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Zusammenfassung.

Wasser ist zweifellos die wichtigste Ressource der Menschheit. Unter der Viel-

zahl von Funktionen, welche Wasser im Ökosystem der Erde erfüllt, ist die

Trinkwasserversorgung, die für den Menschen unmittelbarste und essentielste.

Der permanente Zugang zu sauberem Trinkwasser ist daher von grundlegender

Bedeutung für jede Gesellschaft. Weltweit muss diese Aufgabe vor allem mit der

wachsenden Bevölkerung sowie den Herausforderungen des Klimawandels um-

gehen. Obwohl Wasser auf unserem Planeten praktisch allgegenwärtig ist, kann

nur ein Bruchteil davon für den Menschen genutzt werden. Nur drei Prozent

der weltweiten Wasservorkommen können als Süßwasser bezeichnet werden und

zwei Drittel dieser Vorkommen sind in Form von Eis in Gletschern gebunden.

Doch auch der frei verfügbare Teil kann nicht ohne weiteres als Trinkwasser

verwendet werden.

Der Grund für diese Einschränkung sind die hohen Anforderungen, die an

die Wasserqualität gestellt werden um als Trinkwasser genutzt zu werden. Zu

diesen Anforderungen zählen Farb- und Geruchlosigkeit, die Abwesenheit von

Krankheitserregern sowie die Einhaltung von Maximalwerten für verschiede-

ne gelöste Inhaltsstoffe. Die Einsicht in den engen Zusammenhang zwischen

Wasserqualität und der Gesundheitsvorsorge führte zur Ausarbeitung interna-

tionaler Standards durch die Weltgesundheitsorganisation. Gemessen an diesen

Standards existieren gegenwärtig große Defizite in der Wasserversorgung, vor

allem in den sogenannten Entwicklungsländern.

In den industriellen oder entwickelten Ländern steht, aufgrund der starken Ent-

wicklungsunterschiede zu den Entwicklungsländern, die Qualitätssicherung des

Wassers vor anderen Herausforderungen. Die größte Bedrohung stammt hier

von menschengemachten Verschmutzungen verursacht durch industrielle Alt-



lasten, Havarien, schlecht gewartete Abwassersysteme, landwirtschaftliche Che-

mikalien usw. Von den beiden potentiellen Trinkwasserquellen in Mitteleuropa

stellt Grundwasser im Gegensatz zum Oberflächenwasser das wichtigere Re-

servoir dar. Gleichzeitig ist es jedoch durch die großen Schwierigkeiten Schad-

stoffquellen für Grundwasser zu lokalisieren, sie hinsichtlich ihrer Gefährlichkeit

zu bewerten sowie geeignete Gegenmaßnahmen zu ergreifen, aus das deutlich

schwieriger zu bewirtschaftende Reservoir. Diese Probleme leiten sich ab von

der komplexen und heterogenen Struktur des Bodens, welche eine Vorhersage

des Fliessverhaltens sowie der Abbauprozesses des Schadstoffes sehr aufwändig

macht.

Aufgrund des hohen finanziellen Aufwandes, den eine direkte Reinigung eines

verschmutzten Grundwasserleiters bedeutet, wurde in den letzten Jahren ver-

mehrt In-Situ-Bioremedation als alternative Sanierungsmethode verwendet. Bei

diesem Verfahren kommen Mikroorganismen zur Anwendung, die in der Lage

sind die im Grundwasser gelösten Schadstoffe abzubauen. In Folge des geringen

technischen Aufwandes ist diese Methode in der Regel deutlich kostengünstiger.

Dabei ist klar, dass nicht jeder Schadstoff von jedem Mikroorganismus gleich

gut abgebaut werden kann, sowie die Bedingungen vor Ort den Abbauprozess

stark beeinflussen können. Zur Optimierung des Abbaupotentials wurden daher

eine Reihe vielfältiger Untersuchungen vorgenommen.

Ein wichtiges Problem der In-Situ-Bioremedation ist dabei die Tatsache, dass

in der Praxis erzielte Abbauraten meist deutlich niedriger ausfallen als unter

idealisierten Laborbedingungen ermittelte Referenzwerte. Eine Ursache dieses

Missverhältnisses liegt in der limitierten Bioverfügbarkeit der Schadstoffe unter

natürlichen Bedingungen. Bioverfügbar meint hier den Anteil des im Grundwas-

ser vorhandenen Schadstoffes der tatsächlich den Mikroorganismen zugänglich



ist. Ist dieser gering, ist dementsprechend auch die Effektivität des Abbaupro-

zesses vermindert, was das Konzept der Bioverfügbarkeit zu einer wichtigen

Größe bei der Bestimmung des Abbaupotentials macht. Aufgrund der kom-

plexen Struktur des Bodens existieren eine große Zahl von Faktoren, die die

Bioverfügbarkeit eines Schadstoffes vermindern können. Beispiele wären Mas-

sentransferprozesse auf verschiedenen Skalen, verschlossene Fließwege in der

porösen Bodenmatrix usw.

Das Hauptziel dieser Arbeit ist die Beschreibung der Limitierung der Bio-

verfügbarkeit durch porenskalige Massenflüsse und deren Einfluss auf die ef-

fektiven Abbauraten.

Zu diesem Zweck wird in dieser Arbeit der Transport reaktiver Schadstoffe auf

der Porenskala in einer zweidimensionalen Kanal- bzw. Sinusoidgeometrie mit-

tels numerischer und analytischer Methoden untersucht. Der mikrobielle Ab-

bau wurde in Form einer Randbedingung an den reaktiven Wänden der unter-

suchten Geometrie realisiert. Als Reaktionskinetik kommt in dieser Arbeit die

Michaelis-Menten-Kinetik zur Anwendung. Zusätzlich wurde der Grenzfall ei-

ner Erstordnung-Kinetik betrachtet um analytische Lösungen zur Interpretati-

on der Michaelis-Menten-Kinetik zu gewinnen, wo dies nicht möglich ist. Für die

mathematische und numerische Analyse wurden die beschriebenen Gleichungen

entdimensionalisiert, so dass die Ergebnisse leicht generalisierbar sind. Als re-

levante Kennzahlen traten dabei (i) der Thiele-Modul sowie (ii) das Verhältnis

der Konzentration des Schadstoffes und der Michaelis-Konstanten hervor. Der

Thiele-Modul vergleicht den diffusiven mit dem reaktiven Fluss auf Porenskala.

Hohe Werte des Thiele-Modul kennzeichnen eine langsame Diffusion im Ver-

gleich zur Reaktion und werden als diffusionslimitierendes Regime bezeichnet.



Für niedrige Werte spricht man hingegen von einem reaktionslimierten Regime.

Die starke Abhängigkeit der Ergebnisse von dieser Kennzahl verdeutlicht den

Einfluss der porenskaligen Diffusion auf die Bioverfügbarkeit, die sich umgekehrt

proportional zum Thiele-Modul verhält. Die zweite Kennzahl ist ein Maß, ob

die Michaelis-Menten-Kinetik durch die Grenzfälle einer Erstordnung-Kinetik

oder eine Nulltordnung-Kinetik bzw. durch eine Mischung beider beschrieben

werden kann. Die Transport- und Reaktionsprozesse wurden in den genannten

Geometrien numerisch simuliert bzw. analytische oder semianalytische Lösun-

gen entwickelt. Parallel zu diesem räumlich aufgelösten porenskaligen Modell

wurde eine effektive eindimensionale Beschreibung des reaktiven Transports

verwendet. Der Einfluss der porenskaligen Massenflüsse ist in diesem eindimen-

sionalem Modell implizit in der effektiven Reaktionsrate enthalten. Deren Un-

tersuchung erlaubt daher eine quantitative Beschreibung der Bioverfügbarkeit

in Abhängigkeit von porenskaligen Transport- und Reaktionsprozessen. Die ge-

mittelten Lösungen des zweidimensionalen Problems dienten dabei als Referenz

zur Evaluierung der gefundenen effektiven Beschreibungen. Dies beinhaltet vor

allem die Bestimmung von Parametern der effektiven Reaktionskinetik durch

Fitten der Lösungen der effektiven Beschreibung an gemittelte Lösungen des

räumlich expliziten Modells sowie die Bewertung der Genauigkeit der verwen-

deten effektiven Beschreibungen. Die Ergebnisse der Untersuchungen sind in

den Kapiteln 3-5 der Arbeit dargelegt, in denen unterschiedliche Fragen aus

dem oben beschriebenen Themenkreis untersucht und beantwortet werden.

In Kapitel 3 wird das Skalierungsverhalten in dem oben beschriebenen Setup

für den Fall einer simplen Kanalgeometrie untersucht. Als porenskalige Reakti-

onskinetik wird neben der realistischen Michaelis-Menten-Kinetik ebenfalls der

einfacherere Grenzfall einer Erstordnung-Kinetik verwendet. Für die Reakti-



onsrate der effektiven Beschreibung wurde dabei jeweils dieselbe Kinetik wie

auf der Porenskala angenommen. Im Fall einer Erstordnung-Kinetik auf Po-

renskala kann die Relevanz der porenskaligen diffusiven Massenflüsse für die

effektive Abbaurate anhand des Thiele-Modul dargelegt werden. Im diffusions-

limitiertem Regime, d.h. einem großen Thiele-Modul, entstehen große Gradi-

enten der Schadstoffkonzentration auf Porenebene. Dies hat zur Folge, dass

die bioverfügbare Konzentration des Schadstoffes deutlich kleiner ist als die

mittlere Porenkonzentration, d.h. die Bioverfügbarkeit ist sehr gering. Die ef-

fektive Reaktionsrate ist folglich ebenfalls sehr gering. Im entgegengesetzten

reaktionslimitierten Regime ist die porenskalige Reaktion langsam im Vergleich

zur Diffusion und der Thiele-Modul sehr klein. Die effektive Reaktionsrate ist

dann stark mit der porenskaligen Reaktion korreliert. Das Übergangsregime

mit etwa gleich schneller Reaktion und Diffusion ist von einer Mischung beider

Extremfälle gekennzeichnet. Der Zusammenhang zwischen porenskaliger und

effektiver Reaktionsrate kann sehr gut mittels eines einzelnen Skalierungspara-

meters beschrieben werden, welcher vom Thiele-Modul abhängt. Im Fall einer

Michaelis-Menten-Kinetk auf Porenskala wird das Skalierungsverhalten deutlich

komplexer. Dieses ist im Übergang zwischen reaktions- und diffusionslimitier-

tem Regime nun zusätzlich von dem Verhältnis von Schadstoffkonzentration

zur Michaelis-Konstanten abhängig. Ein einzelner Skalierungsparameter, wie in

der Literatur für eine Michaelis-Menten-Kinetik vorgeschlagen, kann in diesem

Fall zu nicht unerheblichen Fehlern bei der Reproduktion der effektiven Kine-

tik führen. Diese Fehler sind jedoch deutlich reduziert, sobald nicht ein, son-

dern zwei unabhängige Skalierungsparameter verwendet werden, d.h. die beiden

Reaktionsparameter der Michaelis-Menten-Kinetik müssen unabhängig vonein-

ander skaliert werden. Die Anwendbarkeit der Skalierungsparameter ist in der



Praxis jedoch durch die Abhängigkeit von den zwei relevanten Kennzahlen der

porenskaligen Reaktionskinetik eingeschränkt.

In Kapitel 4 wird das gleiche Porenskalenmodell mittels einer anderen effek-

tiven Reaktionskinetik interpretiert. In diesem Kapitel wird eine effektive Be-

schreibung der Abbaukinetik mittels eines linearen Austauschterms abgeleitet,

welcher die bioverfügbare sowie die gemittelte porenskalige Schadstoffkonzen-

tration verknüpft. In Analogie zu den Untersuchungen in Kapitel 3 wird dabei

die bioverfügbare Konzentration entsprechend einer Michaelis-Menten-Kinetik

abgebaut. Der Austausch zwischen beiden Konzentrationen ergibt sich durch

deren Gradienten multipliziert mit einem Massenflusskoeffizienten. Im Fall ei-

nes Gleichgewichtes zwischen reaktiven und diffusiven Massenflüssen, lassen

sich Michaelis-Menten-Kinetik sowie linearer Austauschterm zu einem analyti-

schen Ausdruck für die effektive Abbaurate verbinden, der als Best-Gleichung

oder Best-Kinetik bekannt ist. Im Gegensatz zu den Skalierungskoeffizienten in

Kapitel 3 ist im Falle der Best-Kinetik der Massenflusskoeffizient des linearen

Austauschterms die relevante Skalierungsgröße. In einem ersten Schritt wird

dieser in Analogie zu Kapitel 3 durch Fitten bestimmt. Dabei zeigt sich eben-

falls eine starke Abhängigkeit des Massenflusskoeffizienten von den relevanten

Kennzahlen, d.h. dem Thiele-Modul und dem Verhältnis zwischen Konzentra-

tion und Michaelis-Konstante. Eine durchgeführte Fehleranalyse zeigt, dass im

Falle hoher bzw. niedriger Bioverfügbarkeit eine sehr gute Übereinstimmung

zwischen den exakten numerischen Ergebnissen und der effektiven Beschreibung

besteht. In einem zweiten Schritt wurde anstelle des gefitteten Massenflussko-

effizienten ein konstanter Wert verwendet, der im Grenzfall einer porenskaligen

Erstordnung-Kinetik analytisch bestimmt wurde. Eine Fehleranalyse der effekti-

ven Beschreibung mittels des analytischen Massenflusskoeffizienten in Vergleich



zum Fall des gefitteten Koeffizienten zeigt ein qualitativ vergleichbares Bild mit

nur leicht größeren Fehlern.

In Kapitel 5 wird ein im Vergleich zu Kapitel 3 und 4 modifiziertes Porenskalen-

modell verwendet. Wurde in den beiden vorherigen Kapiteln die Reaktivität und

damit die Verteilung der Mikroorganismen zeitlich und räumlich als konstant

angesehen, wird in diesem Kapitel das Wachstum der Mikroorganismen explizit

modelliert. Des Weiteren wird zusätzlich zur simplen Kanalgeometrie eine erwei-

terte Sinusoidgeometrie als Gebietsbeschreibung des Porenraumes verwendet.

Die Ergebnisse zeigen, dass im Gleichgewicht von Wachstum und Absterben

der Mikroorganismen es zu einer Entkopplung von Transport und Reaktion

kommt. Diese Reduzierung der Komplexität trotz Erhöhung der Freiheitsgrade

des Systems kann erklärt werden durch die Adaption der Verteilung der Mi-

kroorganismen. Diese erreicht ihr Gleichgewicht wenn in jedem Zeitschritt das

Wachstum durch die einkommenden diffusiven Flüsse des Schadstoffes gleich

der Menge an sterbenden Mikroorganismen ist. Das Ergebnis ist eine konstante

bioverfügbare Konzentration des Schadstoffes wodurch sich mathematisch ein

reines Transportproblem ergibt. Da das Wachstum der Mikroorganismen nur

durch die diffusiven Massenflüsse beschränkt ist, kann für die effektive Abbau-

kinetik stets von einem diffusionslimitiertem Regime ausgegangen werden. Die

Beschreibung der effektiven Reaktionskinetik ist für den Fall einer Kanalgeome-

trie demnach identisch mit diesem bereits in Kapitel 3 beschriebenen Grenzfall.

Für den Fall einer erweiterten Sinusoidgeometrie als Gebietsbeschreibung ergibt

sich ein anderes Bild. Im Vergleich zu einer Kanalgeometrie gleichen Volumens

zeigt sich eine vergrößerte Abbaurate in der effektiven Abbaukinetik, die pro-

portional zur Amplitude der Variation der Porenbreite ist. Dieser Effekt kann

mit dem überproportional starken Zuwachs des Abbaus in den schmalen Stel-



len des Porenraumes verglichen mit der gleichzeitigen Abnahme in den breiten

Stellen erklärt werden.

Zusammenfassend kann gesagt werden, dass diese Arbeit einen relevanten Bei-

trag zur Skalierung der Reaktionskinetik von porenskaligen Bioabbau leisten

möchte. Im Fall einer durch porenskalige Massenflüsse begrenzten Bioverfügbar-

keit zeigt sich ein nichttriviales Skalierungsverhalten. Insbesondere der Einfluss

der Konzentration wurde hervorgehoben und beschrieben. Weder die Annah-

me einer effektive Michaelis-Menten-Kinetik noch die Beschreibung mittels der

Best-Kinetik können den Skalierungsschritt perfekt wiedergeben. Die vorgestell-

ten Methoden erlauben jedoch eine hinreichend gute Beschreibung wobei die

Best-Kinetik mit analytisch bestimmten Massenflusskoeffizienten gute Genauig-

keit mit einfacher Anwendbarkeit verbindet. Für den praktischen Einsatz wurde

in Kapitel 3 und 4 eine Übersicht abgeleitet unter welchen Umständen die Limi-

tierungen durch porenskalige Massenflüsse berücksichtigt werden müssen. Als

wichtigste Kennzahlen wurden dabei der Thiele-Modul sowie das Verhältnis von

Schadstoffkonzentration und Michaelis-Konstante identifiziert. Weiterhin wur-

de in Kapitel 4 an einem Beispiel demonstriert, wie diese relevanten Kennzahlen

für einen gegebenen Versuchsaufbau bestimmt und die effektiven Reaktionski-

netiken angewendet werden können.



Abstract.

The supply of drinking water of sufficient quality is unarguably one of the most

important tasks of every society. In the developed world the most serious threat

for this supply are anthropogenic pollutants originating for example from land-

fill or sewage leaks or from agriculture. From the two main reservoirs of drink-

ing water, i.e. surface water and groundwater, the latter is more important in

Central Europe and likewise more vulnerable to such pollutants. The complex

structure of the soil makes it difficult to estimate pathways of the pollutant

and therefore hard to assess the risk and apply appropriate counter measures.

Due to the high financial burden of classic remediation strategies cost effec-

tive methods like in-situ bioremediation has been developed and successfully

applied in the last years. In these methods the ability of microbes is used to

metabolize certain pollutants. Degradation rates in the field however, has been

shown to be lower sometimes significantly than under idealized laboratory ex-

periments. To explain this discrepancy the concept of bioavailability has been

introduced. This concept draws a distinction between the measured or bulk

concentration of the pollutant and the concentration available to the microbes.

In case of a clear mismatch between both one speaks of a low bioavailability,

which results in reduced degradation rates with respect to the bulk concentra-

tion. Due to the structure of the soil and the variety of the processes involved

a low bioavailability can be caused by many different factors. In this study we

focus on pore-scale mass fluxes. Since the microbes reside at the surface of the

solid matrix a mismatch between bulk and bioavailable concentration can occur

if reaction is fast compared to diffusive mass fluxes. Under such circumstances

the scaling behavior of reaction kinetics becomes complex.



In this study we use simple two-dimensional channel and sinusoid geometries

as representations of the pore space in order to simulate transport of a reactive

species. Reaction kinetics will be simulated by appropriate boundary condi-

tions of the geometry following a Michaelis-Menten or a first-order kinetics.

The system will be solved numerically and the steady state solutions will be

averaged transversal to the flow direction to get effective one-dimensional solu-

tions. Effective descriptions of the one-dimensional system will be tested and

assessed with respect to these numerical solutions.

In Chapter 3 we investigate the scaling behavior by assuming Michaelis-Menten

kinetics for the effective one-dimensional description too. Research from the

literature focussed on local first-order kinetics showed that the behavior of ef-

fective kinetics can be separated into three different regimes. For high bioavail-

ability effective kinetics depends on pore-scale reaction. This regime is called

reaction limited. In the case of low bioavailability the pore-scale diffusion is the

limiting factor and the regime is therefore called diffusion limited. The transi-

tion regime between them is characterized by a mixture of both. If Michaelis-

Menten kinetics is introduced for the pore-scale kinetics the scaling behavior

becomes more complex. The transition zone between the two marginal regimes

becomes additionally dependent on concentration. As a result we get large er-

rors in the case of mediate bioavailability when trying to connect the parameters

of the pore-scale and the effective Michaelis-Menten kinetics by a single constant

scaling unit determined by fitting. These errors however, can be clearly reduced

when introducing an additional degree of freedom, thus allowing the two reac-

tion rate parameters of Michaelis-Menten kinetics to scale independently. The

remaining error shows that strictly spoken Michaelis-Menten kinetics is not



prevailing in the effective regime, being however, small enough to justify the

application.

In Chapter 4 the linear exchange model is applied to derive the reaction kinet-

ics of the effective description of reactive transport. Within this concept the

bulk and the bioavailable concentration are thought to represent two different

reservoirs, with the latter being subject to biodegradation. The link between

both reservoirs is modelled with a linear exchange term, i.e. being propor-

tional to the gradient between both multiplied with the mass-flux coefficient.

In steady state the linear exchange term and Michaelis-Menten kinetics can be

combined to the so called Best kinetics being an alternative effective descrip-

tion for biodegradation. In order to estimate the unknown mass-flux coefficient

optimum fits are performed in analogy to the procedure used in Chapter 3.

The resulting estimate provide a good description in the cases of either low

or high bioavailability. As an alternative a constant estimate for the mass-flux

coefficient from the marginal case of a first-order kinetics is tested for the whole

range of reaction regimes and found to describe the effective behavior with only

little less accuracy.

In Chapter 5 a similar setup is used, compared to Chapters 3 and 4, with

additionally considering biofilm growth and a sinusoid geometry. Results show

that the adaption of the biofilm leads in steady state to a constant value for the

bioavailable concentration. As a result the description of the reactive species

turns into a simple transport problem with fixed concentration values at the

boundaries of the medium. Since the growth of the biofilm is only limited by

the incoming diffusional fluxes the steady state in the channel geometry will

be identical to the results presented above for the case of a diffusion-limited

regime. Results for the sinusoid geometry show a diffusion-limited regime in



the effective description as well but with higher reaction constants proportional

to the amplitude of the pore-width variations.

In summary the thesis tries to achieve important contributions to the topic of

bioavailability limited by pore-scale mass fluxes. Several effective descriptions

for the pore-scale model developed herein were tested and discussed. A short

guideline is presented when pore-scale mass fluxes must be considered. In addi-

tion, the reader is shown by means of a realistic example how the results from

this work can be transfered to practice.



Nomenclature

Latin

A · · · amplitude of Ψ

A · · · time dependent differential operator

av · · · specific reactive surface

c · · · concentration of the reactive species

c0 · · · concentration profile at Γf

cbio · · · bioavailable concentration

cref · · · reference concentration

cmo · · · concentration of the microorganisms

C · · · macroscale or bulk concentration

D · · · pore-scale diffusion coefficient

f · · · flux of the concentration c

jtr · · · mass-flux coefficient

Km · · · Michaelis constant

kmax · · · maximum reaction rate

ktr · · · mass-transfer rate coefficient

L · · · spatial differential operator

Lref · · · reference length scale

n · · · unit vector normal to Γs

xvii



Pe · · · Péclet number

qmax · · · maximum conversion rate

Q · · · effective conversion rate

R · · · generic reaction rate

Rtr · · · mass exchange rate

v · · · pore-scale fluid velocity

V · · · pore-scale average velocity

Y · · · microbial yield factor

Greek

η · · · scaling coefficient

Γf · · · boundary of Ω with the fluid

Γi
f · · · inlet of Ωp

Γo
f · · · outlet of Ωp

Γs · · · boundary of Ω with the solid

Φ2 · · · Thiele modulus

Ψ · · · transversal part of solution c

λ · · · eigenvalue of Ψ

µdec · · · decay rate of the microorganisms

τij · · · coupling constant between mode i and j

Ω · · · whole domain

Ωp · · · pore domain

miscellaneous

〈·〉 · · · averaged quantity

·̃ · · · deviation quantity



·̂ · · · scaled quantity

·eff · · · effective parameter

·eqv · · · constant approximation for ·eff

·i · · · ith mode
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1. Introduction

This thesis would like to give a contribution to the field of biodegradation

limited by pore-scale mass fluxes. In the Introduction the relevance of the topic

will be motivated to the reader. Furthermore, the research questions will be

given and the structure of the remainder of the text will be outlined.

