

i = (x1, . . . , xi + ∆, . . . , xk), then the elementary effect φi,j of the
parameter i on pattern j is calculated as:

φi,j = MRE(Sjobs, S
j
sim(x+

i ))−MRE(Siobs, S
i
sim(x))

∆ (B.1)

where ∆ is a value in {1/(p − 1), . . . , 1 − 1/(p − 1)}. A convenient choice for the
parameters is an even number for p and ∆ = p/(2(p − 1)). The random sampling of
different x creates a finite distribution φi,j ∼ Fi,j of elementary effects for each parameter
on each output pattern, where the sensitivity measures µi,j and σi,j are the mean and
standard deviation of the distribution Fi,j.

Morris (1991) suggests sampling r elementary effects from each Fi,j via an efficient
design that construct r trajectories of k+1 points. Each trajectory provides k elementary
effects per parameter and thus the total number of experiments is r(k + 1). For our
analysis we choose p = 10 levels and r = 50 trajectories, which results in 650 model
evaluations.

We use recent developments of the method (Campolongo et al., 2007). This includes an
improved sampling strategy by maximizing the spread between the trajectories and thus
maximizing the coverage of the parameter space. Additionally, we use the absolute mean
µ∗i,j of Fi,j instead of µi,j to estimate the overall influence of a factor. The measure µ∗ is
on its own satisfactory to provide a reliable ranking in comparison with computational
more demanding variance based methods, although we loose the information on the sign
of the effect.

B.1.2 Individual screening results
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Figure B.1: Results for global parameter screening on each individual pattern. Points
above the boundary line show nonlinear behaviour and/or parameter interaction effects.
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Figure B.2: Correlation matrix for parameter sets where the objective function is within
5% of the best parameters found.
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C.1 Data structures of the cluster analysis algorithm
The use of intelligent data structure is crucial for the efficiency of the cluster analysis al-
gorithm. For this a label array ’csize’ representing a set of linked lists and a cluster-data
array ’cdata’ is used. The index into the ’csize’ and ’cdata’ arrays indicates the label.
A positive value in the ’csize’ array indicates cluster size in pixels and negative values
redirection to previous nodes in the path to the root. The ’cdata’ array is used to ac-
cumulate any additional structural information in relation to a certain label. Therefore,
after the complete first-pass, every index, whose value of the ’csize’ array is positive,
represents a cluster with additional information about its structure in the ’cdata’ array
for the same index.

Throughout the analysis the two arrays occupy more and more memory as labels are
added to them. If only a single pass analysis is needed and system memory is limited,
one can flush all roots to a temporary file which are not linked by nodes from the actual
row of the forest map. This allows the algorithm to use only a fixed amount of memory
for arbitrary raster map sizes.

C.2 Compression method used on labelled images
As a prior analysis showed, a labelled forest map consists of runs (continuous sequence
of the same value) of zeros (no forest) and runs of a specific label, where labels tend to
be similar (low absolute difference between adjacent labels) along rows. Additionally,
it should be possible to reach a certain row rapidly, without the need to decompress
the previous rows, which implies that the algorithm only considers cells on a single row
independent of other rows. Therefore we focus on a method that is simple to compute
using run length (RLE) and variable length encoding (VLE), because more general
compression methods like ZIP, using a variant of the LZ77 algorithm (Ziv and Lempel,
1977), are not able to capture these special data correlations.

We use gamma codes for encoding integers (Elias, 1975), where a number x ≥ 1 is
coded as N = blog2(x)c zero bits, followed by a one bit and followed by the remaining N
bits of x. This ensures the prefix property of the codes. Thus, the binary representation
of x uses 2blog2(x)c + 1 bits. The usage of gamma codes implies a certain probability
distribution that should roughly match the source distribution.

A single row is decomposed into a set of runs. A run is either a zero runs or a labelled
run. A zero run is coded with a gamma code of ’1’, followed by the gamma code of the
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run length. A labelled run is coded with the gamma code x = |d| + 2, followed by a
single bit, indicating whether d is positive or negative and followed by the gamma code
of the run length. The variable d is the difference between the label of the actual run
and the label of the previous labelled run, or zero if no labelled run has been seen so far.

C.3 Summary of results for a tree cover threshold of
25%

Table C.1: Summary of results for the forest fragment analysis using a threshold of
25% for forest/non-forest classification and dE = 100 m edge effect depth. Note that
global results are the result of a separate analysis including non-forest biomes and not
the summation of the individual biomes.