1.1. Relevance of the study

Water is unarguably the most precious single resource on earth. Although it

is also the most abundant substance on earth’s surface only a small fraction

can be used for drinking water supply. In order to be consumable water has

to meet sufficiently high quality standards [World Health Organization, 1997].

In Europe the European Union (EU) has outlined the guidelines for its water

policy in its Water Framework Directive [Kaika, 2003]. Unlike to most contries

in the world drinking water supply in Germany is mostly based on groundwa-

ter. The quality of this important reservoir however, is endangered for example

by wastewater, landfills, fertilizers from agriculture and/or industrial contami-

nants.

Although the pollution of groundwater, and therefore the drinking water supply,

has been a permanent concomitant phenomenon of the industrialization from

1



the very beginning, the cleaning of the sites has not attracted much attention

until some decades ago. This may be explained by the fact that groundwater

contamination happens out of public sight compared to pollution of rivers and

lakes. A contaminant entering the subsurface percolates slowly until reaching

the groundwater table (see Figure 1.1). The groundwater flow then transports

the contaminant, which evolves into a plume stretching sometimes long dis-

tances. A connection between the point of contaminant infiltration and extrac-

tion of the polluted water for drinking use may thus not be apparent. Public

awareness of this issue first sparked the late 70’s most noteably with the promi-

nent cases of Woburn [Bair and Metheny, 2005] and Love Canal [Gensburg et al.,

2009], where severe health problems were connected to contaminated ground-

water caused by dumped toxic waste. The decisions of the courts in these trials

gave rise to the implementation of remediation techniques for the treatment

of the polluted sites. Early efforts to restore such sites involved methods like

pump-and-threat or the excavation of large volumes of soil, which are however,

very expensive and have a high environmental impact. Therefore, researchers

began to investigate alternative methods.

So called natural attenuation (NA) has attracted a lot of interest in the last

decades. Passive or monitored NA simply relies on the ability of the soil to

remediate itself whereas active or enhanced NA tries to increase this process

by directly improve certain properties of the soil. Next to low costs NA can be

very versatile and efficient if properly applied and has a low environmental im-

pact. Mechanisms of NA include for example dilution, sorption, volatilization or

abiotic transformations. The most effective mechanism however, is commonly

biodremediation, i.e. the degradation of the contaminant by microorganisms.
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Section 1.1: Relevance of the study

Groundwater Table

Surface

Contaminant Plume

Leaking Contaminant

Contaminant Source

Flow Direction

Figure 1.1.: Schematic of a contaminant leaking into the subsurface and subse-

quently forming a plume due to being transported with groundwa-

ter flow.

In order to perform a correct assessment of bioremediation for the treatment of

a polluted site, it is necessary to consider the effectiveness of this strategy. To

that end research has focused on determing the degradation rates of a certain

pollutant by different microorganisms. A transfer of these results into practice

however, has generally shown clearly lower degradation rates in the field. In

order to describe this apparent discrepancy the term bioavailability is used.

Many factors, which can affect the degradation rates in the field, are lumped

into this term. Consequentially different concepts to bioavailability exists in

practice. The focus of this study will be mass fluxes of the contaminant at the

scale of single pores of the soil, which has been shown to be a relevant factor

in limiting effective degradation rates.
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1.2. Objectives of the thesis

With the problem in mind as outlined above the following objectives are to be

addressed in this thesis:

• Does bioavailability limited by pore-scale mass fluxes change the effective

reaction rate if the pore-scale reaction rate is assumed to follow Michaelis-

Menten kinetics?

• Can the effect of pore-scale mass fluxes on effective reaction rates be

described by using a linear exchange model?

• Which effective reaction rate is preferable in terms of accuracy and appli-

cability?

• In which way does biofilm growth affect the effective reaction rate?

• Under which circumstances must the influence of pore-scale mass fluxes be

considered and how can the effective descriptions developed herein being

put into practice?

Answering these question will hopefully contribute significantly to the field of

biodegradation limited by bioavailability and by extension to the broader field

of securing a sustainable water managment.
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Section 1.3: Outline

1.3. Outline

The thesis itself consist of six chapters. Having passed the Introduction the

reader will be familiarized in Chapter 2 with the theory and the methods used

in this study. There will be some overlap with the respective sections in the

Chapters 3-5. This is however, seen to be necessary in order to let them be self

explanatory. The literature review and the outlining of the theory will be as

concise as possible in order to minimize repetition. The next three Chapters

are basically manuscripts written for publication in a peer reviewed journal and

henceforth represent research studies on their own. Accordingly each Chapter

is following the same structure comprising an introduction, a methodology, a

results and discussion part as well as a short summary.

In Chapter 3 a pore-scale reactive transport model is investigated. The pore

space is represented by a simple channel geometry in order to facilitate the use

of analytical methods. Pore-scale biodegradation is modelled with Michaelis-

Menten kinetics. Additionally the much simpler marginal case of first-order

kinetics is used to validate the used model. In order to derive an effective

description the model is averaged over the width of the pore represented by a

channel geometry. The effective reaction rate is assumed to follow Michaelis-

Menten kinetics too and the parameters are determined by fitting.

In Chapter 4 the same pore-scale reactive transport model is used as described

above. Instead of Michaelis-Menten kinetics a Best kinetics is used for the

description of the effective reaction rate. The free parameter is determined

both by fitting and analytical means in the marginal case of first-order kinetics.

The use of both parameters is assessed with respect to accuracy. The derived
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effective description is furthermore used to interpret data from a laboratory

experiment exhibiting a limited bioavailability.

In Chapter 5 an altered version of the previously used pore-scale reactive trans-

port model is used. The microorganisms are assumed to grow according to the

reactive influx until steady state is achieved. Furthermore, a more elaborated

sinusoid geometry is used and the findings are compared to the case of a simple

channel geometry.

Chapter 6 will contain a short summary of the findings presented in the for-

mer chapters with respect to the objectives given above. Furthermore, a short

outline of future perspectives of the research presented herein will be given.
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2. Basic theory and concepts

This chapter will give an overview on the basic concepts of modelling of

biodegradation. In Section 2.1 a short introduction into the historic devel-

opment of the topic will be given. After that we will present the geometric

representation of the pore space as used in this study in Section 2.2 and derive

the mathematical description of reactive transport in Section 2.3. Furthermore,

the issues of bioavailability (Section 2.4) and upscaling (Section 2.5) will be in-

troduced to the reader. In Section 2.6 the numerical implementation of the

system derived in Section 2.3 will be explained and the software toolbox used

for the numerical solution will be described in Section 2.7.

2.1. Historic perspective on the modelling of

biodegradation

The study of groundwater as a scientific field has a relatively short history.

It came not into existence until the pioneering work of Darcy [1856]. Further

early contributions came for example from Boussinesq [1897], Thiem [1906] and

Forchheimer [1914]. Understanding in the mechanisms of solute transport and

reactive degradation however, has not been achieved until the second half of

7



the 20th century with the important contributions of [Bear, 1972], [Scheidegger,

1974], [Dagan, 1989] and [Gelhar, 1993].

With the advent of high-performance computers in the 1980s the study of re-

active transport saw the development of the first efficient numerical models

[Steefel and MacQuarrie, 1996], which were able to simulate the transport of a

reactive species affected by degradation in the subsurface. Nowadays a broad

variety of tools exists for the modeling of groundwater flow [Rausch et al.,

2005], [Alvarez and Illman, 2005], [Nützmann et al., 2005] like MODFLOW

[McDonald and Harbaugh, 2005], FEFLOW [Diersch, 1992] reactive transport

like MUFTE/UG [Helmig et al., 1998] as well as biodegradation like MIN3P

[Mayer, 2000], TBC [Schäfer et al., 1998] or GeoSys/BRNS [Kolditz, 2002]. The

accuracy of theses models however, is challenged by the identification and as-

sessment of the relevant processes and the incorporation into such an integrative

description of the fate of organic pollutants in the soil.

2.2. Pore-scale modelling

The typical scale of modeling in groundwater research or environmental engi-

neering is much larger than the average diameter of the pore space. In this

work however, we want to determine the influence of pore-scale processes of the

bioavailability of a reactive species.

Consequently, we need to find a suitable representation of the pore space.

Within this work we use two different geometries in order to describe the pore-

scale processes spatially resolved. A simple channel domain (Figure 2.1a) as

well as a sinusoid domain (Figure 2.1b). Within this geometries we need to
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Section 2.3: Mathematical description of reactive transport

x
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(a) Channel geometry.
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pore space

(b) Sinusoid geometry.

Figure 2.1.: Schematic of the two geometries used in the study.

investigate the processes of transport and biodegradation, which will be further

explained in the following.

2.3. Mathematical description of reactive transport

For the mathematical description of the fate of a reactive species two differ-

ent representations can be distinguished. The first one is called particle based.

In this approach the processes of transport and biodegradation are modelled

by describing a representative sample of individual particles. These particles

can represent single molecules of the chemical compound or representative ag-

gregates. The second representation describes the concentration of the species

directly. In this model the quantity is therefore assumed to be a spatial contin-

uum, which corresponds to a description based on partial differential equations

(PDE’s). In this study only the latter approach is used.

In order to derive the governing equations let us start with a simple bal-

ance equation for the concentration of the reactive species, denoted with c.

In mathematical terms this quantity can be defined as an integrable function
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c : Ω × [0, T ] → R. Here Ω ⊂ R
dim is an open subset of the physical space in

either two or three spatial dimensions dim and [0, T ] denotes the time interval

under consideration. In a given control volume ΩV ⊂ Ω the accumulation of

mass is equal to the transport of mass across the boundary of the volume ∂ΩV

plus the creation and/or destruction of mass inside the volume per timestep.

The mathematical representation of this balance is the following integral equa-

tion

d

dt

∫

ΩV

c dΩV

︸ ︷︷ ︸
accumulation

of mass

=

∮

∂ΩV

f(c) · ndA

︸ ︷︷ ︸
transport across

the boundary

+

∫

ΩV

R(c) dΩV

︸ ︷︷ ︸
source/sink

of mass

. (2.1)

Here dA is an infinitesimal area of the surface of ΩV and n is the outer unit

normal. The vector function f(c) : Ω × [0, T ] → R
dim in Equation (2.1) lumps

the relevant transport mechanisms affecting c together. The scalar product

n · f(c) therefore yields the flux of c leaving ΩV through dA in every time step.

The source/sink term R(c) : Ω × [0, T ] → R can be interpreted in our scenario

as the microbial degradation of the reactive species.

Referring to the Gauss’s theorem the flux perpendicular to a closed surface

can be equated to the divergence of this flux within the volume. Furthermore,

integration and time derivative can be interchanced since the control volume

ΩV does not change with time. Equation (2.1) can therefore be rewritten into

∫

ΩV

∂

∂t
c dΩV =

∫

ΩV

∇ · f(c) dΩV +

∫

ΩV

R(c) dΩV . (2.2)

For the derivation of Equation (2.2) no specific assumptions about the control

volume ΩV were made. As a result the equation must hold pointwise so the in-

10



Section 2.3: Mathematical description of reactive transport

tegral can be dropped. This leads eventually to the following partial differential

equation:

∂

∂t
c = ∇ · f(c) +R(c), (2.3)

which is the well known continuity equation in its general differential form.

In order to complete the mathematical description the flux f(c) and the sink

term R(c) need to be further specified, which will be addressed in the following.

Additionally, the initial and boundary conditions have to be included. In order

to keep the analysis generic this will be omitted at this point and defined in the

Chapters 3, 4 and 5 individually.

2.3.1. Transport of reactive species

In the text above the flux f(c) of the concentration of the reactive species c has

been kept unspecified. In the subsurface its movement can be driven by two

different mechanisms; advection as well as hydrodynamic dispersion. Assuming

a linear relationship we can write

f(c) = fadv(c) + fdis(c) (2.4)

for both fluxes respectively.

2.3.1.1. Advection

The transport mechanism advection can be described by the following relation-

ship:

11



2.3.1 Transport of reactive species

fadv(c) = vc. (2.5)

The vector field v : Ω × [0, T ] → R
dim in Equation (2.5) can be interpreted in

physical terms as the velocity field of the groundwater transporting the reactive

species. Since water is an incompressible newtonian fluid its motion is described

by the Navier-Stokes Equation [Navier, 1823]. At the pore scale this mathe-

matical description can be simplified to the Stokes Equation [Stokes, 1842] due

to the low Reynolds-numbers typically found in groundwater flow:

µ∆v = ∇ · p. (2.6)

In Equation (2.6) µ is the viscosity of the fluid and p denotes the pressure field.
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(a) Channel geometry.
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(b) Sinusoid geometry.

Figure 2.2.: Velocity distribution corresponding to the geometries used in this

study (see Figure 2.1).

In this study two different representations of the pore space are used as depicted

in Figure 2.1. For both geometries exist analytical solutions of Equation (2.6)
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Section 2.3: Mathematical description of reactive transport

(see Figure 2.2 for an example), which will be further specified in Chapters 3,

4 and 5 individually.

Note that at the continuum scale fluid flow is described by the Darcy Equation

[Darcy, 1856], due to the porous structure of the soil

v = −K∇ · p (2.7)

The coefficient function K in Equation (2.7) denotes the conductivity field of

the soil comprising the effects of pore-scale fluid mechanics.

2.3.1.2. Dispersion

The second transport mechanism, which must be considered for groundwater

flow, is hydrodynamic dispersion and is given by

fdis(c) = D∇c. (2.8)

The coefficient function D : Ω × [0, T ] → R
dim×dim is in general a tensor field

lumping together the physical mechanisms of molecular diffusion [Fick, 1855]

and mechanical dispersion caused by statistically distributed small scale flow

paths [Taylor, 1953], [Aris, 1956], [Saffman, 1959] (see Figure 2.3). On the

pore scale however, only molecular diffusion is contributing. In this work the

coefficient function D is consequently a constant scalar.

2.3.2. Reaction kinetics

During the derivation of the mathematical description of reactive transport the

source/sink term of Equation (2.3) was already identified with the biodegra-

13



2.3.2 Reaction kinetics

Figure 2.3.: Transport at the pore scale.

dation of the reactive species. The algebraic implementation of this coefficient

function requires some knowledge of the mechanisms of microbial reaction ki-

netics. Unlike to plain chemical reactions, microorganisms are catalyzing a

chemical substrate S with the help of enzymes E. In such a scenario the

complex ES is first formed and subsequently transformed into the product P ,

whereas the enzyme leaves the process unchanged. The reaction process can

therefore be described as

E + S
k1−−⇀↽−−
k−1

ES
k2→ E + P. (2.9)

Here the parameters k1, k−1 and k2 denote the respective kinetic rate constants.

The rate equations for the concentrations of the product cP and the complex

cES are consequently

d

dt
cP = k2cES , (2.10)

d

dt
cES = k1cEcS − cES(k−1 + k2). (2.11)

Let us introduce the following two assumptions: First, we assume the total mass

of enzymes to be constant so Etot = E + ES. Second, we assume the complex

14



Section 2.3: Mathematical description of reactive transport

being formed very fast compared to the reactants, so it can be approximated

being constant d
dt
cES = 0. With this conditions it can be concluded that

cES =
k1cEtotcS

k−1 − k2 + k1cS
. (2.12)

Let us now introduce the following conventions: First, we define kmax = k2cEtot.

This value is the maximum reaction rate. Second, we set Km = (k−1 − k2)/k1.

This parameter is called the Michaelis constant. It is the value of the con-

centration, where half of the maximum conversion rate is achieved. Inserting

Equation (2.12) into Equation (2.10) and using these definitions it can be stated

that

R(cS) =
kmax

Km + cS
cS . (2.13)

Equation (2.13) is the classical reaction kinetics assumed for microbially cat-

alyzed biodegradation. It is called Michaelis-Menten kinetics [Michaelis and

Menten, 1913] and gives the relationship between the concentration of the re-

active solute and the reaction rate.

Two marginal cases, for either very low or very high concentrations compared

to Km are important (see Figure 2.4). In the first case the reaction rate is

reduced to first-order kinetics so

R(cS) =
kmax

Km
cS (2.14)

holds. In the second case we get zeroth-order kinetics, i.e.

R(cS) = kmax. (2.15)
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Figure 2.4.: Reaction rate R(cS) with respect to the concentration of the sub-

strate cS according to Michaelis-Menten, first-order and zeroth-

order kinetics. The parameters in the example are; kmax = 1 and

Km = 0.1.

It is clear, that, unlike Equation (2.14), the reaction kinetics in Equation (2.15)

can only be valid for high concentrations. A constant conversion rate would

sooner or later result in negative concentrations which is however, self contra-

dictory.

2.4. Bioavailability

In the context of bioremediation it is crucial to asses the effectiveness of this

strategy, i.e. to estimate the degradation rates of the pollutant in a given site.

It is obvious that these rates are dependent on the ability of the microorgan-

isms to metabolize the reactive species. A considerably amount of research has

therefore been focused to determine microbial activity in idealized laboratory

experiments. Measured degradation rates in the field however, are commonly

lower, than one would expect from those laboratory results [Alexander, 2000].
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Section 2.4: Bioavailability

In order to describe this discrepancy the term bioavailability has been intro-

duced.

This term is used across many disciplines and therefore a broad variety of def-

initions exists [Semple et al., 2004]. It originated in pharmacology and is used

to describe the effectiveness of a route of administration of a drug compared to

intravenous injection, which is considered as the optimum. This concept has

been transferred into the field of groundwater remediation to compare effec-

tive degradation rates in the field or from realistic experiments to results from

idealized laboratory experiments regarded likewise as a reference [National Re-

search Council (U.S.), 2003], [Haws et al., 2006]. For the reasons explained

above, this quantity is an important tool for the assessment of bioremediation

being deployed on a contaminated site.

Continuum Scale Pore Scale Subpore Scale
above 10’s of cm 100’s ofµm to 100’s of cm up to 100’s ofµm

Figure 2.5.: Scheme of the different scales involved in reactive transport of a

biodegradeable species.

Due to the complexity and heterogeneity of the subsurface several factors ex-

ist, which may decrease the bioavailability of a reactive species. Such factors

include sorption, heterogeneity of the conductivity or limiting mass fluxes on

different scales [Harms and Bosma, 1997] (see Figure 2.5). As stated above

the focus of this study is on bioavailability limited by pore-scale mass fluxes.
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Therefore, bioavailability will be defined as the ratio of the intrapore mass

fluxes and the microbial reactive flux [Bosma et al., 1997]. In porous media a

mismatch between these fluxes can occur due to the microbes being localized

at the surface of the solid matrix (Figure 2.5 right part). If the microbial up-

take is much faster than the diffusional mass flux strong gradients occur and

the bioavailable concentration is much smaller than the bulk concentration in

the aqueous phase. At the continuum scale however, these pore-scale varia-

tions are no longer resolved and the measured concentration can become a bad

measure for assessing microbial degradation rates under such circumstances. In

order to circumvent theses difficulties the continuum-scale description of reac-

tive transport has to incorporate such limitations by use of effective reaction

rates. The mathematical procedure of the derivation of effective descriptions is

called upscaling.

2.5. Upscaling

Upscaling refers to an ensemble of methods, which try to establish a mathemati-

cal relationship between a well known process at a smaller scale and a desired or

given solution at a larger scale. Next to simple heuristic methods a large body of

mathematical rigorous upscaling techniques exist. For the study of subsurface

flow and reactive transport common approaches are Homogenization Theory

[Papanicolaou, 1995], [Pavliotis, 2002], Volume Averaging [Whitaker, 1999] or

Stochastic Method [Gelhar, 1993]. In the following the idea of upscaling will

be outlined in short and the abstract framework will be connected to the issue

of reactive transport.

To begin with consider the general system
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Section 2.5: Upscaling

Ac = f. (2.16)

The operator A is identified herein with the differential operator of Equation

(2.3), so

Ac =

(
∂

∂t
−∇v+∇D∇−

kmax

Km + c

)
c, (2.17)

with the transport parameters v and D as well as the reaction rate parameters

kmax and Km. The unknown c is the solution of the system at the pore scale

and the right hand side f comprises possible external influences. The need for

upscaling arises if the solution c is given on a larger scale, which can be denoted

with 〈c〉. This macroscale can be identified in our work with the continuum

scale, where the pore-scale variations of c are no longer resolved. For the macro-

scale solution 〈c〉 the following definition may be sufficiently generic

〈c〉 =
1

Vol(ΩV)

∫

ΩV

w(ΩV )cdΩ. (2.18)

Within the scope of this study this averaging process can be interpreted as

an integral transformation. The function c is averaged over the representative

volume ΩV according to the weighting function w(ΩV ) (see Figure 2.6 for the

interpretation of ΩV in porous media). The factor 1/Vol(ΩV) is necessary to

preserve the mass of c. This mathematical averaging corresponds in physical

terms to the finite resolution of the measuring process were w(ΩV ) can be inter-

preted as the characteristic sensitivity of the sensor respectively the measuring

process in general.

The process of upscaling can be consequentially described mathematically by

19



ΩV

Figure 2.6.: Upscaling in porous media.

〈Ac〉 = 〈f〉 (2.19)

Aeff〈c〉 = 〈f〉. (2.20)

Equations (2.19) (2.20) illustrate that upscaling is the determination of the

effective operator Aeff . Compared to A this operator can either change its

form completely or simply exhibit new parameter values. An example for the

former is the upscaling of groundwater flow. At the pore scale the motion of

water is described by the Stokes Equation compared to the Darcy Equation at

the continuum scale. The upscaling of reactive transport is rather an example

for the latter. At the pore scale as well as at the continuum scale the flux

is described by Equation (2.22) with adjusted coefficient functions v and D.

The scaling of the reaction kinetics however, is still an open question and some

researchers have proposed different kinetics on the continuum scale to account

for the influence of pore-scale mass fluxes [Bosma et al., 1997]. The question

about the characteristics of the upscaled reaction kinetics is covered in detail

in the Chapters 3 and 4.

With respect to the pore-scale representations used in this study (see Figure

2.1) the upscaling procedure is
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Section 2.5: Upscaling

(a) Spatially resolved two-dimensional solution

corresponding to geometry depicted in Figure

2.1a.
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(b) Averaged one-dimensional solution accord-

ing to Equation (2.21).

Figure 2.7.: Representative example solution.

〈c〉 = C(x) =
1

h(x)

∫ h(x)

0
c(x, y) dy, (2.21)

with C(x) denotes the averaged concentration in this work and h(x) being the

envelope of the respective geometries. This procedure applied to the spatially

resolved two-dimensional description (example solution of which is seen in Fig-

ure 2.7a) will consequently yield an effective one-dimensional description of the

process of reactive transport (example solution of which is seen in Figure 2.7b

corresponding to Figure 2.7a) comprising the limiting effects of pore-scale mass

fluxes on the reaction kinetics.
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2.6. Numerical solution of the system

For the mathematical description of the process of biodegradation Equation

(2.3) was shown to be valid. An analytical solution for this problem however,

will only exist for a very confined set of scenarios. Commonly, numerical meth-

ods must be applied in order to find an acceptable approximation ch, with h

being a placeholder for the characterstic properties of the numerical scheme.

To that end a proper discretization, i.e. a mapping of the system given by

Equation (2.3) to a system of algebraic equations, has to be found

Ac = f 7→ Ahch = fh. (2.22)

The main task, i.e. the derivation of Ah, will be divided in several steps. First,

the time derivative will be discretized leaving a Boundary Value Problem (BVP)

Lc = f, (2.23)

with the operator L in Equation (2.23) being the spatial operator of A, so

Lc =

(
∇v−∇D∇+

kmax

Km + c

)
c. (2.24)

After that, the important steps for the solution of a BVP will be shortly intro-

duced. This comprises grid generation, discretization and linearization.

2.6.1. Discretization of the time derivative

For the discretization of the time derivative a simple implicit Euler method is

used in this work
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Section 2.6: Numerical solution of the system

∂

∂t
c ≈

ct+∆t − ct
∆t

, (2.25)

which has been shown to be robust and stable [Chikurov, 2006]. Inserting

Equation (2.25) into the right part of Equation (2.22) yields

ct+∆t ≈ ct +∆t (L[ct+∆t] + f) . (2.26)

Due to the implicit scheme Equation (2.26) leads a system of algebraic equa-

tions.

2.6.2. Grid generation

The first step of the numerical solution of a BVP is the geometric discretization

of the domain Ω. This process is called grid or mesh generation. To that end Ω

is decomposed into N elements Ωi. For these element the following properties

hold:

• All elements are pairwise disjunct: Ωi ∩ Ωj = ∅ : (i 6= j).

• The decomposition is complete:
⋃

iΩi = Ω.

• The elements Ωi have a non-empty interior.

It is clear that different discretization methods demand different grids. There-

fore, a broad variety from simple regular to versatile unstructured grids exists

(for further information see for example [George and Frey, 2000], [Mackerle,

2001], [Ushakova, 2007]). In this work the Delaunay triangulation [George and

Borouchaki, 1998] is used, which basic element is a triangle in two dimensions

respectively a tetrahedra in three dimensions (see Figure 2.8). The grid size is
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2.6.3 Finite Element Method

(a) Channel geometry. (b) Sinusoid geometry.

Figure 2.8.: Example for an unstructered grid with triangular elements for the

two geometries used in the study (see Figure 2.1).

locally adapted close to the wall of the geometry, where strong gradients of the

solution are expected (see example in Figure 2.7a).

2.6.3. Finite Element Method

The Finite Element Method (FEM) is a technique for obtaining a numerical

solution of a BVP. The procedure of this method can be summarized by the

following steps:

1. The BVP is rephrased in its weak formulation (WF).

2. In the actual discretization the solution space of the weak formulation is

projected into a finite dimensional subspace.

3. In case the resulting algebraic system is nonlinear a suitbale linearization

scheme has to be applied.

The procedure for the derivation of the FEM outlined here is called Galerkin

method [Galerkin, 1915]. As an alternative to step 1 and 2 the BVP can also be

rephrased into a minimization problem, which is subsequently discretized. This
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Section 2.6: Numerical solution of the system

method is called Ritz method [Ritz, 1909] and has shown to be equivalent to

the Galerkin method [Munz and Westermann, 2006]. For a more comprehensive

treatment of the subject the reader is referred for example to Strang and Fix

[1973], Knabner and Angermann [2003] or Hundsdorfer and Verwer [2003].

Weak formulation Starting point of the discretization in the FEM is not the

partial differential equation but its weak formulation. The name emphasizes

the fact that the solution of the WF complies to weaker conditions, especially

with respect to the smoothness, compared to the classical or strong solution of

the PDE. For the problem given by Equation (2.26) the WF can be formulated

by multiplying Equation (2.23) with an arbitrarily chosen test function v ∈ V

and integrating over the domain Ω

∫

Ω
[Lc]v dω =

∫

Ω
fv dω. (2.27)

These test functions have to conform to the boundary conditions of the BVP.

By applying Gauss’ theorem to the second derivative of L the order of the

problem can be reduced by one. The calculation is not performed here but

the curious reader is referred for example to van Kan et al. [2005] for more

details. Let us now introduce the following conventions;
∫
Ω[Lc]v dω := l(c, v)

and
∫
Ω fv dω := f(v), so

l(c, v) = f(v) ∀ v ∈ V. (2.28)

Equation (2.28) is now called the weak formulation of the BVP. The main reason

for this re-formulation can be motivated by the fact that the WF is a proper

generalization of the concept of PDE’s. That means every weak solution will
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2.6.3 Finite Element Method

be identical with the classical solution provided the latter exists. Furthermore,

owing to the reduction of the order of the problem by one, the WF will give us

meaningful solutions even in cases where the PDE would fail. Conditions with

less smoothness appear in many real world phenomena so the WF is better

suited for the modelling of many physical processes.

Discretization (Galerkin method) In order to discretize Equation (2.28) the

solution space V is replaced by an appropriate finite dimensional subspace Vh ⊂

V . Let the basis of this subspace be the set of basisfunctions ϕ1, ϕ2, . . . , ϕN ,

with N being the number of dimensions of Vh. Then, every element vh ∈ Vh

and therefore the approximation of the solution ch can be written as a linear

combination of this basisfunctions

ch =
N∑

i=1

ciϕi, (2.29)

with the coefficients ci still to determine. Replacing the solution c and the test

functions v in Equation (2.28) by their finite dimensional counterparts ch and

vh will yield the Galerkin Equation

l(ch, vh) = f(vh) ∀ vh ∈ Vh. (2.30)

Note that the problem itself has not changed from Equation (2.28) to Equation

(2.30) but the solution space. As a consequence ch can in general only be an

approximation of the true solution c. In the Galerkin method the following

constraint is applied for the derivation of an algebraic system:

l(ch, ϕi) = f(ϕi) ∀ ϕi. (2.31)
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Section 2.6: Numerical solution of the system

With this condition the residual is minimized, i.e. the difference between the

right hand side of the Equations (2.30) and (2.28). Note that a residual of zero

would require c ∈ Vh, which is usually not the case. Inserting Equation (2.29)

into Equation (2.31) it can eventually be stated

Lhch = fh, (2.32)

with

Lh(j, i) = l(ϕj , ϕi) =

∫

Ω
L[ϕj]ϕi dω, (2.33)

ch(j) = cj , (2.34)

fh(i) = f(ϕi). (2.35)

Equation (2.32) is now the discretized form of the BVP given by Equation

(2.23) representing a system of algebraic equations suitable for a numerical

solution of the system. In order to complete the description the properties of

the discretized solution space Vh used in the FEM need to be further specified.

Without expanding the analysis too far, it can be stated that Vh should meet

two main requirements:

• The elements of Vh should be a representative sample of V , i.e. for any

possible solution c a near approximation ch can be found in Vh.

• The resulting matrix Lh should be sparse so efficient solvers can be ap-

plied.

The FEM satisfies both requirements by defining the basisfunctions ϕi of Vh

as simple polynomials over the nodes Ni of the finite elements Ωj (henceforth
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Figure 2.9.: Basis function ϕi of Vh in the FEM.

the name of the method). According to the definition the ϕi’s are zero in

Ω except for the Ωj’s adjacent to that node (see Figure 2.9). Since the ϕi’s

are polynomials the local behavior of c can be reproduced very well. On the

global domain Ω however, every ϕi interferes only with its direct neighbors. The

resulting approximation ch is therefore able to adapt locally as well as globally to

c, which satisfies the first condition. Furthermore, Equation (2.33) will only give

nonzero entries if ϕi and ϕj are defined on the same or on neighboring nodes.

Thus, the FEM produces a system matrix Lh being sparse, which satisfies the

second condition.

Due to the structure of Michaelis-Menten kinetics Equation (2.32) however, will

be nonlinear (see Equation (2.24)). Accordingly, a nonlinear solver has to be

applied.

Linearization and solution of the system In this study the Newton resp.

Newton-Raphson method [Ypma, 1995] is applied for the solution of a nonlinear

algebraic system. This method is an iterative solver, i.e. the required solution

ch is found by a series of approximations ckh. Starting with a reasonable first

guess c1h the following rule is applied:
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Section 2.6: Numerical solution of the system

ckh = ck−1
h + J−1(ckh)

(
Lh(c

k
h)− fh

)
. (2.36)

Here J is the Jacobian of Lh, i.e. a matrix containing the first derivatives of

Lh with respect to ch. Therefore, one can write

J = Lh(c
k
h) + L′

h(c
k
h)c

k
h. (2.37)

In Equation (2.36) the second term of the sum is called the correction

cork = J−1(ckh)d
k (2.38)

and

dk = (Lh(c
k
h)− fh) (2.39)

the defect of every step k. By applying an appropriate damping factor λ

ckh = ck−1
h + λcork (2.40)

the convergence of the Newton solver can be adjusted if necessary. By default

λ is set to 1. A successful termination of the solver is reached if a suited norm

of the defect ‖dk‖ is below a given threshold. An unsuccessful termination may

occur if the threshold is not reached after a given number of iterations. Unlike

the defect dk, which has to be provided in every step, the Jacobian is only

calculated if needed. A reasonable criteria is a bad reduction within a single

step, i.e. ‖dk‖/‖dk−1‖ remains below a given threshold.
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2.7. The software toolbox UG

For the numerical solution of Equation (2.3) the software toolbox UG [Bastian

et al., 1997] (abbreviation for U nstructured Grids) is used in this study. This

toolbox provides a large collection of algorithms for the solution of partial dif-

ferential equations. It furthermore provides a flexible framework so that new

tools and algorithms suited for the actual problem can be implemented rela-

tively easy. Tools for typical problems are provided by libaries, which can be

accessed via a script language.

From the very beginning the development of UG has been focussed on easy

parallelization of the code, flexible grid management as well as the implemen-

tation of multigrid solvers ([Hackbusch, 1985], [Bastian, 1996], [Lang, 2006]).

Since then the toolbox has been used for works in the field of reactive transport

([Geiser, 2004], [Watson et al., 2005], [Neubauer and Bastian, 2005]) as well as

related topics ([Nägele, 2003], [Blumschein, 2002]). The software is currently

developed at the Goethe-University Frankfurt am Main in the research group

of Prof. Gabriel Wittum at the Goethe Center for Scientific Computing [UGG].

The source code of this software collection can be downloaded free of charge on

the website of the group for scientific purposes.
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3. Upscaling of the

advection-diffusion-reaction

equation with Michealis-Menten

kinetics

Abstract The need for reliable models for the reactive transport of contami-

nants in the subsurface is well recognized. The predictive power of these tools is

challenged by the accurate description of the bioavailability of the contaminants

to microorganisms in the porous medium. Among many other factors influenc-

ing bioavailability, diffusive mass-transfer processes may limit the substrate

availability at the pore scale and hence reduce the effective degradation rate

considerably. In this chapter we use a combination of analytical and numerical

methods to upscale surface catalyzed Michealis-Menten kinetics within a single

pore, to obtain effective rate expression at a larger scale. Results show that in

the upscaled description Michealis-Menten kinetics leads to a concentration de-

pendent transition between a reaction and diffusion limited regime. Strictly, the

effective rate repression does not follow Michealis-Menten kinetics. However,

we could present appropriate effective parameters relations, which provide a
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good approximation of degradation dynamics using effective Michealis-Menten

kinetics.
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3.1. Introduction

Anthropogenic groundwater contamination is a severe problem in many indus-

trialized countries. Ex situ remediation means, such as pump-and-treat sys-

tems, are often neither technically nor financially feasible due to the size of the

contaminated sites. For many organic carbon compounds in situ bioremedia-

tion, either passive or enhanced, has shown to be a cost-effective alternative.

Enhanced bioremediation uses the ability of subsurface microorganisms to de-

grade organic contaminants [Wiedemeier et al., 1999].

The biodegradation of groundwater contaminants has been extensively inves-

tigated, both in the field and in the laboratory. However, due to the complex

interplay of microbial, chemical and physical processes occurring in groundwa-

ter, a direct quantification of in situ biodegradation is often hard to achieve. In

order to judge the effectiveness of biodegradation on contaminated sites the ex-

perimental characterization is often combined with numerical simulations using

reactive-transport models [Murphy and Ginn, 2000], [Barry et al., 2002], [Brun

and Engesgaard, 2002], [Prechtel et al., 2006]. Yet, their predictive power is

restricted by the accuracy of the implemented process descriptions.

The extrapolation of laboratory results on microbial degradation processes to

in situ biodegradation processes in the field and the incorporation of these pro-

cesses in reactive-transport simulations are - among many other aspects - chal-

lenged by finding an adequate description of the bioavailabilty of the substrate

[Haws et al., 2006], [Thullner et al., 2007]. Factors controlling the bioavailability

include the physico-chemical structure of the substrate [Bonneville et al., 2004],

[Hyacinthe et al., 2006], physical occlusion by small pores [Mayer, 1994], [Zim-

mermann et al., 2004], [Knutson et al., 2005] or mineral coatings [Roden, 2004],
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Continuum-Scale
above 10’s of cm

Subpore-Scale

up to 100’s of mm

Pore-Scale

100’s of m to 100’s of mmm

Figure 3.1.: Schematic of the complexity of the subsurface and the variety the

different scales involved.

and macroscopic mixing processes [Cirpka et al., 1999], [Thullner et al., 2002a].

Most importantly, the bioavailability of a dissolved contaminant in porous me-

dia is highly affected by mass-transfer processes at the pore or sub-pore scale.

The activity of microorganisms is controlled by substrate concentrations in their

immediate vicinity [Harms, 1996], [Semple et al., 2003], [Kampara et al., 2009].

In porous media microorganisms primarily reside on the surface of the solid

matrix (Fig. 3.1, right part). Microscopic transport processes within each pore

must provide the supply of the contaminant from the bulk pore water to the

location of the microbial cells. This transport limits bioavailability, besides any

of the other processes mentioned above, which might impose an additional re-

striction to bioavailabilty. As a consequence, the bioavailable concentration, to

which microorganisms are exposed to, may differ considerably from the average

concentration measured at the macroscale [Raje and Kapoor, 2000] [Meile and

Tuncay, 2006].

To understand the limitations of macroscopic degradation rates by such pore-

scale mass fluxes, research has focused on simple representations of the pore

space [Balakotaiah and Chang, 1995], [Knutson et al., 2007], [Lichtner and
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Kang, 2007]. Looking at the pore scale it can be shown that the effective

reaction rate can be significantly reduced when pore-scale diffusion becomes a

limiting factor for bioavailability [Balakotaiah and Chang, 1995], [Bosma et al.,

1997], [Dykaar and Kitanidis, 1996], [Kechagia et al., 2002], [Mikelić et al.,

2006]. However, the reaction rate in most of these studies was assumed to

follow first-order kinetics with respect to the concentration of the degraded

species. In case of microbially catalyzed reactions first-order kinetics is valid

for low concentrations only [Bekins et al., 1997]. In reality, the biodegradation

of organic contaminants often follows Monod-type [Monod, 1949] respectively

Michealis-Menten kinetics [Michaelis and Menten, 1913]. Recently, Wood et al.

[2007] have performed investigations assuming Michaelis-Menten kinetics within

a single pore. They derived upscaling rules in the cases of either very low or very

high substrate concentration. However, by comparing their upscaled equation

with numerical simulations in a complex array of pores they got a mismatch

for concentrations in the range of the Michaelis constant.

In this work we use a channel geometry comparable to Kechagia et al. [2002]

and Balakotaiah and Chang [1995] but consider Michaelis-Menten kinetics for

the reactive surface of the pore. We chose this simple geometry in order to be

able to make use of analytical tools in the upscaling process. With our approach

we aim to verify: (i) whether the upscaled reaction rate laws can be sufficiently

described by effective Michaelis-Menten kinetics, and whether the problems re-

ported by Wood et al. [2007] can be resolved and if yes: (ii) how the parameters

of such effective Michaelis-Menten kinetics can be linked to microscopic reaction

rate parameters that are valid at the local scale. The results obtained in this

study for pore-scale systems may provide the base for interpreting results from

laboratory column experiments. With further upscaling steps and additionally
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taking into account large scale heterogeneities, our results can be applied for

describing biodegradation efficiency at the field scale.

In the following sections of this paper we will first introduce the conceptual

approach used in this study including the underlying equations, the geomet-

ric representation of the pore system, and the applied numerical schemes and

upscaling concepts (Section 3.2). This is followed by the description of the

analytical tools used to obtain explicit solutions for the microscale problems

and effective equations for the macroscale continuum (Section 3.3). Analytical

and numerical results are presented and discussed in Section 3.4 and final con-

clusions for the scaling behavior of bioavailabilty controlled Michaelis-Menten

kinetics are given in Section 3.5.

36



Section 3.2: Conceptual Model

3.2. Conceptual Model

This section describes the conceptual approach used in this study. This in-

cludes the governing equations describing transport and degradation of a re-

active species as well as the pore geometry these equations are applied to.

Furthermore, the applied upscaling concepts and numerical schemes are intro-

duced.

3.2.1. Mathematical description

In the following we will derive the mathematical model for reactive transport

at the pore scale. Starting with a general description we will introduce appro-

priate scaling units and apply a few simplifications before stating the definite

mathematical description.

Gs

W
Wp

Gs

Gf

o

Gf

i

Figure 3.2.: Schematic of the computational domain.

The scale of interest is that of a single pore (Figure 3.2). All flow and trans-

port processes are taking place in the fluid phase Ω, only. For a single pore,

the boundaries of the fluid phase domain can be separated into a fluid–solid

interface Γs and a fluid–fluid interface Γf . The latter can be further separated

into the inlet boundary Γi
f and the outlet boundary Γo

f , each of them described

by different boundary conditions. In a single pore, the fate of a single species

with concentration c is described by (a) the advective diffusive transport in the
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3.2.1 Mathematical description

fluid phase, (b) microbial degradation following Michaelis-Menten kinetics at

the fluid–solid interface, (c) a constant concentration along the inlet boundary,

and (d) a zero-concentration gradient at the outlet boundary

∂

∂t
c+ V∇ · ṽc = D∆c in Ωp, (3.1a)

D∇c · n = −
qmax c

Km + c
on Γs, (3.1b)

c = c0 on Γi
f , (3.1c)

∇c · n = 0 on Γo
f . (3.1d)

Here, the water flux v is given as v = V ṽ, with V being the pore-scale average

velocity and ṽ the rescaled velocity, D is the molecular diffusivity, n is the outer

unit normal, qmax is the maximum conversion rate and Km is the Michaelis

constant. The implementation of the reaction rate in Equation (3.1b) assumes

the microorganisms to be localized at the solid liquid interface in a thin biofilm

being constant in space and time.

Equations (3.1)a – (3.1c) were transfered into a non-dimensional form using

reference lengths Lx,ref and Ly,ref as well as a reference concentration cref (values

for Lx,ref , Ly,ref and cref are addressed in Section 3.2.2). This allows for the

definition of the following dimensionless variables

x̂ =
x

Lx,ref
, ŷ =

y

Ly,ref
, ĉ =

c

cref
, K̂m =

Km

cref
, and t̂ =

Dt

L2
y,ref

. (3.2)

Furthermore, two dimensionless quantities are used: the Péclet number and the

Thiele modulus. The Péclet number
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Section 3.2: Conceptual Model

Pe =
V L2

y,ref

DLx,ref
(3.3)

indicates whether the advective or the diffusive transport is dominant at the

scale of interest. High Péclet numbers mean advection dominates diffusion

and vice versa. At the pore scale of groundwater systems, typical values of

Ly,ref < 1mm and V < 1m/d result in values of Pe ≈ 10 or below. This is

in contrast to the continuum scale were Péclet numbers can be considerably

higher. The Thiele modulus [Thiele, 1939]

Φ2 =
qmaxLy,ref

DKm
(3.4)

compares the dynamics of the reactive consumption and the diffusive flux. This

dimensionless quantity is related to the Damköhler numbers Da [Damköhler,

1937], commonly used in chemical engineering to relate the kinetics of reactions

to mass-transfer processes [Fogler, 1998]. The Thiele modulus can be used to

describe the bioavailabilty of a substrate [Myrold and Tiedje, 1985], [Chung

et al., 1993]. In pore-scale systems Φ2 as well as Km can vary over several orders

of magnitude. In our work we will focus on values comprising the transition

from the reaction-limited to the diffusion-limited as well as from a first-order

to a zeroth-order regime.

Using the definitions given by the Equations (3.2), (3.3) and (3.4) we write

Equations (3.1a) – (3.1b)

∂

∂t̂
ĉ+ Pe∇ · ṽĉ =

L2
y,ref

L2
x,ref

∂2

∂x̂2
ĉ+

∂2

∂ŷ2
ĉ in Ωp, (3.5a)

∇ĉ · n = −
Φ2 ĉ

1 + ĉ/K̂m

on Γs. (3.5b)
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3.2.1 Mathematical description

Equations (3.1c) – (3.1d) exhibit no significant changes using non-dimensional

variables.

In the remainder of this publication, we will use the same symbols for dimen-

sional as well as for non-dimensional variables. The occurrence of the Péclet

number and the Thiele modulus in the equations will be the indicator whether

dimensional or non-dimensional variables are considered.

Before stating the definite system of equations we will apply three simplifica-

tions justified by the scope of the study. First, we will drop the time derivative,

since we are mainly interested in the steady state solution. Second, we restrict

our analysis to travel paths of the contaminant with L2
y,ref ≪ L2

x,ref . This is cor-

responding to a flow path of the contaminant being effectively longer along than

perpendicular to the flow field. Rephrasing this constraint as L2
y,ref/L

2
x,ref ≪ 1

shows that we can neglect the longitudinal diffusion in Equation (3.5a). The

assumption is for example supported by the findings of Liedl et al. [2005]

who showed that the longitudinal dispersivity has practically no impact on

the steady state plume length. The last simplification regards the velocity

field, which has only a component in the direction along the flow path. With

these simplifications and using the inlet boundary concentration as a reference

(cref = c0) the pore system is described by

Pe f(y)
∂

∂x
c =

∂2

∂y2
c in Ωp, (3.6a)

c = 1 on Γi
f , (3.6b)

∇c · n = −
Φ2 c

1 + c/Km
on Γs. (3.6c)
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Equations (3.6a) – (3.6c) were used to perform all analysis presented in the

following sections. The coefficient function f(y) in Equation (3.6a) is a place-

holder for an arbitrary velocity profile. Note that for first-order kinetics or

c ≪ Km Equation (3.6c) reads ∇c · n = −Φ2 c.

3.2.2. Geometrical description

The pore system to which we apply Equations (3.6a) – (3.6c) is represented by

a channel extending in x- and y-direction (Figure 3.3). A single pore with such

a geometry will lead to a porous medium consisting of a compound of capillary

tubes [Dupin et al., 2001b]. Compared to other two-dimensional arrays of single

pores (e.g. [Knutson et al., 2007], [Lichtner and Kang, 2007], [Edwards et al.,

1993]) this represents a simplification of the pore geometry, which is however,

necessary in order to obtain analytical solutions in closed form expressions.

Such a single pore system, although simple, has been proven to give appropriate

indications on the relation between pore geometry, diffusion and reaction in

general ([Kitanidis, 1992], [Paine et al., 1993]) and the geometry used here

has previously been used by other authors to describe reactive processes in

porous media [Kechagia et al., 2002] , [Mikelić et al., 2006], [van Duijn et al.,

2008]. Results obtained for single pores can be transferred to more realistic

porous media representations using the ratio of the reactive surface and the

free volume as a scaling factor [Wood et al., 2007].

The reference length Ly,ref is chosen to be half the width of the pore resulting

in a pore space Ωp given by the dimensionless coordinate ranges of 0 < x < ∞

and −1 < y < 1. The reference length Lx,ref is the characteristic length for

which the concentration should be determined. As described in Equation (3.6b),
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3.2.3 Scenarios considered for calculations

Wp

x

y

Water Flow
&

Contaminant

Ly,refReaction

Figure 3.3.: Schematic sketch of the semi-infinite channel used to describe pro-

cesses in a single pore.

the fixed concentration considered at the inlet boundary is used as reference

concentration cref .