Feature Unit Boreal Temperate Tropical Global
Num. of Fragments 106 104.32 84.86 87.21 450.06
Land surface area 106 ha 1512.10 1691.34 2349.38 47174.12
Forested area 106 ha 962.48 767.10 1595.16 4165.22
Edge length 106 km 59.33 53.92 53.67 247.02
Edge area 106 ha 356.16 314.66 313.88 1363.51
Edge area / area % 37.0 41.0 19.7 32.7
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C.4 Edge detection method

Figure C.1: Edge detection method within the cluster analysis algorithm for a forest
fragment (shown in black) near the equator, neighboured by four forest pixels (shown
in grey). The forest fragment has two edges considered as forest edge: the top edge
because the distance to the next northern forest pixel is two pixels and the left edge,
because there are no additional forest pixels to the west.
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and Huth, A. The impact of fragmentation and density regulation on forest succession
in the atlantic rain forest. Ecological Modelling, 220(19):2450–2459, 2009.

Gu, J., Li, G., and Dong, Z. Hybrid and adaptive meta-model-based global optimization.
Engineering Optimization, 44(1):87–104, 2012.

Gustafson, E. J. and Parker, G. R. Using an index of habitat patch proximity for
landscape design. Landscape and Urban Planning, 29(2-3):117–130, 1994.

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D.,
Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., et al. Habitat fragmenta-
tion and its lasting impact on earth’s ecosystems. Science Advances, 1(2):e1500052,
2015.

Hansen, M. C., Stehman, S. V., and Potapov, P. V. Quantification of global gross forest
cover loss. Proceedings of the National Academy of Sciences, 107(19):8650–8655, 2010.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S., Tyukavina,
A., Thau, D., Stehman, S., Goetz, S., Loveland, T., et al. High-resolution global maps
of 21st-century forest cover change. Science, 342(6160):850–853, 2013.

87



Bibliography

Hansen, N. and Ostermeier, A. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders,
S. C., Euskirchen, E. S., Roberts, D., Jaiteh, M. S., and Esseen, P.-A. Edge influence
on forest structure and composition in fragmented landscapes. Conservation Biology,
19(3):768–782, 2005.

Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T., and Huth, A. Statistical
inference for stochastic simulation models–theory and application. Ecology letters, 14
(8):816–827, 2011.

Hartig, F., Dislich, C., Wiegand, T., and Huth, A. Technical note: Approximate bayesian
parameterization of a complex tropical forest model. Biogeosciences Discussions, 10
(8):13097–13128, 2013.

Hartig, F., Dislich, C., Wiegand, T., and Huth, A. Technical note: Approximate bayesian
parameterization of a process-based tropical forest model. Biogeosciences, 11(4):1261–
1272, 2014.

Hastings, W. K. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika, 57(1):97–109, 1970.

He, F. Deriving a neutral model of species abundance from fundamental mechanisms of
population dynamics. Functional Ecology, 19(1):187–193, 2005.

Hilborn, R. and Mangel, M. The ecological detective: confronting models with data,
volume 28. Princeton University Press, 1997.

Hogg, R. V. and Craig, A. T. Introduction to mathematical statistics.(5”” edition).
Prentice Hall, Upper Saddle River, New Jersey, 1995.
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Köhler, P. and Huth, A. The effects of tree species grouping in tropical rainforest mod-
elling: Simulations with the individual-based model formind. Ecological Modelling,
109(3):301–321, 1998.

Kohyama, T. Simulating stationary size distribution of trees in rain forests. Annals of
Botany, 68(2):173–180, 1991.

Kraft, N. J. and Ackerly, D. D. Functional trait and phylogenetic tests of community
assembly across spatial scales in an amazonian forest. Ecological Monographs, 80(3):
401–422, 2010.

Kraft, N. J., Godoy, O., and Levine, J. M. Plant functional traits and the multidimen-
sional nature of species coexistence. Proceedings of the National Academy of Sciences,
112(3):797–802, 2015.

Laurance, W. F. Do edge effects occur over large spatial scales? Trends in Ecology &
Evolution, 15(4):134–135, 2000.

Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K.,
Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., and Sampaio, E.
Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conservation
Biology, 16(3):605–618, 2002.

Laurance, W. F., Camargo, J. L., Luizão, R. C., Laurance, S. G., Pimm, S. L., Bruna,
E. M., Stouffer, P. C., Williamson, G. B., Beńıtez-Malvido, J., Vasconcelos, H. L.,
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heiten und den inspierenden Diskussionen. Besonders bei Prof. Dr. Andreas Huth möchte
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