The pore space, the boundaries and thus all obtained solutions of Equations

(3.6a) – (3.6c) are symmetric with respect to the x-axis (Figure 3.3). For this

reason the domain was split along the y-axis. All analytical and numerical

solutions were calculated for 0 < y < 1, considering ∇c · n = 0 as boundary

condition at y = 0.

3.2.3. Scenarios considered for calculations

In Equation (3.6a) the form of the coefficient function regarding the velocity

profile was not further specified. For the given pore geometry a parabolic profile

is the most realistic velocity distribution [Taylor, 1953], [Aris, 1956]. The focus

of this study is on the scaling behavior of Michaelis-Menten kinetics. However,

in order to verify the results of our approach with those presented and discussed

in the literature for first-order kinetics and uniform velocity profiles [Kechagia

et al., 2002], we here consider the same in form of scenario I. Next to the most

simple (scenario I) and the most realistic scenario (scenario IV), two further
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I

first− order

uniform velocity field

III

Michaelis −Menten

uniform velocity field

?

-

?

-

II

first− order

parabolic velocity field

IV

Michaelis −Menten

parabolic velocity field

Figure 3.4.: Schematic of the different scenarios (I - IV) investigated in this

study.

scenarios (II and III) of intermediate complexity were considered (Figure 3.4).

In scenarios II and III the remaining combinations of reaction kinetics and

velocity profile were addressed to investigate the influence of each individual

feature on the obtained results.

3.2.4. Upscaling of the pore-scale processes

The focus of this study is to use upscaling methods to obtain an effective one-

dimensional representation of the system described by Equation (3.6). Gener-

ally the purpose of upscaling is to find an effective description of the process of

interest on a coarse level by starting with a well defined representation of the

process on a fine level. The most common methods for upscaling in subsurface
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3.2.4 Upscaling of the pore-scale processes

hydrology [Renard and de Marsily, 1997], [Wood, 2008] are homogenization

[Bakhvalov and Panasenko, 1989], [Papanicolaou, 1995] and volume averaging

[Whitaker, 1999].

To arrive at an effective representation we have to average the process over the

y-axis (Figure 3.3). The scheme of the upscaling process used in this study is

outlined in Figure 3.5.

∫ Ly

0 dysolve equation

analyticallynumerically

∑Ly

0 ∆y
∫ Ly

0 dy solve equation

comp.

comp. comp.

solution in 2D

?

- solution in 2D
�

?

solution in 1D - solution in 1D -
�

equation in 2D

L [c] = 0

@
@
@
@
@
@
@@R

�
�

�
�

�
�

��	 ?

equation in 1D

Leff 〈c〉y = 0

?

solution in 1D
�

Figure 3.5.: Schematic of the upscaling process
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Starting point of the analysis is the system of two-dimensional partial differen-

tial equations as given by Equations (3.6a) – (3.6c). The most ’straight forward’

analysis is first solving these equations either numerically or analytically (left

side of Figure 3.5). The resulting two-dimensional concentration distribution is

then averaged over the width of the pore (i.e., the y-axis; Figure 3.3) providing

a one-dimensional concentration profile along the length of the pore. The de-

rived concentration profiles were used as references for an alternative approach

where the steps of analytical solution and averaging are permuted (right side of

Figure 3.5). In the latter approach, first the averaging over the y-axis results in

a new one-dimensional effective differential operator Leff with a reduced com-

plexity but new effective parameters (see Section 3.3). The evaluation of these

parameters is the main part of the analytical upscaling process. After that, the

upscaled parameters are used to calculate an effective solution (one-dimensional

concentration profile along the length of the pore). A comparison between the

solutions is a good measure for the accuracy of the effective parameters (Figure

3.5).

3.2.5. Numerical scheme

To support the analytically derived results numerical solutions for Equations

(3.6a) – (3.6c) were calculated (see Figure 3.5). These numerical simulations

were performed using the software platform UG (’U nstructuredGrids’, [Bastian

et al., 1997]). Steady state results were obtained by simulating a transient

problem with arbitrary initial conditions until steady state was reached. The

time derivative is discretized by the one-step implicit Euler method. In order to

ensure the local mass conservation, the mixed finite element method is applied

for the spatial discretization. More precisely, the lowest order finite elements of
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3.2.5 Numerical scheme

Raviart-Thomas type are used for the approximation of the fluxes and piecewise

constants for the concentrations. The resulting algebraic system of equations is

hybridized by adding Lagrange multipliers on the edges according to Radu et al.

[2008, 2009]. Then the nonlinear problem is linearized by a damped Newton

method and the resulting linear systems are solved by a multigrid algorithm.
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3.3. Upscaling and Analytical Methods

In this section we present (i) analytical solutions for the coupled transport

degradation problem in two-dimensions and the subsequent averaging over the

y-axes, as well as (ii) one-dimensional effective equations obtained by the up-

scaling theory (see schematic in Figure 3.5). Both approaches are first applied

for first-order kinetics and afterwards modified to solve the case of Michaelis-

Menten kinetics.

3.3.1. First-order kinetics

Assuming first-order kinetics, Equation (3.6c) can be written as

∇c · n = −Φ2cbio (3.7)

introducing cbio as c(x, y)|y=1, i.e. the concentration available to the surface

bound microorganisms. To solve the resulting system of equations we assume

the concentration to be given as an infinite sequence of modes

c(x, y) =
∞∑

i=1

Ci(x)Ψi(y). (3.8)

This ansatz separates every mode into a longitudinal and a transversal com-

ponent (relative to the flow direction), under the assumption that the velocity

field is constant along the longitudinal direction. Thus both sides of Equation

(3.8) are not coupled by the coefficient function f(y) from Equation (3.6a).

A comprehensive discussion on the solution of Equation (3.8) can be found in

Appendix A.1.1. As a result we get the following expression
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3.3.1 First-order kinetics

T
∂

∂x
C = ΛC, (3.9)

which can be rearranged to

∂

∂x
C = T−1ΛC = ΓC. (3.10)

The entries of the unknown vector C are the longitudinal modes Ci of the

concentration c. The entries of the system matrix Γ depend on the velocity

field f(y). In this form Equation (3.10) represents a system of linear ordinary

differential equations. In the following subsections we will solve this system for

the cases of a uniform and a parabolic velocity field.

3.3.1.1. Uniform velocity field

For a uniform velocity field the coefficient function in Equation (3.6a) is given

by f(y) = 1.

Analytical Solution For this velocity field the system matrix Γ is diagonal so

the single longitudinal modes are decoupled

Ci(x) = Ai
sin(λi)

λi
e−

λ2i
Pe

x. (3.11)

For a comprehensive derivation of this solution and the calculation of the coef-

ficients Ai and λi see Appendix A.1.2. The y-averaged solution can be written

as

C(x) =

N∑

i=1

e−
λ2i
Pe

x 4 sin2(λi)

λi(sin(2λi) + 2λi)
. (3.12)
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From Equation (3.11) it can be concluded, that only the first few modes are

required to obtain a good approximation of C(x). Since the elements of {λi}i≥1

are monotonously increasing (see Figure A.1) the respective modes exhibit a

steeper exponential decay. Furthermore, the coefficients Ai in Equation (3.11)

are decreasing with increasing i (see Equation (A.7)). Consequently, the con-

tribution of higher modes to C(x) is insignificant.

Effective Equation Details on the direct upscaling of the system given by

Equations (3.6a) – (3.6c) can be found in Appendix A.1.2. As a result of this

procedure we get the following differential equation

∂

∂x
C(x) = −

Φ2
eff

Pe
C(x), (3.13)

which exhibits a first-order dependency on the y-averaged concentration. The

new effective coefficient Φ2
eff will be discussed in Section 3.4.1 in more detail.

3.3.1.2. Parabolic velocity field

For a parabolic velocity field the coefficient function in Equation (3.6a) is now

given by f(y) = 1.5(1− y2). The details of the determination of the analytical

solution as well as the effective equation are given in Appendix A.1.3.

Analytical Solution For this velocity field the different modes of the unknown

vector C are now coupled and have to be diagonalized before they can be solved

in analogy to Equation (3.11). Consequently we get

wi(x) = wi(0)e
−diix, (3.14)
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3.3.1 First-order kinetics

where dii are the entries of the diagonalized Matrix Γ from Equation (3.10) and

the vector of the initial conditions is w(0) = G−1C(0). The required solution

is then found by re-transforming the solution of Equation (3.14).

Effective Equation For a parabolic velocity field we get an ordinary, second

order differential equation for the first mode of the concentration

veff
∂

∂x
C1(x) = Deff

∂2

∂x2
C1(x) +ReffC1(x) (3.15)

In comparison to Equation (3.13) new transport parameters veff and Deff are

introduced. Since all quantities in Equation (3.15) are non-dimensionalized

these effective parameters represent the ratio between the microsale and the

physically effective values. The transport parameters can be determined by

solving Equation (A.17)

veff = τ11 + τ22
λ2
1

λ2
2

, (3.16a)

Deff =
Pe

λ2
2

(τ21τ12 − τ11τ22) and (3.16b)

Reff = −
λ2
1

Pe
. (3.16c)

Here τij are the entries of the matrix T from Equation (3.9). Note that the

representation of the effective parameters is arbitrary. The present form has

been chosen such that Reff is a good approximation of the reaction rate in the

former scenario (see Equation (A.18)).
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3.3.2. Michaelis-Menten kinetics

For Michaelis-Menten kinetics given by Equation (3.6c) the coefficients λi(x)

are now x-dependent so Equation (3.10) must be modified

∂

∂x
C = Γ(x)C. (3.17)

Further details on the calculations are again given in the Appendix A.1.4. The

solution of Equation (3.17) depends on the velocity field f(y) and is in the

following discussed in analogy to Section 3.3.1.

3.3.2.1. Uniform velocity field

Analytical Solution As mentioned above in the case of a uniform velocity field

all modes in Equation (3.10) are decoupled. Therefore, each single mode Ci(x)

is given by the differential equation

∂

∂x
Ci(x) = −γiiCi(x). (3.18)

Here γii are the respective entries of Γ(x) from Equation (3.17). Due to the

x-dependency of the coefficient function we have to modify Equation (3.11) to

Ci(x) = Ai(0)
sin(λi(0))

λi(0)
e−

∫ x

0
γii(x′) dx′

. (3.19)

This leads to the y-averaged solution for the concentration

C(x) =

N∑

i=1

4 sin(λi(0)) sin(λi(x))e
−

∫ x

0
γii(x′) dx′

λi(0)λi(x)
√

sin(2λi(0)) + 2λi(0)
√

sin(2λi(x)) + 2λi(x)
. (3.20)
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Due to Michaelis-Menten kinetics being nonlinear the coefficients λi depend on

the solution c. Therefore, Equation (3.19) has to be solved iteratively. Using

the solution for first-order kinetics as an initial guess c0, we solve the system to

get the new approximation c1 and iterate the proceedings. The fixed point c⋆ of

the iterative loop is then the required solution. Although, we have not proven

the convergence of the iteration scheme, we see it numerically. Moreover, for

all investigated parameter settings we see a good agreement between the semi-

analytical solution and the numerically calculated solution (see Section 3.4).

Effective Equation The direct upscaling described above for first-order kinet-

ics is now applied using Equation (A.26) instead of (3.7). This leads to

Pe
∂

∂x
C = −

Φ2 cbio
1 + cbio/Km

. (3.21)

Furthermore, we introduce a new coefficient function

Km,eff =
C

cbio
Km. (3.22)

With this new effective Michaelis constant and the effective Thiele modulus

Φ2
eff , given in analogy to Equation (A.23), we obtain

Pe
∂

∂x
C = −

Φ2
eff C

1 + C/Km,eff
. (3.23)

Both effective coefficient functions Φ2
eff andKm,eff are scaled by the same scaling

factor

η =
cbio
C

, (3.24)
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which is the ratio of the bioavailable concentration cbio and the y-averaged or

upscaled concentration C. Using Equation (3.24), we can rewrite Equation

(3.23) to obtain an analytical expression of the governing differential equation

for the upscaled concentration C

Pe
∂

∂x
C = −

Φ2 C

1/η + C/Km
. (3.25)

If the coefficients Φ2
eff and Km,eff are constant and if C(0) = 1 is used as

boundary condition, the analytical solution of Equation (3.23) is given by

C = Km,effLambertW



e
1−

Φ2
eff

PeKm,eff
x

Km,eff


 . (3.26)

The function LambertW (z) is the solution of z = wew (see [Corless et al.,

1997]), which has already been used in the context of microbial reaction kinet-

ics (e.g, [Schnell and Mendoza, 1997], [Helfgott and Seier, 2007]). Comparing

Equation (3.26) to the analytical or numerical solutions of the two-dimensional

problem allows to obtain direct estimates for the effective parameters Φeff and

Km,eff .

3.3.2.2. Parabolic velocity field

Analytical Solution Because of the x-dependency of the coefficients λi(x),

Equation (3.19) has to be modified in analogy to Equation (3.11):
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3.3.2 Michaelis-Menten kinetics

C′ = Γ(x)C = G(x)D(x)G−1(x)C

G−1(x)C′ = D(x)G−1(x)C

w′ = D(x)w.

By decoupling the system we have arrived at a form comparable to Equation

(3.17). The analytical solution in analogy to Equation (3.19) is now

wi(x) = wi(0)e
−

∫ x

0
dii(x

′)dx′

. (3.27)

The required solution is found by re-transforming the solution of Equation

(3.27).

Effective Equation As in the case of first-order kinetics with a parabolic ve-

locity field, no closed solution for the direct upscaling exists. However, by ap-

plying a similar scheme as used for first-order kinetics we can derive an effective

equation for the first longitudinal mode C1(x)

veff(x)
∂

∂x
C1(x) = Deff(x)

∂2

∂x2
C1(x) +Reff(x)C1(x). (3.28)

All coefficients of the effective Equation (3.28) are now x-dependent functions.

Their evaluation has therefore, become cumbersome for practical applications

compared to the case of first-order kinetics. Nonetheless, these coefficient func-

tions are useful for theoretical considerations
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Section 3.3: Upscaling and Analytical Methods

veff = 1 +
γ11
γ22

−
γ12
γ22

∂

∂x

1

γ12
, (3.29a)

Deff = −
1

γ22
and (3.29b)

Reff = (γ11 −
γ12γ21
γ22

−
γ12
γ22

∂

∂x

γ11
γ12

). (3.29c)

(3.29d)

Here the coefficients γij are the entries of the system matrix Γ of Equation

(3.17). The increase in complexity is attributed to the new mixing terms for

the effective velocity veff and the effective reaction term Reff . Though the

effective dispersion Deff contains no additional terms all coefficient functions

are x-dependent (see also Equation (3.23)).

3.3.3. Synopsis of analytical methods

In Table 3.1 a summary of the analytical solutions and effective equations de-

rived from Equations (3.6a) – (3.6c) for the different pore velocity profiles and

reaction rates is given. For first-order kinetics our results are comparable to

those found in the literature [Kechagia et al., 2002], [Balakotaiah and Chang,

1995]. In the case of the parabolic velocity field the effective equation only

provides results for the first mode. The introduced error by neglecting higher

modes is confined to small values of x.
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First-order kinetics Michaelis-Menten kinetics

analytical effective analytical effective

uniform vel. profile (3.12) (3.13) (3.20) (3.23)

parabolic vel. profile (3.14) (3.15) (3.27) (3.28)

Table 3.1.: Summary of cases and corresponding equations.

3.4. Results and Discussion

In this section we first present and discuss the analytical and numerical re-

sults obtained by applying the different approaches outlined in Figure 3.5 for

different combinations of velocity fields and reaction kinetics (see Figure 3.4).

Calculated values of the effective parameters used in the one-dimensional up-

scaled equation, and the dependency of these parameters on local parameters

are evaluated. Finally, the applicability of effective Michaelis-Menten kinetics

is discussed.

3.4.1. First-order kinetics with uniform velocity field

The case of first-order kinetics with a uniform velocity field is well studied in the

literature [Kechagia et al., 2002]. We briefly review and compare those results

vis-à-vis our numerical findings. Calculated concentration profiles exhibit an

exponential decrease along the x-direction and a cosine-like profile along the y-

direction (see Figure 3.6 for an arbitrary example). The strong gradient in the

y-direction shows that the transversal diffusion is not fully able to transport the

contaminant from the bulk of the domain to the reactive boundary at y = ±1.

The y-averaged profile of the numerical and the analytical solution match very
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Section 3.4: Results and Discussion

well in all investigated scenarios, which indicates the soundness of the used

numerical scheme.
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Figure 3.6.: Examples for first order reaction rate with uniform velocity field.

The local parameters are Φ2 = 10 and Pe = 2. Top: simulated

two-dimensional results. Bottom: comparison of one-dimensional

analytical and numerical solutions.

Calculated values for Φ2
eff , using Equation (3.13), show a hyperbolic behavior

with respect to Φ2 (Figure 3.7). Consequently, we can identify three differ-

ent regimes. The first one is termed reaction-limited and is valid for low Φ2

values. Here Φ2
eff shows a nearly linear dependency and the scaling unit η

is accordingly close to 1. This indicates a strong coupling between the local

and global behavior. Thus, the reaction in this regime is sufficiently slow for

the transversal diffusion to provide the reactive boundary with enough sub-

strate. The bioavailable concentration cbio is therefore nearly the same as the
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3.4.1 First-order kinetics with uniform velocity field
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Figure 3.7.: Dependency of Φ2
eff and η on Φ2 in case of first-order kinetics with

a uniform velocity field. Together with the linear and constant

asymptotes representing the reaction-limited ( reached for low val-

ues of Φ2) and the diffusion limited regime (reached for high values

of Φ2). The value of Φ2
eff has been evaluated using Equation (A.23).

y-averaged concentration C. As a result the upscaled reaction rate is mostly

governed by the small scale reaction henceforth the name. The second regime

is called diffusion-limited and is valid for high values of Φ2. Here Φ2
eff asymp-

totically approaches π2/4, corresponding to a linear decrease of η (Figure 3.7).

In this regime the reaction is too fast for the transversal diffusion to transport

sufficient amounts of substrate to the reactive boundary. As a result, strong

concentration gradients occur along the width of the pore and the bioavailable

concentration is much smaller than the y-averaged concentration, i.e. cbio ≪ C.

The third regime is the transition zone between the two other regimes and is

characterized by reaction as well as diffusion. Both are limiting processes and

control the upscaled behavior. These findings agree with results from the liter-
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Section 3.4: Results and Discussion

ature [Kechagia et al., 2002], [Wood et al., 2007], which in case of Wood et al.

[2007] also shows that, by applying appropriate scaling steps, the results from

a simple geometry can be extended to more realistic scenarios.

3.4.2. First-order kinetics with parabolic velocity field

All other boundary conditions assuming the same as in Section 3.4.1, we discuss

the case of first-order kinetics with a parabolic velocity field. As noted in Section

3.2, this case has been discussed in the literature [Balakotaiah and Chang,

1995], but for different conditions as considered here. Nevertheless, our results

are similar to those previously reported. Calculated concentration profiles for

a parabolic velocity field (Figure 3.8) show only minor differences to profiles

obtained for a uniform velocity field. For small values of x, i.e. close to the

inlet, y-averaged concentrations are slightly smaller in the case of a parabolic

velocity field. For increasing x however, higher concentrations are observed for

the parabolic velocity field.

The differences between the two velocity fields can be attributed to the occur-

rence of the effective dispersion coefficient Deff and the effective velocity veff (see

Equation (3.15)), which result in a faster transport of substrate along the length

of the pore. The relation between the effective velocity veff and Φ2 depends on

the regime governing the overall consumption of the substrate (see Figure 3.9a).

In the reaction-limited regime the effective velocity is close to 1 (i.e., equal to

the average flow velocity) and both, uniform and parabolic velocity fields, yield

almost identical results. The effective velocity increases with increasing Φ2

and eventually saturates for high Φ2-values in the diffusion-limited regime. In

the latter regime strong transversal concentration gradients exist and highest

concentrations correlate with highest flow velocities. As a result the bulk of
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Figure 3.8.: Examples of first-order kinetics with a parabolic velocity field. The

local parameters are Φ2 = 10 and Pe = 2. Top: simulated two-

dimensional results. Bottom: comparison of one-dimensional ana-

lytical and numerical solution with results for a uniform velocity

field.

the substrate mass is transported faster downstream. The effective dispersion

coefficient Deff remains small compared to the molecular diffusion coefficient

(i.e., Deff < 1) and shows a reverse dependency on Φ2 than observed for veff

(see Figure 3.9b). The steep gradient at the immediate vicinity of pore inlet

(Figure 3.8) is caused by the uniform constant concentration distribution used

as boundary condition along the entire inlet. This results in high substrate

concentrations at the reactive pore wall, leading to reaction rates that are not

limited by any transversal mass transfer at the vicinity of the inlet.
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Figure 3.9.: Dependency on the effective parameters veff and Deff from Φ2 for

the case of first-order kinetics with a uniform velocity field. The

values were evaluated by solving the Equations (3.16a) and (3.16b)

3.4.3. Michaelis-Menten kinetics with uniform velocity field

For the combination of Michaelis-Menten kinetics and uniform velocity field

analytical and numerical results agree well (Figure 3.10) which confirms the

semi-analytical scheme used for the analysis. The two-dimensional concentra-

tion distribution obtained for Michaelis-Menten kinetics (Figure 3.10 top) is

qualitatively similar to the one presented above for first-order kinetics (Figure

3.6 top). The one-dimensional concentration profile, however, shows a clear

contrast between the two cases (Figure 3.10 bottom). At high y-averaged con-

centrations C, the concentration decrease is much weaker for Michaelis-Menten

kinetics because at these concentrations the upscaled reaction rate approxi-

mately follows zeroth-order kinetics. The slope of the concentration profile is

therefore nearly linear in contrast to the exponential decrease observed for first-
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3.4.3 Michaelis-Menten kinetics with uniform velocity field

order kinetics. Only when C drops to small values (i.e., C ≤ Km), the upscaled

reaction rate approaches first-order kinetics. This qualitative analysis shows,

that in the upscaled equations the characteristics of Michaelis-Menten kinetics

is preserved.
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Figure 3.10.: Examples for Michaelis-Menten kinetics with uniform velocity

field. The local parameters are Φ2 = 10, Pe = 2 and Km = 0.1.

Top: simulated two-dimensional solution. Bottom: comparison of

analytical and numerical one-dimensional solutions with results

from first-order kinetics.

As in case of first-order kinetics the scaling parameter η describes the coupling

between local and global parameters (Equation (3.25)). Compared to the for-

mer case, where η does not depend on C (the slight variations for C ≈ 1 are

attributed to the inlet boundary conditions), the behavior of η is more complex

for Michaelis-Menten kinetics. The parameter now depends on the y-averaged
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(c) Development of η for Km = 0.1.
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Figure 3.11.: Development of η for different Φ2 andKm for the case of Michaelis-

Menten kinetics with uniform velocity field. The respective value

of Φ2 are tagged along the curves. The results were evaluated by

using Equation (3.24).

concentration C (Figure 3.11a) approaching a constant value only for suffi-

ciently small concentrations (C ≪ Km; Figure 3.11b-d). Besides the sensitivity
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3.4.4 Michaelis-Menten kinetics with parabolic velocity field

of η towards Km, results also vary with Φ2. Lower values of Φ2 extend the

concentration range where η depends on C.

This characteristic allows to distinguish between three different regimes: an

effective zeroth-order, an effective first-order and a transition regime. For an

effective zeroth-order regime with Km ≪ C, η is nearly constant and close to 1.

This regime is characterized by a combination of high concentration values and

low values of Φ2 (Figure 3.11d in the upper left part). For Km ≈ C we have

a transition regime were η, and therefore the correlation between the local and

the global parameters, shows a strong dependency on C. In the third regime,

characterized by low concentrations and/or high Φ2, η is well approximated by

constant values representing an effective first-order regime, i.e. Km > C. A

comparison of Figures 3.11a, 3.11b, 3.11c and 3.11d shows that the behavior

of η for high values of Φ2 is very similar for all Km. Therefore, the results for

first-order kinetics can be applied to Michaelis-Menten kinetics with high values

of Φ2.

3.4.4. Michaelis-Menten kinetics with parabolic velocity field

This case is the most complex of the scenarios investigated and the obtained

results (Figure 3.12) represent a combination of the effects discussed in Sections

3.4.3 and 3.4.2.

As for first-order kinetics, a reaction-limited and a diffusion limited regime can

be distinguished. The behavior of the upscaled equation in the reaction-limited

case (see Figure 3.13a) can qualitatively be understood as a superposition of the

cases described in Section 3.4.2 and 3.4.3. Compared to the uniform velocity

field, the concentration decreases relatively sharp in the vicinity of the inlet but
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Figure 3.12.: Examples for Michaelis-Menten kinetics with a parabolic velocity

field. The local parameters are Φ2 = 10, Km = 0.1, and Pe = 2.

Top: simulated two-dimensional solution. Bottom: comparison of

analytical and numerical one-dimensional solutions.

exhibits weaker gradients further downstream of the pore. These effects have

already been discussed in Section 3.4.2. Furthermore, for Michaelis-Menten

kinetics, a zeroth-order behavior is observed for high concentrations and a first-

order behavior for low concentrations (see Subsection 3.4.3). In contrast, for

the diffusion-limited regime the upscaled concentration profiles show a similar

dependency on the velocity field. The results for the first-order and Michaelis-

Menten kinetics are almost identical (see Figure 3.13b). This again emphasizes

that the relation between diffusion and reaction rate determines the upscaled

behavior.
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(a) Reaction-limited regime Φ2 = 10.
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(b) Diffusion-limited regime Φ2 = 100.

Figure 3.13.: Examples for Michaelis-Menten kinetics with a parabolic velocity

field. The local parameters are Km = 0.1 and Pe = 2.

3.4.5. Equivalent Michaelis-Menten parameters

Results presented in Section 3.4.3 show that the coupling between the local and

global coefficients is concentration dependent in the case of Michaelis-Menten

kinetics (Figure 3.11). However, a qualitative analysis of the results in Sections

3.4.3 and 3.4.4 demonstrates behavior similar to Michaelis-Menten kinetics in

the upscaled equations, too. This suggests that approximations for concentra-

tion independent parameters for the upscaled rate expression can be found. In

the following we investigate these equivalent parameters for the case of (i) a

uniform and (ii) a parabolic velocity field.

Uniform velocity field In case of Michaelis-Menten kinetics and a uniform ve-

locity field Equation (3.25) shows the importance of the ratio η for the behavior

of the upscaled reaction rate. Although a rigorous analysis revealed that η is
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not constant but a function of concentration (Figure 3.11a-d)), we attempt to

find a simple constant approximation of η which we call ηeqv. To estimate ηeqv

we fitted Equation (3.25) to the exact one-dimensional concentration profiles

derived from the two-dimensional solutions.
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Figure 3.14.: Dependency of the approximated equivalent scaling parameter

ηeqv on Φ2 in case of Michaelis-Menten kinetics with uniform ve-

locity field.

The results of the fitting procedure reveal that ηeqv depends on Φ2 and Km

(Figure 3.14). For higher Km results for Michaelis-Menten kinetics are com-

parable to those obtained for first-order kinetics. Both reaction kinetics show

a similar decrease of ηeqv with increasing Φ2. This indicates a transient shift

in the regime from reaction-limited (ηeqv ≈ 1) to diffusion-limited (ηeqv ≪ 1).

In turn, for lower Km results for Michaelis-Menten kinetics differ, with the

reaction-limited regime apparently prevailing longer with increasing Φ2. This

leads to higher values for ηeqv compared to those obtained for first-order kinet-

ics. At sufficiently high Φ2 results for Michaelis-Menten and first-order kinetics

again converge asymptotically to values of ηeqv ≈ π2/(4Φ2) supporting the
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3.4.5 Equivalent Michaelis-Menten parameters

statements made in Section 3.4.2. The accuracy of the estimated concentration

profiles obtained using ηeqv is given by the differences between fitted and exact

solutions (Figure 3.15). In general, a good accuracy (errors ≤ 1%) is only found

in the extreme cases of either low or high values of Φ2. The much higher errors

found in the transition regime (errors > 10%) correspond to the values of Φ2

where η exhibits the strongest dependency on C (Figure 3.11). Furthermore, it

was noticed that errors increase with decreasing Km (results not shown).
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Figure 3.15.: Residual error made by using ηeqv (solid line) compared to two

(dashed line) degrees of freedom (DoF) for Michaelis-Menten ki-

netics. Results were obtained assuming a value of Km = 0.1.

To improve the quality of the estimates obtained by fitting effective Michaelis-

Menten kinetics to the exact solutions we introduced an additional degree of

freedom and fitted Equation (3.26). Considering now both parameters, Φ2 and

Km, to be independent of each other the improvement resulted in two new

equivalent parameters, Φ2
eqv and Km,eqv. This procedure gives us significantly

smaller errors in the transition zone between reaction- and diffusion-limited

regimes (Figure 3.15), e.g. for Km = 0.1 errors remain below 1 − 2%. In all
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investigated cases, i.e. 0.01 ≤ Km ≤ 100, the error of the improved fitting

procedure was always less than 3%, which is in the lower range of the experi-

mental accuracy for concentration measurements indicating the applicability of

the approach.

Parabolic velocity field As explained in Section 3.4.4 the scaling behavior in

this case can qualitatively be seen as a superposition of the cases described in

Sections 3.4.3 and 3.4.2. The calculation of the coefficient functions in Equation

(3.28) shows the appearance of complex mixing terms prohibiting the deriva-

tion of the parameter for the effective equation. Thus, numerical solutions were

used as a reference to obtain constant rate parameters applying again a fitting

procedure using Equation (3.28) but with constant coefficients. The effective

transport and reaction expressions result in four unknown parameters in this

case. However, to avoid overparametrization we consider the transport param-

eters determined for first-order kinetics to be applicable for Michaelis-Menten

kinetics, and fit only Φ2
eqv and Km,eqv, the two parameters of the reaction term.

For Km ≥ 1 the behavior of Φ2
eqv with respect to Φ2 is similar to the results of

first-order kinetics (Figure 3.16, see also Figure 3.7). In contrast, for Km < 1

significant differences can be observed. In the latter case, the linear dependency

between Φ2
eqv and Φ2 proceeds till larger values. This shows that the reaction-

limited regime is extended towards higher values of Φ2, which corresponds to

the behavior of ηeqv (Figure 3.14). Nevertheless for high values of Φ2, Φ2
eqv

converges towards π2/4 regardless of the value of Km. The dependency of

Km,eqv on Φ2 supports these statements (Figure 3.16b). In the reaction-limited

regime, i.e. for low values of Φ2, the local and the global Michaelis constants are

approximately identical, i.e. Km ≈ Km,eqv. Again, with increasing Φ2 the local
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Figure 3.16.: Dependency of the approximated equivalent parameters Φ2
eqv and

Km,eqv on Φ2 for several Km in case of Michaelis-Menten kinetics

with a parabolic velocity field.

and global behavior diverge with higher values ofKm showing earlier divergence.

Eventually, for high values of Φ2 all global Michaelis constants Km,eqv increase

to high values (100 or above). For such values the global behavior is always

well approximated by first-order kinetics regardless of the value of Km at the

local level.

The concentration independent parameters and their dependency on local re-

action rate parameters determined by this procedure could be used for macro-

scale simulations, e.g. in the form of look-up tables, in pore network models of

porous media [Thullner et al., 2007], [Bijeljic et al., 2004], [Li et al., 2006]. Such

simulations would allow investigations of further effects, caused for example by

variations of the pore width, the tortuosity or pore connectivity of the medium.
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3.4.6. Synopsis

In case of Michaelis-Menten kinetics and a uniform velocity field the assumption

of a single constant scaling parameter, linking local and global reaction param-

eters, leads to significant errors for the transition between reaction-limited and

diffusion-limited regimes. Specifically, the upscaled rate expression does not fol-

low Michaelis-Menten kinetics. This can explain the problems reported in stud-

ies, assuming a single scaling parameter for the reaction rate expression [Wood

et al., 2007]. However, the errors obtained by assuming Michaelis-Menten ki-

netics can be clearly reduced by using two independent scaling relations for

Φ2 and Km. This results in two new, equivalent parameters Φ2
eqv and Km,eqv.

Though we lack a rigorous analytical derivation of an effective rate expression

for a parabolic velocity field, the analysis of the numerical results support the

extension of the above statements to parabolic flow fields as well. Consequently,

our results can be applied to Michaelis-Menten kinetics with a parabolic velocity

field, that enable us to formulate general upscaling rules.

In the case of first-order kinetics the global behavior of the y-averaged solu-

tion can be separated into a reaction-limited and a diffusion-limited regime

(Figure 3.7) whereby the transition between them is controlled by Φ2. In ad-

dition, for Michaelis-Menten kinetics we also have to distinguish between a

first-order and a zeroth-order regime, the transition of which is now controlled

by Φ2 and Km. Furthermore, Km also has an impact on the transition between

reaction-limited and diffusion-limited regimes (Figures 3.16). As a result the

ratio between Km and the concentration C has a strong influence on the scal-

ing behavior of Michaelis-Menten kinetics making it far more complex as for

first-order kinetics. Such concentration dependent transitions between reaction-

and diffusion-limited systems have been reported before [Thullner et al., 2008],
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Figure 3.17.: General survey of the upscaling behavior in case of Michaelis-

Menten kinetics. Borders of the zones with different regimes are

drawn for demonstration purposes using arbitrary threshold val-

ues.

[Kampara et al., 2008]. This further supports that scaling rules obtained for

first-order kinetics can not easily be expanded to Michaelis-Menten kinetics.

Only for C ≪ Km, or in the marginal cases of either high or low Φ2, the

different reaction rates scale similarly.
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3.5. Summary and Conclusion

We have presented an new upscaling approach from a two-dimensional system

with transport and surface catalyzed degradation of a single reactive species

in a simple pore geometry to an effective one-dimensional reactive transport

equation. For the analysis we neglected the longitudinal diffusion and motivated

the decision in mathematical and physical terms. The validity of the developed

model was tested with results from analytical and numerical solutions to verify

the soundness of the upscaling process and to evaluate the effective parameters

of the upscaled equation.

The main focus was the scaling behavior of Michaelis-Menten kinetics. Two

cases have been considered regarding the velocity profile within the pore: a

simple uniform and a more realistic parabolic velocity distribution. For both

distributions, the results for Michaelis-Menten kinetics have been compared

with results obtained for first-order kinetics.

The first two investigated scenarios of the analysis were simple cases of reac-

tive transport with first-order kinetics at the reactive boundary of the medium

(scenario I and II in Figure 3.4). Solutions for the upscaled system are already

known [Balakotaiah and Chang, 1995], [Kechagia et al., 2002] and served as

a verification of the conceptual approach applied in this study and the result-

ing effective reaction rates. Results show that the macroscopic reaction rate

can be strongly reduced when diffusion is the limiting factor and that effective

transport parameters must be considered for a parabolic velocity field.

For Michaelis-Menten kinetics (scenarios III and IV in Figure 3.4) the upscaling

results showed a concentration dependent coupling between local and global

scales with highest sensitivities for local concentrations in the same order of
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magnitude as the Michaelis constant (i.e. Km ≈ cbio). For scenario III where

Km was either much higher or much smaller than the bioavailable concentra-

tion cbio, the upscaled reaction rate could be well approximated by first-order or

zeroth-order kinetics, respectively. Coupling of local and global behaviors using

a single parameter demonstrated that scaling parameters either required con-

centration dependend scaling or resulted in significant errors when remaining

constant. The use of this parameter is therefore either cumbersome or inac-

curate. However, by using two independent, constant scaling parameters the

global behavior could be reproduced reasonably well. Such independent scal-

ing parameters could be derived for both types of velocity fields by fitting the

effective one-dimensional profiles to explicit solutions of the two-dimensional

problem. For scenario IV our study revealed that the upscaling in case of a

parabolic velocity field is analytically as well as numerically cumbersome, thus

limiting the applicability of the analytical upscaling approach. However, by

using the effective transport parameters obtained for first-order kinetics and

re-determining the upscaled reaction rate parameters through fitting the nu-

merical results, we could achieve acceptable results. These upscaled param-

eters, determined by fitting, now represent a good tradeoff between accuracy

and applicability.

Results of this work provide an effective upscaled reaction rate considering

mass-transfer limitations taking place at the scale of a single pore. The use

of a simplified representation of a pore allowed an analytical treatment and

understanding of the physical processes involved. By considering Michaelis-

Menten kinetics at the pore scale, the obtained effective equations comprise the

restrictions of substrate bioavailability caused by pore-scale diffusion. For such

processes the obtained scaling behavior depends on the substrate concentra-
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tion. This result is caused by the concentration dependent transition between

reaction-limited and diffusion-limited regimes and is not observed for first-order

kinetics. The approach presented in this study allows the determination of con-

centration independent scaling parameters, which provide global concentration

estimates of an acceptable accuracy. The obtained relations between local and

global reaction rate parameters can be transfered to larger scale models, e.g.

by using them in pore network simulations. Future steps should include the

experimental validation of these theoretical results.
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4. A Linear Exchange Model for the

description of bioavailability at the

pore scale.

Abstract Reactive-transport simulations are a common approach for the

quantitative assessment of contaminant biodegradation in the subsurface. To

use knowledge on microbial kinetics for the simulation of in situ biodegradation

the mass-transfer processes controlling the bioavailability of the contaminants

need to be described appropriately. A common approach to account for this

problem is using a linear exchange model controlling the link between bulk and

bioavailable concentration. Assuming that the subsequent degradation is con-

trolled by the bioavailable concentration, only, these two steps can be combined

to an analytical expression for the overall reaction rate know as Best-Equation

or Best kinetics. In this chapter we evaluate this approach for its ability to

describe biodegradation kinetics limited by pore-scale mass transfer. Results

from explicit numerical and analytical simulations of both processes at the pore

scale are used to test the accuracy of results obtained using Best kinetics. Our

analysis shows that strictly spoken the Best-Equation is not valid. However,

a good approximation can be achieved with errors of less than 6% in cases of

moderate bioavailability and much lower errors in cases of either low or high
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bioavailability. These results support the description of mass-transfer processes

used in many reactive-transport models. Furthermore, we present a method

to obtain an accurate estimate of the unknown rate parameter controlling the

diffusive mass transfer processes at the pore scale.
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4.1. Introduction

In the last years, in situ bioremediation has become a common remediation

strategy for sites contaminated by organic carbon species [Alvarez and Illman,

2005]. It is obvious that the effectiveness of such an approach is mainly depen-

dent on the ability of groundwater microorganisms to metabolize the respective

contaminant. Measured degradation rates in the field however, have been shown

to be often much lower than under idealized laboratory conditions [Simoni et al.,

2001], [Alexander, 2000]. This observed discrepancy has lead to the concept of

bioavailability, i.e. the contaminant may not be fully available to be degraded

by the microorganisms. No single definition of bioavailability exists [Ehlers and

Luthy, 2003], [Semple et al., 2004]. Due to the complex structure of the subsur-

face and the variety of processes controlling the fate of reactive species, factors

influencing the bioavailability range from the physical and chemical state of

the species to mass-transfer limitations taking place at different scales or across

the cell membrane [Barry et al., 2002], [Button, 1991], [Johnsen et al., 2005],

[Thullner et al., 2007].

In this study we focus on pore-scale mass fluxes. The relevance of these pro-

cesses for biodegradation is still under discussion, while some have argued in

favor [Gramling et al., 2002], [Raje and Kapoor, 2000], [Meile and Tuncay, 2006]

and some against it [Li et al., 2007]. Nonetheless, different concepts have been

proposed to account for these pore-scale mass fluxes. Many of these studies

assume that macroscopic degradation kinetics follow the same type of rate law

as at the pore scale. Commonly these models use a first-order reaction rate

[Balakotaiah and Chang, 1995], [Dykaar and Kitanidis, 1996], [Kechagia et al.,

2002] but recently more advanced studies with Monod resp. Michaelis-Menten

kinetics have been presented [Meile and Tuncay, 2006], [Wood et al., 2007],
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[Heße et al., 2009]. However, these models showed problems, when trying to

give a rigorous mathematical justification for the effective parameters. As an

alternative, approaches relying on a two-step scheme for the pore-scale mass

transfer have been shown to describe bioavailability at the pore scale with good

accuracy [Bosma et al., 1997], [Kampara et al., 2008]. In these models a dis-

tinct separation between the macroscopically measured or bulk concentration

and the microscopically bioavailable concentration is assumed. Since only the

latter is subject to biodegradation, microbial degradation activity is linked to

the bioavailable concentration by Monod resp. Michaelis-Menten kinetics. The

mass flux between these two concentrations is described by a linear exchange

term. Under steady state conditions it can be combined with the reaction ki-

netics into a single analytical expression for the macroscopic reactive flux. This

expression is known as Best kinetics [Best, 1955]. An intrinsic problem when

using a linear exchange term is the assumption of the mass exchange taking

place between two distinct compartments or reservoirs of the subsurface (e.g.,

pore water with bulk concentration and a biophase with bioavailable concen-

tration). A clear separation of both however, is not possible for porous media

with laminar flow fields.

In this work we use a simple representation of a single pore to simulate transport

and biodegradation of a chemical species at the pore scale. The degradation

reaction at the surface of the pore is assumed to follow Michaelis-Menten ki-

netics. A subsequent averaging over the pore will yield an effective description

of the degradation process. These averaged results will serve as references for

descriptions of the macroscopic degradation rate using Best kinetics. With this

approach we aim to verify (i) whether the effective reaction kinetics can be

described by Best kinetics and thus whether the linear exchange model pro-
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vides an adequate description of pore-scale mass transfer processes, (ii) how

the mass-transfer coefficient to be used in the linear exchange model can be

estimated for a given scenario, (iii) how the accuracy and applicability of this

method is compared to macroscopic Michaelis-Menten kinetics and (iv) under

which circumstances pore-scale mass fluxes must be considered.

The results from this study will therefore assess the applicability of the linear

exchange model for the quantitative description of pore-scale mass transfer

limitations on bioavailability.
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4.2. Theory

4.2.1. Biodegradation at the pore scale

In this study it is assumed that in porous media microorganisms are bound to

the surface of the solid matrix and thus biodegradation of dissolved chemical

species can only take place at the interface between the fluid phase carrying

the dissolved species and the solid matrix phase of the medium. In contrast to

the continuum approach used to describe processes at the macro scale, pore-

scale descriptions allow for a clear separation between the fluid and the solid

phase. Assuming that microorganisms are homogeneously covering the fluid

solid interface at no growth conditions the fate of biodegradable species is given

by the pore-scale solution of the advection-diffusion-reaction equation:

∂c

∂t
= −∇ · (vc) +D∆c+R. (4.1)

Here v describes the water flow velocity and c the species concentration, both

subject to pore-scale variations. D is the molecular diffusion coefficient. The

reaction rate R describes the biodegradation taking place at the fluid-solid

interface, only:

R =





0 in the fluid phase

−avqmax
c

Km+c
at the fluid solid interface.

(4.2)

Here qmax is the maximum surface reaction capacity (given in mass per surface

area and time, determined by the density and degradation capability of the

microorganisms covering the surface), av is the specific reactive surface and
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Km is the Michaelis constant. This allows to express the maximum reaction

rate as

kmax = avqmax. (4.3)

Note that under the constraint of a homogeneous steady-state biomass cov-

erage of the surface the Michaelis-Menten kinetics given by Equation (4.2) is

structurally identical to the Monod expression.

4.2.2. Pore-scale geometry

The domain used for the calculations is a semi-infinite two-dimensional channel

with diameter 2Ly and the fluid-solid interface presented by the (reactive) wall

of the channel (see Figure 4.1 top and Figure B.1 for more details). For a realis-

tic porous medium this domain could be applied in a network model consisting

of capillary tubes [Kim and Fogler, 2000], [Thullner et al., 2002b]. Although

the features of interest for this study are comprised in the used domain, effects

like tortuosity, pore connectivity and a modulated pore diameter are not con-

sidered here. However, simplified pore geometries like the one used herein have

been shown to yield insight into the dependency of geometry, transport and

reaction in general [Kitanidis, 1992] as well as reactive transport at the pore

scale [Kechagia et al., 2002], [Mikelić et al., 2006], [van Duijn et al., 2008].

4.2.3. Mass transfer described by a linear exchange term

As an alternative to calculating biodegradation rates by solving Equations (4.1)

and (4.2) explicitly at the pore scale, introducing a linear exchange term allows

for a simplification of the problem. The general concept is to distinguish be-
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4.2.3 Mass transfer described by a linear exchange term

tween two individual concentrations (representing two individual reservoirs):

(i) the bulk concentration C (interpreted as the weighted average of the con-

centration along the width of the pore) which is affected by transport, and

(ii) the bioavailable concentration cbio (interpreted as the concentration at the

pore wall) which determines the rate of biodegradation. Both concentrations

are coupled using a linear exchange term Rtr to describe the mass exchange

rate

Rtr = avjtr (C − cbio) . (4.4)

Here jtr is the mass-flux coefficient allowing to define the mass-transfer rate

coefficient ktr as

ktr = avjtr. (4.5)

This approach is also known as the linear driving force model first proposed

by Glueckauf and Coates [1947] for adsorption chromatography [Villermaux,

1987], which has been used from then on in the field of reactive transport, too

[Roberts et al., 1987], [Harvey and Gorelick, 1995]. Since in a channel geometry

this mass exchange takes place in a direction transversal to the water flow and

is driven by diffusion one might anticipate that

ktr ∝
D

Ly
. (4.6)

Despite its simplicity the predictive capacity of the approach given by Equation

(4.4) is limited due to the difficulties when trying to establish a connection

between ktr and real physical features of the porous medium (see e.g. Dykaar
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and Kitanidis [1996] for a detailed discussion). Therefore, we cannot infer

further properties of this parameter at this point of the study.

Using Equation (4.4), Equations (4.1) and (4.2) can be rewritten as:

∂C

∂t
= −Veff∇C +Deff∆C −Rtr (4.7)

and

∂cbio
∂t

= Rtr − kmax
cbio

Km + cbio
(4.8)

with Deff as effective diffusion coefficient and Veff as effective transport velocity

along the length of the pore channel. For the calculation of these quantities we

refer to Balakotaiah and Chang [1995] and Heße et al. [2009]. Note that Veff

is equal to the average pore velocity V for high bioavailability and increases

by a maximum factor of approximately 1.4 for very low bioavailability [Heße

et al., 2009]. Relaxation times at the pore scale can be considered short com-

pared to macro-scale fluctuations of flow velocities and species concentrations,

which justifies the assumption of steady state conditions. Using this assump-

tion Equations (4.7) and (4.8) can be further simplified to a single equation

describing the change of the bulk concentration along the pore channel:

∂C

∂t
= −Veff∇C +Deff∆C −RBest = 0 (4.9)

with

RBest =
ktr
2

(
Km + C +

kmax

ktr

)

1−

√√√√√1−
4 C
Km

kmax

Kmktr(
1 + C

Km
+ kmax

Kmktr

)2


 . (4.10)
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The latter is the so-called Best-Equation or Best kinetics [Best, 1955] derived by

inserting Equation (4.4) into Equation (4.8) and rearraging under steady state

conditions (i.e. Rtr = RBest, ∂c/∂t = 0; see e.g. Simoni et al. [2001] or Bosma

et al. [1997] for a more detailed discussion). Note that in Equations (4.8) and

(4.10) kmax and ktr are given by Equations (4.3) and (4.5), respectively. The

Best-Equation provides a closed expression for the biodegradation rate with

respect to the macroscopic or bulk concentration C. This macroscopic reaction

rate is the result of two consecutive microscopic processes: the diffusive mass

transfer and a local reactive consumption (the consumption at the microscopic

location of the microorganisms, i.e. the solid water interface). Depending on

the prevalence of these processes the macroscopic rate will be either diffusion-

or reaction-limited, or a combination of both.

4.2.4. Dimensionless description

In order to obtain generalizable results and to make use of mathematical con-

cepts derived previously by Heße et al. [2009] the above variables and equa-

tions are transfered into dimensionless descriptions. For this purpose reference

lengths, Lx,ref and Ly,ref as well as a reference concentration cref are used. For

Ly,ref we choose half the width of the pore (see Figure B.1) and Lx,ref is a char-

acteristic length scale of the contaminant along flow paths, which is certainly

much longer than Ly,ref . As cref the concentration at the pore inlet is chosen.

Using these references allows for the definitions of the Péclet number, and the

Thiele modulus, as dimensionless numbers or scaling units. The Péclet number

Pe =
V L2

y,ref

DLx,ref
(4.11)

86



Section 4.2: Theory

is a measure for the relevance of advective versus diffusive mass fluxes. The

Thiele modulus [Thiele, 1939] is defined as

Φ2 =
kmaxLy,ref

avDKm
(4.12)

and is a measure to assess whether the macroscopic reaction rate is controlled

by the local reaction rate or by diffusive fluxes.

Applying these above reference values allows to transfer all system variables

into a dimensionless form

ĉ, K̂m =
c,Km

cref
, q̂max = qmax

Ly,ref

Dcref
, ĵtr = jtr

Ly,ref

D
, x̂ =

x

Lx,ref
, and ŷ =

y

Ly,ref
.

(4.13)

Description of the full problem By assuming the constraint L2
y,ref ≪ L2

x,ref ,

justified above, we can neglect the longitudinal diffusion [Heße et al., 2009],

[Mikelić et al., 2006], [van Duijn et al., 2008]. Furthermore, we can state that the

velocity field has only a component in the direction of the flow path (see Figure

B.1). Using this assumption and the definitions above, Equations (4.1) and

(4.2) can be converted into the following dimensionless steady-state expressions

for the investigated pore channel

Pe

(
1−

y2

Ly

)
∂

∂x̂
ĉ =

∂2

∂ŷ2
ĉ (4.14)

in the fluid phase, and

∇ĉ · n = −Φ2 ĉ

1 + ĉ/K̂m

(4.15)
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4.2.4 Dimensionless description

at the fluid solid interface. The velocity distribution in Equation (4.14) is

defined as a parabolic function and n is the outer unit normal.

Note that, unless stated otherwise we will use only dimensionless variables in

the remainder of the manuscript. For the sake of simplicity we will thus drop

the hat above the symbols.

Effective problem description Applying the above dimensionless variables to

Equations (4.9) and (4.10) also allows expressing the effective solution for the

pore-space geometry in dimensionless form:

Veff

V

∂

∂x
C −

Deff

D

∂2

∂x2
C = av

Q

Pe
. (4.16)

with Q as the dimensionless form of Best kinetics:

Q =
jtrKm

2

(
1 +

C

Km
+

Φ2

jtr

)

1−

√√√√√1−
4 C
Km

Φ2

jtr(
1 + C

Km
+ Φ2

jtr

)2


 . (4.17)

For the derivation and the calculation of the effective transport parameters in

Equation (4.16) we refer again to Balakotaiah and Chang [1995] or Heße et al.

[2009] (valid for Pe < 10).

For comparison an alternative expression was considered for Q in Equation

(4.16) using effective Michaelis-Menten kinetics in analogy to previous studies

[Wood et al., 2007], [Heße et al., 2009] (denominated as Monod kinetics therein):

Q =
Φ2
effC

1 + C/Km,eff
(4.18)
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with the effective reaction parameters Φ2
eff and Km,eff being linked to the local

values for Φ2 and Km either using a single scaling parameter ηeqv with Φ2
eff =

ηeqvΦ
2 and Keff = ηeqvKm [Wood et al., 2007], [Heße et al., 2009], or using

two independent scaling parameters η1,eqv and η2,eqv with Φ2
eff = η1,eqvΦ

2 and

Keff = η2,eqvKm [Heße et al., 2009].

4.2.5. General approach

To evaluate the applicability of the linear exchange model numerical solutions of

the full problem description given by Equations (4.14) and (4.15) are compared

to solutions of the effective problem description given by Equation (4.16).

Numerical solutions of the full problem were obtained using a finite element

solver (for further details see Radu et al. [2008]). A parabolic profile was con-

sidered as velocity distribution along the width of the pore channel, and at

the inflow of the pore channel a fixed concentration c0 was used as boundary

condition.

The resulting two-dimensional concentration distribution is subsequently aver-

aged over the transversal axis to obtain a one-dimensional concentration profile

along the longitudinal flow path. This concentration profile was used as ref-

erence for the results of the effective problem descriptions. Due to physically

unrealistic boundary conditions at the inlet we avoided artefacts by exclud-

ing regions close to the inlet from the fitting procedure. In order to make all

following analysis compareable we chose as criteria the point, where the cross

section of the concentration distribution is well approximated by a single cosine

function (see also Balakotaiah and Chang [1995], Kechagia et al. [2002] or Heße

et al. [2009] for further details). Solutions of the effective problem were obtained
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4.2.5 General approach

applying a Runge-Kutta solver. Values for the unknown mass-flux coefficient

jtr in Equation (4.17) and the scaling factor(s) η∗,eqv in Equation (4.18) were

determined by fitting, i.e. minizing the square sum error between the analyti-

cally derived one-dimensional concentration profile (Best kinetics) and the one

obtained by numerical simulation. Furthermore, values for jtr were estimated

analytically making use of results from Heße et al. [2009] (see Appendix B.1).
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4.3. Results and Discussion
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(a) Reaction-limited regime (Φ2 ≪ 1)
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Figure 4.1.: Top: Selected examples showing simulated concentration distribu-

tions for the full problem for two different scenarios. Bottom: Com-

parison of averaged numerical simulations (—) of the full problem

to solutions of Equation (4.16) using Best kinetics with a fitted jtr

(×) and using Michaelis-Menten kinetics with local reaction rate

parameters (- - -).

To demonstrate the general approach and to indicate the relevance of using

an appropriate effective description results are first shown for two arbitrary

examples; one representing a reaction-limited regime (Figure 4.1a), where the

macroscopic degradation rate is mainly controlled by the local reaction rate,
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4.3.1 General behavior of the mass-flux coefficient jtr

and one representing a diffusion-limited regime (Figure 4.1b) where mainly

transversal diffusive fluxes are controlling the macroscopic degradation rate.

Numerical simulation results (steady state) of the full problem show that for

the reaction-limited regime concentration gradients along the width of the pore

channel are rather smooth (Figure 4.1a top). This results in the average bulk

concentration C being representative for the concentration at the pore wall

cbio. As a consequence, the bulk concentration profile along the length of the

pore obtained by averaging the numerical results along the width of the pore

channel can be reasonably well predicted using an effective description with

Michaelis-Menten kinetics and the local parameters (i.e. using Equation (4.16)

with Q as in Equation (4.18) and η1,eqv = η2,eqv = 1) (Figure 4.1a bottom).

In contrast, for the diffusion-limited regime strong concentration gradients can

be observed along the width of the pore, and the bulk concentration C differs

from the concentration at the pore wall cbio (Figure 4.1b top). In this case

predicting the longitudinal bulk concentration profile using Michaelis-Menten

kinetics with local parameters leads to an overestimation of the macroscopic

reaction rate and thus to an underestimation of the bulk concentration (Figure

4.1b bottom). For both regimes, using an effective description based on the

linear exchange model, i.e. using Best kinetics as effective reaction rate Q in

Equation (4.16), allows for a very good reproduction of the longitudinal bulk

concentration profile (Figure 4.1 bottom) indicating the general applicability of

the approach.

4.3.1. General behavior of the mass-flux coefficient jtr

In order to assess the general behavior and the accuracy of the linear ex-

change model the above comparison of results from numerical simulations of
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the full problem and from the effective solution using Best kinetics was per-

formed for a broad range of possible scenarios characterized by different values

of the Thiele modulus Φ2 and the ratio between the maximum concentration

and the Michaelis constant c0/Km. While Φ2 is a good inverse measure for

the relative importance of reactive vs. diffusive processes the ratio c0/Km in-

dicates if the reaction rate is (initially) following (i) an effective zeroth-order

regime (c0/Km ≫ 1), (ii) an effective first-order regime (c0/Km ≪ 1), or (iii) a

transition between both (c0/Km ≈ 1).

Optimum fit results obtained for jtr show a dependency of this parameter on the

local reaction rate parameters (i.e., Φ2 and c0/Km) (Figure 4.2a). With respect

to Φ2 different regimes can be identified: for low values of Φ2 jtr shows a strong

dependency on c0/Km with higher values of c0/Km associated with higher values

of jtr resulting in a variation of jtr over several orders of magnitude (Figure

4.2a, left part), which have been reported before by Young and Ball [1995] for

similar setups. In contrast, for sufficiently high values of Φ2 optimum fit values

approach a constant value of jtr ≈ 2.4 − 2.5 independent of c0/Km (Figure

4.2a right part). The transition between these two extremes is characterized

by jtr increasing with Φ2 towards a maximum value before decreasing towards

the constant value for large Φ2. The larger c0/Km the larger the value of Φ2

at which maximum values of jtr are reached and at which subsequently the

constant value is approached.

The residual errors obtained when comparing one-dimensional concentration

profiles determined by fitting jtr to solutions of the full problem show that for

both, very high or very low values of Φ2, Best kinetics provides a very good

estimate of the concentration along a pore-scale flow path with neglectable

errors (Figure 4.2b). For values of Φ2 ≈ 100−102 larger errors can be observed,
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Figure 4.2.: Behavior and accuracy of the mass-flux coefficient jtr from Equa-

tion (4.17) with respect to Φ2. The value of jtr was determined

by fitting an effective solution using Equation (4.16) to averaged

numerical solutions of the full problem for several Φ2 and c0/Km

(a,b).

the value of which depend on c0/Km. For high values of c0/Km errors of up to

2.5% can be found, with decreasing maximum values with decreasing c0/Km.

Also values of Φ2 at which highest errors were found depend on c0/Km with

higher c0/Km shifting the peak of the residual error towards higher values of

Φ2.

Given that a value of c0/Km = 0.1 represents the first-order range of Michaelis-

Menten kinetics, Best kinetics appears to be most accurate for this type of

reaction regime. However, as maximum errors remain below 3% for all combi-

nations of c0/Km and Φ2 Best kinetics provides a good effective description also

for the zeroth-order range of Michaelis-Menten kinetics and the transition be-
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tween these extremes. This indicates that in general the linear exchange model

is an adequate effective description of bioavailability limited biodegradation at

the pore scale. However, for low Φ2 values of jtr obtained by fitting varied over

several orders of magnitude depending on both, Φ2 and c0/Km. This would cer-

tainly challenge the prediction of jtr and the applicability of the linear exchange

model for practical use.

4.3.2. Using a constant estimate for jtr

As discussed in the above section, jtr showed strong variations with respect to

the parameters of the local reaction rate, i.e. Φ2 and c0/Km (Figure 4.2a). For

high values of Φ2 and/or low values of c0/Km however, the mass-flux coefficient

jtr appeared to be relatively constant. In addition, sensitivity analysis showed

that for high c0/Km, results are rather insensitive even to large variations of jtr

(data not shown). These observations are consistent with the fact that for high

c0/Km a zeroth-order reaction regime is prevailing with the reaction rate hardly

depending on concentration. Thus, jtr controlling the link between bulk and

bioavailable concentration is not supposed to have a major impact on the overall

reaction rate, which explains the low sensitivity. In contrast, for low c0/Km

representing a first-order reaction regime the concentration is considered to be

a crucial factor for the overall degradation rate and consequently the sensitivity

towards jtr is higher. As a consequence, any value for jtr which might be used

to represent the entire range of Φ2 and c0/Km values should be at first a good

estimate for the first-order regime.

A re-analysis of the results from Heße et al. [2009] allows for low values of

c0/Km to derive an analytical estimate of
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Figure 4.3.: Residual errors made when using Best kinetics with a constant

mass-flux coefficient jtr = π2/4 as effective reaction rate expression

for several Φ2 and c0/Km.

jtr = π2/4 ≈ 2.47 (4.19)

(see Appendix B.1). This value is identical to results of Haggerty and Gorelick

[1995] reported for the case of layered diffusion, and is also nearly identical to

the optimum fit values found for large Φ2. In order to assess the applicability

of this constant estimate for the entire range of Φ2 and c0/Km an error analysis

was done in analogy to the above section (Figure 4.2b).

Results of this error analysis for a constant value of jtr = π2/4 show again a

good accuracy with small errors in the cases of either low or high values of Φ2

(Figure 4.3). Higher errors are again observed in the transition regime with

values showing a dependency on Φ2 and c0/Km compareable to above results.

The maximum of this error however, does not exceed 6% regardless of the value

of c0/Km, which is still in an acceptable range compared to experimental accu-

racies [European Commission, 2000]. These findings support the extrapolation
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of the analytically determined first-order regime value of jtr to the entire range

of reaction regimes. Thus, the simplicity of obtaining an estimate while keeping

the estimation errors in an acceptable range suggests the analytically derived

value of jtr to be the more efficient approach compared to the more accurate

fitting procedure.

4.3.3. Comparison with macroscopic Michaelis-Menten kinetics
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Figure 4.4.: Residual errors made by using different effective rate expression:

Best kinetics with a constant jtr = π2/4 (dashed line), and with

fitted values for jtr ( solid line), and Michaelis-Menten kinetics with

one (dotted line) and two (dashed dotted line) degrees of freedom

(DoF), i.e. independently fitted scaling parameter(s). Results were

obtained assuming a value of c0/Km = 10.

To compare the accuracy of the linear exchange model with effective Michaelis-

Menten kinetics suggested in the literature as effective degradation rates [Wood

et al., 2007], [Heße et al., 2009], residual errors of these different approaches

were determined assuming c0/Km = 10 as for this value large errors were found
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(see Figure 4.2b and Figure 4.3). Results of this comparison indicate that the

highest accuracy is obtained by using effective Michaelis-Menten kinetics with

two independent effective parameters (Figure 4.4). This observation can be

attributed to the additional degree of freedom in this fitting approach compared

to the expressions using a single fitting parameter. Of those approaches using

one parameter only, Best kinetics with a fitted jtr is the most accurate. The

analytically derived value of jtr = π2/4 leads to slightly less accurate estimates

as shown above. Compared to these two estimates using Best kinetics, effective

Michaelis-Menten kinetics with only one scaling factor leads to the highest

estimation errors.

4.3.4. Relevance of pore-scale bioavailability restrictions

In order to assess the necessity of the application of an effective description for

pore-scale mass fluxes one has to evaluate the bioavailability with respect to the

local reaction rate parameters Φ2 and Km. To quantify bioavailability Bosma

et al. [1997] introduced the bioavailability number Bn as the ratio between

the mass-transfer rate coefficient ktr and the microbial specific affinity given

by kmax/Km. Combining this with Equations (4.5), (4.12) and (4.19) allows to

express Bn as

Bn =
ktr

kmax/Km
=

π2

4Φ2
. (4.20)

This relation supports that the Thiele modulus can serve as a measure for

species bioavailability [Chung et al., 1993]. However, as discussed above the

relevance of such mass-transfer limitations also depends on the concentration of

the reactive species, an effect already reported previously [Kampara et al., 2008],
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[Thullner et al., 2008]. For these reasons, Kampara et al. [2008] introduced the

effective bioavailability Beff as the ratio between the effective degradation rate

given by Best kinetics (Equation 4.17 using the constant estimate for jtr) and

the potential degradation rate in the absence of any bioavailability restrictions

given by Michaelis-Menten kinetics (Equation 4.18 using local values for Φ2

and Km; see Appendix B.2 for more details). Expressing Beff as function of Φ2

and C/Km (Figure 4.5) allows the determination of parameter combinations

for which bioavailability effects need to be considered at the pore scale.

Figure 4.5.: Effective bioavailability Beff with respect to the local reaction rate

parameters Φ2 and C/Km. The values were calculated as the ratio

of the reactive flux given by Best kinetics using Equation (4.17)

compared to the reactive flux given by Michaelis-Menten kinetics

using Equation (4.18) with local parameters.

Results of this analysis show that for low concentrations (C/Km ≤ 1) bioavail-

ability restrictions become relevant at values of Φ2 ≈ 1 with higher Φ2 resulting

in severe bioavailability limitations of the degradation rate (Figure 4.5). For

higher concentrations, i.e. (C/Km ≥ 1), values of Φ2, for which bioavailability
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effects have to be expected, increase. As a result a reduced bioavailability is

confined to relatively fast reactions (high Φ2), only. These findings are also in

general agreement with the results for surface catalyzed abiotic reactions re-

ported recently by Li et al. [2007] who observed only negligible limitations of

mineral dissolution rates at for Φ2 ≤ 1 (estimate based on data given therein).

4.3.5. Comparison to experimental data

In order to illustrate the application of the concept outlined above for the inter-

pretation of experimental data we here use results from a column experiment

on the biodegradation of 3-chlorodibenzofuran taken from Harms and Zehnder

[1994] as an example. Detailed information on the setup and the experimentally

determined parameters are provided in Appendix B.3, where we furthermore

show how dimensionless and dimensional parameters are transferred into each

other to exemplify the application of our results to real world problems.

For this experimental setup a Thiele modulus Φ2 = 1.6 and a mass-transfer rate

coefficient of ktr = 0.23 s−1 were calculated. Measured substrate concentrations

decrease from 1.55 µM at the inlet to 0.37 µM at the outlet of the column which

corresponds to values for C/Km to vary between 6.7 and 1.6. Referring to the

scheme given in Figure 4.5 this corresponds to a scenario with mildly limited

bioavailability. According to Heße et al. [2009] these values furthermore yield an

effective transport velocity veff of ≈ 1.2 larger than the average flow velocity V .

Using the given parameter values (see Appendix B.3), the column experiment

was simulated using the Biogeochemical Reaction Network Simulator (BRNS)

[Regnier et al., 2002], [Thullner et al., 2005]. The simulation of biodegradation

of the substrate using Michaelis-Menten kinetics with the given local parameters

and no correction to the flow velocity resulted in an outflow concentration of
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Cout = 0.048 µM . This is a massive underestimation of the measured outlet

concentration of Cout = 0.37 µM , which indicates a limited bioavailability of the

substrate in the column. When using Best kinetics, i.e. Equation (4.10) with

the above ktr and given parameter values, the simulated outlet concentration

clearly increased to Cout = 0.185 µM but still underestimated the measured

value. However, when deriving the hydraulic radius not from the specific surface

of the glass bead packing (rhyd = 0.016 cm, see Appendix B.3), but arbitrarily

assuming it to be equal to the (upper range) of the reported glass bead size

(rhyd = 0.050 cm), the Thiele modulus increases to Φ2 = 4.8 and the mass-

transfer coefficient deceases to ktr = 0.073 s−1. With these values an outlet

concentration of cout = 0.35 µM was simulated, which is in close agreement

to the measured value while the results using the local parameter Michaelis-

Menten rate expression were not affected by the change of hydraulic radius.

Apparently some limitation of bioavailability can be attributed to the diffusive

mass transfer at the pore scale but other factors (e.g., heterogeneities of the flow

field, distribution of the bacteria, etc.) may have limited the bioavailability in

this experiment as well.

Future research (e.g., comparing porous media packings with different bead

sizes) must show if these effects can be confirmed by experimental data.

4.3.6. Implications for practical applications

The pore-scale mass transfer limitations investigated in the present study rep-

resent an intrinsic upper limit of mass transfer influenced bioavailabilty to be

found in porous media. Any additional mass-transfer limitation at a larger scale

would lead to a reduction of the mass-transfer rate coefficient. The need to con-

sider pore-scale mass transfer limitations in practical applications is linked to
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the Thiele modulus Φ2 and the ratio of C/Km as shown above. The deter-

mination of the mass-flux coefficient using a fitting routine requires however, a

suitable reference especially with regard to its strong dependency on the param-

eters of the local reaction kinetics. To avoid this limitation a constant estimate

of jtr = π2/4 can be used as an alternative with only slightly less accuracy.

Alternative approaches using Michaelis-Menten kinetics as effective degrada-

tion rate are also challenged by the effective parameters showing (i) a distinct

dependency on the local rate parameters and (ii) a fitting or complex upscaling

procedure for their derivation [Wood et al., 2007] [Heße et al., 2009]. Further-

more, an improvement of the accuracy achieved by Best kinetics can only be

obtained when using two independently scaling effective parameters. Consid-

ering that an experimental determination of organic biodegradable chemicals

in the environment is typically done with an error of 10% or more [European

Commission, 2000], Best kinetics with a constant value of jtr = π2/4 is the most

suitable compromise between providing an accurate prediction and the effort

needed to determine the relevant effective parameter. Although Best kinetics

considers one reactant only more reactive species could be modelled by means of

explicit two-step schemes, i.e. an individual transport step for each species ac-

cording to the linear exchange model with a subsequent combined degradation

step. To predict values for the ultimately needed mass-transfer rate coefficient

ktr from the constant mass-flux coefficient jtr only knowledge of the porous ma-

trix geometry (hydraulic radius, specific surface) and the diffusion coefficient of

the degraded substrate need to be known (see Appendix B.3 for an application

example).
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5. Influence of biofilm growth and

pore-width variations on effective

degradation rates.

Abstract In this chapter we investigate the influence of a growing biofilm

as well as pore-width variations on effective degradation rates. The relevant

processes, i.e. transport and reactive consumption of a reactive species as well

as the growth of the microorganisms are modelled spatially resolved at the pore

scale. For the representation of the pore space two geometries are considered.

A simple channel domain as well as a sinusoid domain. Microorganisms are

modelled in form of a thin biofilm at the wall of the pore not affecting fluid

flow. Steady state of the system is achieved through balance between growth

of the biofilm due incoming diffusional fluxes and the decay rate of the biofilm

itself. The results presented herein are produced with the help of numerical

simulations using a mixed finite element code as well as additional analytical

tools where possible. The results show a reduction of the reactive-transport

model to a pure transport model due to the adaption of the biofilm to the

incoming diffusional fluxes. A variable pore width furthermore yields higher

degradation rates compared to a simple channel geometry the dependecy of

which is further discussed.
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The use of in situ bioremediation for the clean up of a contaminated site has

attracted increasing attention in the last years due to its low costs and easy

processing compared to other methods [Rittmann, 2004]. Bioremediation relies

on the ability of microorganisms to degrade hydrocarbon contaminants by using

these compounds as a source of carbon as well as energy for growth.

This growth can occur in the porous media in different modes [van Loosdrecht

et al., 2000]. The form most commonly assumed is that of a biofilm covering

the solid matrix [Rittmann, 1993], [Chen, 1999]. Other forms reported in the

literature comprise compact aggregates or web like structures [Dupin et al.,

2001b]. The impact of biofilm development on the overall consumption is still a

matter of debate, with many authors investigating the effects of biofilm clogging

on the permeability of the soil [Suchomel et al., 1998], [Kim and Fogler, 2000],

[Thullner et al., 2002a], [Kapellos et al., 2007]. While commonly the biofilm

is considered to be be formed uniformly some have argued that the biofilm

growth leaves only channel like flow paths in the porous medium [Wanner et al.,

1995]. While several previous authors have investigated biofilm explicitly at

the pore scale [Dykaar and Kitanidis, 1996], [Knutson et al., 2005], to our best

knowledge, no investigation exist on the interplay of biofilm growth and effective

degradation rates.

In this study we use a modification of the pore-scale reactive transport model

developed by Heße et al. [2009]. Instead of a biofilm being constant in space and

time, growth according to the incoming flux of the reactive species is explicitly

modelled. The biofilm is assumed as a thin layer at the interface of the fluid

and solid medium not affecting fluid flow. As representations of the pore space
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we use two different two-dimensional geometries. A simple channel geometry

as well as a sinusoid geometry comprising more traits of a porous medium. The

relevant processes, i.e. transport and consumption of the reactive species as

well as growth and decay of the biofilm, are simulated numerically until steady

state is achieved. In the case of a channel geometry as well as in the case of

a simplified flow field within the sinusoid geometry the numerical results are

compared to analytical results. These results comprises expressions for the

distribution of the biofilm and for the reactive species.

In the following we will first describe the governing equations and the repre-

sentation of the pore space as used in this study. After that, we will derive the

analytical method applied to the simpler cases described above. Finally, we will

present and discuss the numerical results.
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5.2. Theory

In this section we present the equations, which describe the transport and con-

sumption of a reactive species as well as the growth of a biofilm. We further-

more introduce the geometrical representation of the pore space. Additionally

a scaling analysis is performed in order to introduce the relevant scaling units.

5.2.1. Scale of Interest

Gs

W
Wp

Gs

Gf

o

Gf

i

Figure 5.1.: Schematic of the scale of interest.

Unlike to the continuum or Darcy scale (Bear [1972]) the reactive species and

the biofilm have to be modelled spatially resolved at the pore scale. The trans-

port of the reactive species takes place in the liquid phase Ωp (see Figure 5.1).

It enters the pore through the inlet Γi
f and leaves, if not consumed, at the outlet

Γo
f . The microorganisms on the other hand are localized at the surface of the

solid phase Γs, where the degradation of the reactive species takes place.

5.2.2. Governing Equations

The first quantity investigated in this study is the concentration of the reactive

species labeled with c, which is subjected to transport and reaction. The system

of equations describing these processes will be
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∂

∂t
c+ V∇ · ṽc = D∆c in Ωp, (5.1a)

D∇cbio · n = −kmo cmo
cbio

Km + cbio
on Γs, (5.1b)

c = c0 on Γi
f . (5.1c)

In Equation (5.1a) the water flux v is given as v = V ṽ. Here V is the pore-

scale average velocity and ṽ comprises the deviations from this value. The

coefficient D is the molecular diffusion. The reaction rate in Equation (5.1b)

has two coefficients: (i) the specific microbial reaction rate kmo and (ii) the

Michaelis constant Km. The variable cbio denotes the concentration of the

reactive species available to the microorganisms. These microorganisms are the

second species investigated in this study, the concentration of which is labeled

with cmo. The growth and decay is described by

∂

∂t
cmo = Y kmocmo

cbio
Km + cbio

− µdeccmo. (5.2)

Here Y is the yield factor, i.e. the portion of degraded reactive species being

transformed into biomass. The second term in Equation (5.2) is a decay term.

In this work a first-order relationship with the decay rate µdec is assumed.

Whereas transport of the reactive species takes place in the entire pore space the

microorganisms are assumed to form a thin biofilm at the fluid-solid interface

not affecting fluid flow.

5.2.3. Channel Domain

The first geometry being used to represent the pore space in this study is a

semi-infinite channel domain (Figure 5.2). Despite its simplicity it has been suc-
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cessfully applied by different authors to investigate reactive transport [Kechagia

et al., 2002], [Mikelić et al., 2006], [Heße et al., 2009] as well as biomass growth

and development [Chen et al., 1993], [Dupin et al., 2001a] [Dupin et al., 2001b].

The simplicity of the domain will facilitate the use of analytical tools in the in-

vestigation of the reactive-transport processes, which will be outlined in Section

5.3 in more detail.

x

y

Reactive Wall

Ωp

LyWater Flow
&

Reactive Species

Figure 5.2.: Geometry of a channel geometry.

5.2.4. Sinusoid domain

In addition to the channel domain, a more realistic domain is used for the

representation of the pore space (Figure 5.3). This geometry facilitates the

investigation of the relevance of realistic features like a varying pore diameter,

which leads to different growth conditions in the narrow as well as in the wide

part of the pore or a more complex flow field.

The sinusoid domain depicted in Figure 5.3 can be described mathematically

by the envelope of the geometry

h(x) = (1 + a sin(2πx))Ly. (5.3)
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Figure 5.3.: Geometry of a sinusoidal geometry.

Here Ly refers to the length scale defined in Figure 5.2. Using this definition

the same average pore volume is obtained as for the channel geometry. The re-

active surface per unit volume av however, is increased compared to the channel

geometry (av = 1). For a geometry described by Equation (5.3) this quantity

is given as

av =

∫ 2π

0

√
1 + a24π2 cos2(4πx)dx. (5.4)

This value must be taken into account when performing a dimensional analysis

of the system.

5.2.5. Scaling analysis

In order to transform the system given by Equations (5.1a) – (5.1c) into a

nondimensional or scaled form we introduce the following reference or scaling

units: the reference lengths Lx,ref and Ly,ref as well as the reference concentra-

tions cref and cmo,ref . This procedure allows a generalization of our results and

is suited for the numerical treatment of the problem. Applying these reference

values yields the following transformations of the system variables
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x̂ =
x

Lx,ref
, ŷ =

y

Ly,ref
, ĉ, K̂m =

c,Km

cref
, µ̂dec =

µdecL
2
ycmo

DKm
, and ĉmo =

cmo

cmo,ref
.

(5.5)

In addition we introduce the following two scaling units: First, the Péclet num-

ber

Pe =
V L2

y,ref

DLx,ref
, (5.6)

which is comparing the advective vs. the diffusive flux. Second, the Thiele

modulus

Φ2 =
kmocmoLy,ref

avDKm
, (5.7)

which is comparing the diffusive vs. the reactive flux. Before rewriting Equa-

tions (5.1a) – (5.1c) into the scaled form we introduce two further simplifica-

tions. First, since we are only interested in the steady state of the system the

time derivative is set to zero. Second, since we can assume the variations in

the concentration c to be much smaller in direction of the flow field than in the

transversal direction we can assume that L2
y,ref ≫ L2

x,ref . With this condition

we can neglect the longitudinal diffusion. As a result we can rewrite Equations

(5.1a) – (5.1c) as:

Pe∇ · ṽĉ =
∂2

∂ŷ2
ĉ in Ωp, (5.8a)

∇ĉbio · n = −
Φ2

1 + ĉbio/K̂m

ĉbio on Γs, (5.8b)

ĉ = ĉ0 on Γi
f . (5.8c)
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By making use of the steady state condition Equation (5.2) can be rearranged

to

ĉbio =
K̂mµ̂dec

(Y k̂mo − µ̂dec)
. (5.9)

Equation (5.9) shows that the bioavailable concentration of the reactive species

ĉbio is constant along the reactive wall. The reactive-transport system under

consideration here is accordingly reduced into a pure transport system and fully

decoupled from the biomass concentration ĉmo. Equation (5.8b) can therefore

replaced with

ĉ = ĉbio on Γs, (5.10)

where ĉbio is the constant concentration of the reactive species calculated with

Equation (5.9). This behavior can be explained by the fact that the distribution

of the biomass is evolving until a balance is achieved between growth caused

by the incoming diffusive flux of the reactive species and the decay of the

microorganisms. The concentration ĉbio is consequently the value, where the

existence of these microorganisms can be sustained.

Note that from now on we will, for the sake of convenience, drop the hat for

the labeling of the nondimensional units.

5.2.6. Scenarios considered for the calculation

As mentionned above two different geometries are used in this work. For each

geometry we will in addition consider two different velocity fields: a simple

uniform as well as a realistic velocity field. For the channel geometry the flow
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channel geometry
uniform velocity field

sinusoid geometry
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channel geometry
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Figure 5.4.: Overview of the different scenarios considered in this study.

of a fluid is known as Hagen-Poiseuille flow and is described by a parabolic

velocity field. For the sinusoid domain we here use a derivation of the flow

field described by Kitanidis and Dykaar [1997] for this type of geometry. As a

result four different scenarios of increasing complexity are investigated (Figure

5.4). This procedure allows an step-by-step understanding of the dynamics in

the most complex, and by extension the most realistic, Scenario IV, where no

analytical solutions are available.
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5.3. Analytical Methods

In this section we will derive the steady state analytical solutions for the system

of coupled reactive transport and biofilm growth in a two-dimensional geometry.

For the most complex case, i.e. a sinusoid geometry combined with a realistic

flow field, no analytical solution can be provided. This case will however, be

discussed in detail in Section 5.4 with the help of numerical results.

Assuming the flow field has only a component in the y-direction we can simplify

the coefficient function ṽ in Equation (5.8a) to f(y). By furthermore including

the condition given by Equation (5.10) we can state

Pef(y)
∂

∂x
c =

∂2

∂y2
c in Ωp, (5.11a)

c = cbio on Γs, (5.11b)

c = c0 on Γi
f . (5.11c)

Owing to its symmetry Equation (5.11a) is a separable partial differential equa-

tion, i.e. we can write the solution in the following form

c(x, y) =
∞∑

i

cxi (x)c
y
i (y). (5.12)

Since the pore-scale model used herein is a modified version of the model de-

scribed by Heße et al. [2009] we will use this study as reference for the solution

of Equations (5.11a-c). Compared to this reference some alterations may be

noted: First, according to Equation (5.2) the biofilm will sustain growth until

limited by the ability of the diffusion to provide enough supplies. This will

lead in steady state to a scenario compareable to the diffusion-limited regime
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described by Heße et al. [2009]. Second, the constant bioavailable concentra-

tion defined in Equation (5.9) acts as a form of offset, i.e. the solution c does

not converge to zero for big values of x but to cbio. As a result we will derive

the following analysis for cbio = 0 only, since the case cbio 6= 0 is covered by

considering the following transformation

c(x, y) = c(x, y)(1 − cbio) + cbio. (5.13)

The last difference concerns the boundary condition c0 left unspecified above.

In their study Heße et al. [2009] used a uniform distribution to describe c0.

With respect to Equation (5.12) c0 was expressed as a sum of cosine functions.

We here consider only the first mode since higher terms will lead to unrealistic

biofilm distributions for small values of x. Assuming cbio = 0, justified above

we can write

c0 =
4

π
cos

(π
2
y
)
. (5.14)

With these considerations we can develop the solution of Equations (5.11a-c)

for the Scenarios I to III.

5.3.1. Scenario I

For the case of a channel geometry and a uniform velocity field, i.e. f(y) = 1,

the solution for the system given by Equations (5.11a) – (5.11c) is

c(x, y) = c0e−
Φ2
eff
Pe

x, (5.15)

with
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Φ2
eff =

π2

4
(5.16)

defined in analogy to Heße et al. [2009]. For the effective description, i.e. the

effective one-dimensional differential equation for the y-averaged concentration

C(x), we can write

∂

∂x
C(x) = −

Φ2
eff

Pe
C(x). (5.17)

The distribution of the biomass along the x-direction can be calculated by the

amount of reactive species being consumed. To that end we average Equation

(5.15) over the y-axis and find the first derivative

∂

∂x
C(x) =

2

Pe
e−

Φ2
eff
Pe

x. (5.18)

This relationship must be multiplied with the yield factor Y to get the amount of

produced biomass, which is in turn equal to the decaying biomass per timestep,

i.e. cmoµdec. As a result we get for the concentration of the microorganisms

cmo =
Y

µdec

2

Pe
e−

Φ2
eff
Pe

x. (5.19)

For the case of a parabolic velocity field however, we need to alter this proce-

dure.

5.3.2. Scenario II

In case of parabolic velocity field, i.e. f(y) = 1.5(1 − y2), we must take the

contribution of the different modes into account. As a result the effective de-

scription exhibit higher order derivatives as well as a new coefficient of the first
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derivative. However, as shown by Balakotaiah and Chang [1995] or Heße et al.

[2009] the coefficients of the higher derivatives become small in the diffusion-

limited regime prevailing in our model. Consequently, we will only use the new

coefficient of the first derivative labeled as veff .

For the solutions for the concentration of the reactive species we can state in

analogy to the Equation (5.15)

c(x, y) = c0e
−

Φ2
eff

veffPe
x
, (5.20)

with veff ≈ 1.4 according to Heße et al. [2009]. The effective one-dimensional

differential equation now reads in analogy to Equation (5.17)

veff
∂

∂x
C(x) = −

Φ2
eff

Pe
C(x) (5.21)

as well as for the concentration of the microorganisms

cmo =
Y

µdec

2

veffPe
e
−

Φ2
eff

veffPe
x

(5.22)

in analogy to Eqution (5.19).

5.3.3. Scenario III

Due to the x- and y-dependency of the flow field in the sinusoid domain Equa-

tion (5.11a) is no longer seperable. The approach used above for the derivation

of an analytical solution of coupled reactive transport and biofilm growth is

therefore not applicable for a sinusoid geometry. We can however, investigate

a scenario of intermediate complexity to assess the influence of a varying pore
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Section 5.3: Analytical Methods

diameter isolated from the flow field. Assuming a uniform velocity field is cer-

tainly an unphysical assumption. Nonetheless, the simplification facilitates the

derivation of an analytical solution for this case, which justifies the decision.

For the further analysis the sinusoid will be transformed into a channel geometry

with the same volume by introducing

η =
y

(1.0− a cos (2πx/Lx,pore))
, (5.23)

with a being the amplitude and Lx,pore the length of the pore width variation

as described in Equation (5.3). As a result we have to adapt the diffusion

coefficient, which results in a x-dependent Péclet number

P̃ e(x) = Pe g(x) = Pe(1.0 − a cos(2πx/Lx,pore))
2. (5.24)

As mentionned above the velocity field is assumed to follow a uniform distri-

bution, we can therefore state that f(η) = 1.

In case of the channel domain the reference length scale in the x-direction Lx,ref

remained arbitrary since the geometry did not exhibit a characteristic length

along that direction (see Figure 5.2). This is in contrast to the case of a sinusoid

geometry (see Figure 5.3), with Lx,pore denoting the length of the pore width

variations (see Figure 5.5a). As stated in Section 5.2.5 however, the reference

length Lx,ref should correspond to the variations of the pore-scale concentration

c along this direction. Since a significant drop of the concentration c in the x-

direction within a single pore is an unrealistic assumption we can state Lx,ref ≫

Lx,pore (see Figure 5.5). As a consequence of this clear separation between the

different length scales we can apply homogenization theory to find a constant

substitute Φ2
eqv comprising the variations g(x) in Equation (5.24)

117



5.3.3 Scenario III

x

y

Lx,pore

(a) Single pore.

x

y

Lx,ref

(b) Assembly of many pores.

Figure 5.5.: Demonstration of the different scales in case of a sinusoidal geom-

etry.

Φ2
eqv = Φ2

eff

∫ Lx,pore

0

1

g(x)
dx. (5.25)

The derivation of Equation (5.25) requires the application of basic concepts of

homogenization theory only and is therefore omitted here. The curious reader

is instead referred to the literature on that topic (see e.g.: [Hornung, 1996]).

With the coefficient functions being constant now we can apply the same pro-

ceedings as outlined above. For the solution of the concentration of the reactive

species we can write
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Section 5.3: Analytical Methods

c(x, η) =
4

π
e−

Φ2
eqv

Pe
x cos

(π
2
η
)
, (5.26)

for the one-dimensional differential equation

∂

∂x
C(x) = −

Φ2
eqv

Pe
C(x) (5.27)

as well as for the concentration of the microorganisms

cmo =
Y

µdec

Φ2
eqv

Φ2
eff

2

Pe
e−

Φ2
eqv

Pe
x (5.28)

in analogy to Equations (5.15), (5.17) and (5.19) respectively. Due to the re-

active surface being bigger in the sinusoid geometry compared to the channel

geometry the relationship given by Equation (5.4) must be taken into account

when comparing the distribution of the microorganism according to Equations

(5.19) and (5.28) in dimensional units. For the nondimensional analysis how-

ever, performend herein this difference is not relevant.
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5.4. Results and Discussion

The results presented in this section will cover the four different scenarios as

described in Figure 5.4 separately. In addition, we will compare and discuss

the results of our model to the findings described by Heße et al. [2009].

5.4.1. Scenario I

In the first part, we investigate the most simple case of a channel domain with

a uniform velocity field. This scenario will serve to introduce basic properties

of the model to which further attributes will be added in the following sections.
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(a) Analytically and numerically calcu-

lated averaged concentration C with re-

spect to x for Scenario I.
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(b) Analytically and numerically calcu-

lated biofilm concentration cmo with re-

spect to x for Scenario I.

Figure 5.6.: Distribution of the averaged concentration of the reactive species

C and of the biomass cmo along the channel as described in Fig-

ure 5.2 calculated for Scenario I. The coefficients for the numerical

calculations were: Pe = 1, Y = 0.1 and µdec = 0.01.
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Section 5.4: Results and Discussion

Numerical results obtained for the scenario of a channel geometry with a uni-

form velocity field show almost perfect agreement with the analytical solutions

derived in Section 5.3.1 (Figure 5.6). The bulk concentration C decreases with

x in a exponential behavior until saturating at cbio (Figure 5.6a). The con-

centration of the biomass cmo also behaves according to the analytical solution

given by Equation (5.19) (Figure 5.6b). Minor differences between the ana-

lytical and numerical results can be found only for small values of x. These

deviations remained however, comapareably small in all investigated cases.

5.4.2. Scenario II

Assuming all other conditions to remain the same we furthermore discus the

case of a channel geometry with a realistic parabolic velocity field.

The mathematical analysis in Section 5.3.2 revealed the effective velocity term

veff to be the main difference compared to the uniform velocity field. Compar-

ing the solutions of the averaged concentration C (Figure 5.7a) as well as the

solutions of the concentration of the microorganisms cmo (Figure 5.7b) from

uniform and parabolic velocity fields we see the same qualitative behavior in

both cases. In quantitative terms however, a shift between the respective curves

can be observed. This shift can be explained by the effective velocity veff , in-

troduced above, leading to higher values for of C in case of a parabolic velocity

field compared to a uniform velocity field. This effect can be motivated in

physical terms by the higher velocity of the parabolic field in the middle of the

channel, where most of the reactive species can be found. The concentration

of the microorganisms cmo however, is initially smaller in Scenario II compared

to Scenario I due to lower degradation rates and consequently lower biomass

production.
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5.4.3 Scenario III
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(a) Averaged concentration C with re-

spect to x for Scenario I and II.
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(b) Analytically and numerically calcu-

lated biofilm concentration cmo with re-

spect to x for Scenario I and II.

Figure 5.7.: Distribution of the averaged concentration of the reactive species C

and of the biomass cmo along the channel calculated for Scenario I

and II. The coefficients for the numerical calculations were: Pe = 1,

Y = 0.1 and µdec = 0.01.

5.4.3. Scenario III

Despite being physically unrealistic the scenario of a uniform flow field is con-

sidered here for the assessment of the contribution of the diffusional flux in

a sinusoid geometry separately from the velocity field. Furthermore, we can

provide an analytical solution for this case, the derivation of which is covered

in detail in Section 5.3.3.

Comparing the results from this scenario to findings from Scenario I we see a

stronger decrease of the averaged concentration C with respect to x (Figure

5.8a). This can be explained with Φ2
eqv in Equation (5.25) being higher than

Φ2
eff prevailing in Scenario I. In physical terms we can explain this behavior with
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(a) Averaged concentration C with re-

spect to x for Scenario I and II.
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(b) Analytically and numerically calcu-

lated biofilm concentration cmo with re-

spect to x for Scenario I and III.

Figure 5.8.: Distribution of the averaged concentration of the reactive species

C and of the biomass cmo along the channel calculated for Scenario

I and Scenario III. The coefficients for the numerical calculations

were: Pe = 1, Y = 0.1 and µdec = 0.01. The amplitude of the pore

width variations for the simulation in Scenario III was a = 0.5.

a higher bioavailability in the smaller parts of the pore space surmounting the

concurrent declined access in the wider parts (see Figure 5.3). As a result we see

an increase in the overall consumption. Similar behavior can be observed for the

concentration of the biomass (Figure 5.8b), i.e. we see a stronger decrease of the

concentration of the microorganisms in this scenario compared to Scenario I.

Since the total amount of injected reactive species and by extension the amount

of biomass is identical in both scenarios, values for cmo are initially bigger in

Scenario III compared to Scenario I.
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5.4.4 Scenario IV

5.4.4. Scenario IV

Unlike to the former scenarios we can not derive an analytical solution for

the model given by the Equations (5.1a) – (5.1c) when assuming a sinusoid

geometry and a realistic velocity field. Therefore, we have to rely on numerical

means only to investigate this case. For the calculation of the velocity field in

a sinusoid geometry we used the findings of Kechagia et al. [2002].
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Figure 5.9.: Averaged concentration C with respect to x for all four scenarios.

The parameters for the simulations were: Pe = 1, Y = 0.1 and

µdec = 0.01.

Comparing the results from this case to those presented above we see a su-

perposition of the described effects in qualitative terms. This comprises an

effective velocity caused by the realistic velocity field as well as a higher ef-

fective degradation due to the varying diameter of the pore. A quantitative

analysis however, reveals differences, i.e. applying veff and Φ2
eqv will yield a

mismatch between the averaged numerical solutions of the full system and the

solutions of the effective description. This mismatch becomes more apparent,

as the amplitude a of the sinusoid increases (data not shown). The explanations

for this mismatch are twofold: First, we can find increasing transversal velocity
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Section 5.4: Results and Discussion

components arising with increasing a. Second, fluid flow and therefore the total

amount of injected reactive species is decreasing with increasing a due to the

higher inertial forces of the geometry acting on the fluid.

5.4.5. Contributions of the new reactive-transport model

As mentionned above the reactive-transport model used in this study is a mod-

ified version of the model reported by Heße et al. [2009]. In this section we will

compare these two models with respect to the alterations made herein. These

cover the growth of a biofilm as well as the use of a sinusoid geometry.
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Figure 5.10.: Averaged concentration C for different values of cbio with respect

to x for scenario I.

An important difference is the role of the bioavailable concentration cbio. Apart

from being constant it furthermore acts as some form of offset to which C is

converging for high values of x. Altering one of the coefficients in Equation

(5.9) changes the value of cbio and by extension the value to which C converges

for high x (Figure 5.10). These results show that the reaction coefficients Km
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5.4.5 Contributions of the new reactive-transport model

and kmo as well as the biomass parameters Y and µdec influence the distribution

of c indirectly.

As revealed by the mathematical analysis in Section 5.3 the steady state of the

biofilm growth will lead to a regime compareable to the diffusion-limited regime

described by Heße et al. [2009]. Given that cbio approaches zero and assuming

all other conditions to be the same both models should yield almost identical

solutions, which could be verified by numerical simulations (results not shown).
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Figure 5.11.: Development of Φ2
eqv in Scenario III for different amplitudes a.

The discussion of the results from Scenario III demonstrated the increase in the

overall consumption due to the increase of Φ2
eqv. Investigating the behavior of

Φ2
eqv with respect to the amplitude a we see a strong increase of Φ2

eqv, especially

as a approaches 1 (see Figure 5.11). At this value the effective parameter Φ2
eqv

will converge towards infinity. Since this case would correspond in reality to a

closed pore this trivial case is not covered in Figure 5.11.
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Section 5.5: Summary and Conclusion

5.5. Summary and Conclusion

In this work we used a two-dimensional geometric representation of the pore

space with transport and surface catalyzed degradation of a reactive species.

Growth and decay of the microorganisms was explicitly modelled according to

the reactive consumption. For the computational domain we applied a sim-

ple channel as well as a more elaborated sinusoid geometry. For the analysis

four different scenarios of increasing complexity were considered. In the first

three scenarios we could provide analytical solutions to support the numerical

simulations. In the most realistic fourth scenario however, we had to rely on

numerical means only.

It could be shown that in the model used herein the distribution of the biofilm

will attune to the incoming diffusional fluxes of the reactive species until balance

is achieved between decay and growth. As a result the bioavailable concentra-

tion will become spatially constant in the steady state of the biofilm develop-

ment, which reduces in turn the reactive-transport model to a pure transport

model.

For the case of a channel geometry, i.e. Scenarios I and II, the resulting effective

system was compareable to the diffusion-limited regime of reactive transport

reported by Heße et al. [2009]. This could be explained with the limiting influ-

ence of the incoming diffusional fluxes of the reactive species on biofilm growth.

We furthermore discussed the occurrence of the coefficient veff in the effective

description of Scenario II compared to Scenario I comprising the effects of the

realistic pore-scale velocity field.

In Scenarios III and IV we investigated a more realistic representation of the

pore space in form of a sinusoid geometry. For Scenario III we used a physi-
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cally unrealistic uniform velocity in analogy to Scenario I. The simplification

facilitated the use of analytical tools. We could derive a constant parameter

Φ2
eqv comprising the effect of the pore-width variations of the sinusoid geometry.

It was shown that Φ2
eqv was monotonously increasing with the amplitude a of

these variations. This behavior could be explained with the increased access

of the microorganisms to the reactive species in the smaller parts of the pore

space surmounting the concurrent decrease in the wider parts. In Scenario IV

we investigated the most complex case by considering a realistic velocity field

in the pore. Lacking an analytical solution in analogy to Scenarios I to III

only numerical simulations were presented and discussed. It could be shown

that in qualitative terms the behavior can be described with the help of the

results presented above. A quantitative analysis however, revealed increasing

discrepancies with increasing amplitude a.
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6. Synthesis

6.1. Summary and conclusions

Bioavailability is a crucial factor for assessing the effectiveness of biodegrada-

tion. Amongst many other factors bioavailability can be significantly reduced

by pore-scale mass fluxes. In this thesis the ramifications of these pore-scale

mass fluxes on effective degradation rates were investigated. As representation

of the pore space we used a two-dimensional channel or sinusoid geometry. The

transport of the reactive species was realized by simulating advection and diffu-

sion in the pore volume whereas reactive consumption was realized as boundary

conditions at the reactive wall of the medium. Steady state solutions of the sys-

tem were achieved numerically and/or analytically and averaged transversally

to the flow direction resulting in effective one-dimensional solutions. These

solutions were used as references for the assessment of effective reaction rates

investigated in this study. For these effective reaction rates optimum fit values

were used for the derivation of numerical estimates of the unknown parameter

of the one-dimensional descriptions. Alternatively analytical estimates could

be provided and were tested with respect to accuracy as compared to fitted pa-

rameters as well as to exact solutions of the full system. It could be shown that

in case of pore-scale Michaelis-Menten kinetics as reaction rate two different
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scaling units are to be considered. The first one is the Thiele modulus, which is

comparing advective and reactive mass fluxes. This number is therefore a good

measure for bioavailability at the pore scale. The second important quantity

turned out to be the ratio of the Michaelis constant and the concentration of

the reactive species.

In Chapter 3 Michaelis-Menten kinetics was used for the reaction rate of the

effective one-dimensional description. As representation of the pore space a

channel geometry was used. The analysis of the numerical results showed a

complex scaling behavior compared to the marginal case of a first-order re-

action rate discussed therein as a reference. Compared to this reference the

scaling behavior in the transition regime between the regimes with either high

and low bioavailability became additionally concentration dependent in case of

Michaelis-Menten kinetics. First a single constant scaling parameter, in analogy

to above marginal case, was determined by fitting averaged numerical solutions

of the full problem to solutions of the effective description. This lead however,

to distinct errors in the transition regime. These errors could be reduced sig-

nificantly when considering two independent scaling parameters, one for each

reaction rate parameter.

In Chapter 4 the same pore-scale model for reactive transport was considered

but a linear exchange term was assumed to describe pore-scale mass trans-

port. In steady state this term can be combined with Michaelis-Menten kinet-

ics resulting in the Best-Equation; an alternative reaction rate of the effective

one-dimensional description. The mass flux coefficient, being the unknown pa-

rameter of the linear exchange term, was determined first in analogy to above

procedure by fitting using Best kinetics as effective reaction rate. An error anal-

ysis showed a very good conformance in cases of either high or low bioavailability
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with small but negligible errors in the transition regime. In addition a constant

estimate was investigated with respect to accuracy, which has been derived

analytically from the marginal case of first-order kinetics. A further error anal-

ysis with the analytical parameter showed a good conformance, too, with only

slightly higher errors compared to the fitted parameter. These properties, i.e.

the good accuracy combined with its simplicity, makes the Best-Equation with

the analytical estimate for the mass-flux coefficient the best choice for the effec-

tive reaction rate compared with the other alternatives considered herein; ex-

hibiting either lower accuracy and/or the need for a usually unknown reference

for the fitting process. Finally, the effective description with the Best-Equation

as reaction rate using the analytical estimate for the mass-flux coefficient has

been applied for the assessment of experimental data exhibiting biodegrada-

tion with a limited bioavailability. The analysis could only partially explain

the reduced bioavailability in the experiment so further limiting factors were

prevailing in the experiment.

In Chapter 5 a modified pore-scale model for reactive transport was investi-

gated, in which explicit biofilm growth was modelled as well as in addition to

above channel geometry a more elaborated sinusoid geometry was considered.

The mathematical analysis revealed that in steady state the biofilm has evolved

such that the bioavailable concentration is spatially constant. As a result the

reactive-transport model of the reactive species will be reduced to a pure trans-

port model. The effective reaction rate in case of a channel geometry is then

identical to above results for the case of low bioavailability. If a sinusoid geom-

etry is considered the effective reaction rate is increased in proportion to the

variations of the pore width.

131



For practical applications the thesis provided a guideline, when bioavailability

resctrictions due to pore-scale mass fluxes affect the effective reaction rate, with

respect to the relevant quantities; the Thiele modulus as well as the ratio of

the species concentration and the Michaelis constant. The Best-Equation with

the analytical estimate for the mass-flux coefficient was presented as the best

tradeoff between accuracy and applicability. The calculation of these relevant

quantities as well as the application of above reaction rate to real world problems

was demonstrated by means of experimental data.

6.2. Outlook

With respect to the topic of bioavailability limited by pore-scale mass fluxes

this thesis provided several important contributions for the scale of a single

pore. The natural step for further research would be the implementation of the

derived effective descriptions in a network model of a porous medium consisting

of capillary or undulated tubes. Such an approach would facilitate the investi-

gation of further traits of porous media like tortuosity or pore connectivity not

comprised in the geometry used herein.

A useful improvement of the pore-scale model itself would be the introduction

of a second limiting species. With respect to the reaction kinetics used in

this study this would lead to double Monod resp. double Michaelis-Menten

kinetics. An expansion from two to three dimensions would likewise allow the

investigation of additional relevant effects.

A limitation in the mathematical analysis of the current model used here, which

can be improved in the future, is the confinement to low Péclet numbers only.

Although being justified for most groundwater systems, high Péclet numbers
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can be found in laboratory experiments or chemical reactor systems. Since

mass-transfer limitations due to convection dominated flow has been reported

in the literature the issue deserves further study and would contribute to the

applicability of the model.
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A. Appendix of Chapter 3

A.1. Development of the upscaled solution

In this appendix we will provide the details for the upscaling of the pore-scale

processes. This comprises (i) the analytical solution as well as (ii) the effective

differential equation. The Equations (3.6a) – (3.6c) describing these processes

can be found in the body of the study and will not be listed again.

A.1.1. Separation of the variables

The scheme used to derive an analytical solution in case of first-order kinetics

can be found in [Balakotaiah and Chang, 1995]. It has been modified to account

for the mathematical and geometrical description used in this study.

Transversal direction Let {λi}i≥1 be the set of eigenvalues and {Ψi}i≥1 the

respective set of orthonormal eigenfunctions of the following self-adjoint eigen-

value problem
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∂2

∂y2
Ψi(y) = −λ2

iΨi(y), (A.1a)

∂

∂y
Ψi|y=0 = 0, (A.1b)

∂

∂y
Ψi|y=1 = −Φ2 Ψi|y=1 . (A.1c)

The boundary condition given by Equation (A.1b) reflects the symmetry of the

medium and Equation (A.1c) is the reaction term in case of first-order kinet-

ics. The solution of Equation (A.1a) is known to consist of the trigonometric

functions sine and cosine. Therefore we can write

Ψi(y) = Ai cos(λiy) +Bi sin(λiy). (A.2)

Here λi is the frequency and Ai and Bi are the respective amplitudes. These

coefficients have to match the boundary conditions. First we use the boundary

condition given by Equation (A.1b)

∂

∂y
Ψi|y=0 = 0 = Bi cos(0)−Ai sin(0) (A.3)

from which is clear that Bi = 0. The boundary condition given by Equation

(A.1c) yields

∂

∂y
Ψi|y=1 = −Φ2 Ai cos(λi) = −Aiλi sin(λi). (A.4)

Rearranging this expression we get

λi tan(λi) = Φ2. (A.5)
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The behavior of the left hand side of Equation (A.5) is that of a strictly

monotonously increasing curve from −∞ to +∞ within each interval
(
i
2π, (

i
2 + 1)π

)
with (i = 1, 3, 5, ...). The solutions λi are therefore determined

by evaluate this expression within each of this intervals. (Figure A.1).

2 4 6 8 10 12 14
Λ

-200

-100

100

200
fHΛL

ΛtanHΛL Φ2

Figure A.1.: Solution of the eigenvalue problem described by Equation (A.5)

displayed as the interfaces of the λ tan(λ) function (continuous

line) and a constant reaction rate (dashed line, arbitrarily set to

Φ2 = 50 in this example).

For the calculation of the amplitudes Ai we refer to the ortho-normality of the

eigenfunctions, i.e.

∫ 1

0
ΨiΨj dy = δi,j (A.6)

When we use this condition and insert Equation (A.2), we get

Ai =

(∫ 1

0
cos2(λiy) dy

)− 1
2

= 2

√
λi

sin(2λi) + 2λi
. (A.7)
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Now we can formulate the explicit solution for every transversal mode of Equa-

tion (3.8) by introducing the values for Ai and Bi into Equation (A.2)

Ψi(y) = 2

√
λi

sin(2λi) + 2λi
cos(λiy). (A.8)

Longitudinal direction In order to solve for the longitudinal part of every

mode we insert Equation (3.8) into Equation (3.6a)

Pef(y)

∞∑

i=1

Ψi(y)
∂

∂x
Ci(x) =

∞∑

i=1

Ci(x)
∂2

∂y2
Ψi(y). (A.9)

Multiplying this equation by Ψj and integrating over y yields

Pe
∞∑

i=1

∫ 1

0
f(y)Ψi(y)Ψj(y) dy

∂

∂x
Ci(x) =

∞∑

i=1

Ci(x)

∫ 1

0

∂2

∂y2
Ψi(y)Ψj(y) dy.

(A.10)

By defining

∫ 1

0
f(y)ΨiΨj dy = τij (A.11)

and inserting Equation (A.1a), because of the ortho-normality of the Ψi’s (A.6)

we get

∞∑

i=1

τij
∂

∂x
Ci(x) = −

λ2
j

Pe
Cj(x). (A.12)

To get a good approximation of the complete solution a finite number of modes

will certainly be sufficient. By considering only N modes of the series we can

rewrite Equation (A.12) in a matrix notation
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T
∂

∂x
C = ΛC (A.13)

with

T =




τ11 · · · τ1N
...

. . .
...

τN1 · · · τNN


 , (A.14)

Λ =




−
λ2
1

Pe
0

. . .

0 −
λ2
N

Pe


 (A.15)

and

C =




C1

...

CN


 (A.16)

for the unknown vector C, whose entries are the longitudinal modes of the

solution c. Equation (A.13) can be rearranged into

∂

∂x
C = T−1ΛC = ΓC (A.17)

In this form we have a simple system of homogeneous linear differential equa-

tions of order one with constant coefficients.
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A.1.2. Analysis of the case of first-order kinetics with a uniform

velocity field

In this part of the appendix we will give the details for the case of first-order

kinetics with a uniform velocity field. This comprises the analytical solution as

well as the effective equation (see Figure 3.5).

Analytical solution In case of a uniform velocity field the matrix T is the

identity matrix according to Equation (A.11). Therefore Γ is diagonal and the

Equations (3.10) are decoupled. The governing ordinary differential equation

for every mode then reads

∂

∂x
Ci(x) = −

λ2
i

Pe
Ci(x) (A.18)

The solution of this equation is known to be

Ci(x) = Ci(0)e
−

λ2i
Pe

x. (A.19)

For the evaluation of the initial conditions Ci(0) we have to refer to Equation

(3.8) and insert the boundary condition given by Equation (3.6b)

1 = c(0, y) =
N∑

i=1

Ci(0)Ψi(y) (A.20)

multiplying both sides with Ψj and integrating over y yields

Cj(0) =

∫ 1

0
c(0, y)Ψj(y) dy (A.21)
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because of the ortho-normality of the eigenfunctions Ψi(y). Since c(0, y) = 1

we finally arrive at

Cj(0) =

∫ 1

0
Ψj(y) dy = Aj

sin(λj)

λj
. (A.22)

With this equation we get the starting value for every transversal mode Cj of

the solution.

Effective equation To find the upscaled effective description of Equation (3.6)

we directly apply the upscaling operator
∫ 1
0 dy to Equation (3.6a) and insert

the boundary conditions given by the Equations (3.6b) and (3.6c). In case of

the uniform velocity field we get

∫ 1

0
Pe

∂

∂x
c dy =

∫ 1

0

∂2

∂y2
c dy

Pe
∂

∂x
C =

∂

∂y
cbio −

∂

∂y
c|y=0

= −Φ2 cbio.

Here we introduce an effective Thiele modulus Φ2
eff , as

Φ2
eff =

cbio
C

Φ2. (A.23)

Since C is only zero at +∞ this equation is valid almost everywhere. It can

be shown that Φ2
eff shows only variation for small values of x so it can be

approximated as a constant.
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A.1.3. Analysis of the case of first-order kinetics with a parabolic

velocity field

Analytical solution the matrix T is no longer a diagonal matrix in case of a

parabolic velocity field. As a result the entries of C in Equation (3.10) are now

coupled and must be solved in a closed form. Nevertheless, the matrix T is still

symmetric, so τij = τji (Figure A.2).
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0.27 0.95 0.33 0.07 0.03

0.05 0.33 0.94 0.33 0.07

0.01 0.07 0.33 0.95 0.32

0.00 0.03 0.07 0.32 0.96




Figure A.2.: First five rows and columns of matrix T in graphical and numerical

display, evaluated for Φ2 = 10 in case of first-order kinetics and a

parabolic velocity field.

To find the solution of Equation (3.10) we diagonalize the system matrix Γ. To

that end we have to find a representation of the form Γ = GDG−1. Here D

is a diagonal matrix and G is the orthogonal matrix of the eigenvectors of Γ.

Applying this transformation we can rewrite Equation (3.10) into

c′ = ΓC = GDG−1C

G−1c′ = DG−1C

w′ = Dw
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with w = G−1C. In this form the modes are decoupled so we can follow the

same proceedings as in case of a uniform velocity field.

Effective equation A direct analytical upscaling like in Section A.1.2 is not

possible in case of a parabolic velocity field. Applying the upscaling operator
∫ 1
0 dy on Equation (3.6a) we get

1.5
∂

∂x

(
C −

∫ 1

0
y2c dy

)
= −

Φ2
eff

Pe
C. (A.24)

Unfortunately no explicit solution is known for the remaining integral in Equa-

tion (A.24). Therefore we have to pursue an alternative proceeding to arrive at

an effective equation. Using the linear system of ordinary differential Equations

(A.17) we can get an expression for the leading first mode C1(x). In order to

obtain the effective description we have to rewrite the system of N differential

equations of order 1 to an ordinary differential equation of order N . The general

solution of this procedure is

N∑

n=0

an
∂n

∂xn
C1 = 0. (A.25)

In Equation (A.25) the numbers an are the respective coefficients of the charac-

teristic polynomial of Γ in Equation (A.17). To link the solution for this mode

with the upscaled solution C we have to multiply it with the corresponding

y-averaged transversal mode: 〈C1〉 = C1

∫
Ψ1 dy. Since C =

∑
i 〈Ci〉 holds, we

make an error by neglecting the higher modes of C. Nevertheless, these modes

decrease very fast so the error is confined to small values of x and even there it

is comparably small. An important simplification can be made, regarding the
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number of modes N , which has to be taken into account, to arrive at a good

estimate for C1.
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(a) The y-averaged first mode 〈C1〉 calculated us-

ing different number of modes.
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Figure A.3.: Error made by using only a limited number of longitudinal modes

for the calculation of 〈C1〉 in case of first-order kinetics and a

parabolic velocity field.

A numerical analysis shows that a good approximation is already reached by

using few modes (see Figure A.3). Only in the case when one mode is considered,

i.e. the first mode itself, we get a significant error. This error however decreases

dramatically when using more modes, which justifies the use of only two. By

restricting therefore our analysis to N = 2 we get a differential equation of

second order for C1.

A.1.4. Analysis of the case of Michaelis-Menten kinetics

For Michaelis-Menten kinetics given by
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∇c · n = −
Φ2cbio

1 + cbio/Km
(A.26)

the procedure presented in Appendix A.1.1 must to be modified.

Transversal direction The coefficients of the transversal component in Equa-

tion (3.8) now depend on the concentration

∂

∂y
Ψ|y=1 = −

Φ2

1 + cbio/Km

Ψ|y=1 . (A.27)

Applying the same procedure as for first-order kinetics, the equation for the

evaluation of the eigenvalues in Equation (A.5) now reads

λi tan(λi) =
Φ2

1 + cbio/Km

. (A.28)

Furthermore, the calculation of the the transversal modes is modified to

Ψi(x, y) = Ai(x) cos(λi(x)y). (A.29)

Because of the nonlinearity of this problem the coefficients λi(x) has to be found

in an iterative scheme, where the solution of each step serves as a guess for their

evaluation.

Longitudinal direction The procedure to arrive at Equation (A.17) has to be

modified as well when considering the case of Michaelis-Menten kinetics. Now

it reads

T(x)
∂

∂x
c(x) +B(x)c(x) = Λ(x)c(x). (A.30)
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Here the entries of the matrix B(x) are given by

βij(x) =

∫ 1

0
f(y)(

∂

∂x
Ψj(x, y))Ψi(x, y)dy. (A.31)

Rearranging yields

∂

∂x
c(x) = T(x)−1(Λ(x) −B(x))c(x) = Γ(x)c(x), (A.32)

so we get again a system of homogeneous linear differential equations. In con-

trast to Equation (A.17) the entries of the coefficient matrix Γ(x) are not con-

stants but x-dependent functions.
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B. Appendix of Chapter 4

B.1. Analytical estimate for jtr

In addition to solving the full problem given by Equations (4.14) and (4.15)

numerically the simplicity of the chosen geometry of the pore channel (see

Figure B.1) allows for obtaining analytical solutions of this equation for the

case of very low concentrations compared to the Michaelis constant Km. In

this case the obtained analytical results allow deriving an constant expression

for the mass-flux coefficient jtr.

y

x

Reactive Wall LyWater Flow
&

Reactive Species 0

Solid Phase

Fluid Phase

Figure B.1.: Schematic representation of the geometry used to describe pro-

cesses in a single pore.

165



For concentrations sufficiently small compared to the Michaelis constant Km,

Michaelis-Menten kinetics is effectively identical to first-order kinetics. In that

case, we can write for the reactive flux given by Equation (4.15)

qreac = −Φ2cbio. (B.1)

Assuming C ≪ Km or C/Km ≪ 1 and rearranging Equation (4.17) for the

mass-flux coefficient yields

jtr =
Q2 −Φ2KmQ

KmQ− Φ2KmC

=
Q2/Km − Φ2Q

Q− Φ2C

≈
−Φ2Q

Q− Φ2C
.

Reconverting this expression for the macroscopic reactive flux Q, leads to a

significantly simpler expression for Best kinetics (Equation (4.17)), which is

valid for small concentrations

Q = −
jtrΦ

2

jtr +Φ2
C. (B.2)

This equation constitutes again a first-order reaction rate but now with respect

to the macroscopic concentration C. Our approach apparently does not alter

the structure of the reaction kinetics. Comparing this expression to Equation

(B.1) allows the introduction of a new effective first-order rate constant using

the relationship

Q = −Φ2
effC (B.3)
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with the effective rate constant given by

Φ2
eff =

jtrΦ
2

jtr +Φ2
. (B.4)

Equation (B.4) describes an effective Thiele modulus Φ2
eff , which is linked to the

local Thiele modulus Φ2, via the mass-flux coefficient jtr. The value of which

is given by Φ2
eff in the limit of Φ2 → ∞. As shown by Balakotaiah and Chang

[1995] or Heße et al. [2009], an analysis of the behavior of this effective Thiele

modulus Φ2
eff is mathematically coupled to the square of the first solution of

the transcendent equation

λ tan(λ) = Φ2. (B.5)

Details on how to derive Equation (B.5) from the problem described in the

main manuscript are given in these references. For Φ2 → ∞ the first solution

of Equation (B.5) is simply the first pole of the tangent function (π/2), so

jtr =
π2

4
. (B.6)

It is necessary to note that this solution for jtr has been derived for the used

geometry (Figure B.1) and different pore geometries may lead to significantly

different results and thus different values for jtr. The results are however,

consistent with the findings of Haggerty and Gorelick [1995] for example for

the case of layered diffusion. In case of a first-order reaction rate the mass-flux

coefficient jtr can therefore be regarded as a geometry parameter describing the

effect of pore-scale diffusion on macroscopic reaction rates in the chosen setup.
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Figure B.2.: Numerical estimate of the mass-flux coefficient jtr with respect to

Φ2 in case of an effective first-order reaction rate (dashed line).

The analytically derived value jtr = π2/4 is plotted as solid line.

To test the analytically determined value for jtr we use direct numerical sim-

ulations of the full problem described by Equations (4.14) and (4.15) again

assuming C/Km ≪ 1. For lower values of Φ2, i.e. in the reaction-limited

regime, the results show an increasing error (see Figure B.2). The error also

shows the limits of the assumption of a perfect first-order reaction rate as rep-

resented by Equation (B.4). For high values of Φ2 (see Figure B.2), i.e. in

the diffusion-limited regime, the results show a good approximation with only

a small bias. This error apparently stems from the numerical discretization of

the implemented scheme.

B.2. Effective bioavailabilty

Following Kampara et al. [2008] the effective bioavailability Beff is given as

the ratio between the effective degradation rate given by Best kinetics and the
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potential degradation rate in the absence of any bioavailability restrictions given

by Michaelis-Menten kinetics:

Beff =
RBest

RMM
=

QBest

QMM
(B.7)

with R and Q describing dimensional and dimensionless rate expressions, re-

spectively. The subscripts Best and MM refer to Best kinetics and Michaelis-

Menten kinetics. Using Equation (4.17) (with a constant estimate for jtr) for

QBest and Equation (4.18) (with local values for Φ2 and Km) for QMM leads to

Beff =
π2

8Φ2

(
1 +

Km

C

)(
1 +

C

Km
+

4Φ2

π2

)

1−

√√√√√1−
16 C

Km

Φ2

π2

(
1 + C

Km
+ 4Φ2

π2

)2


 .

(B.8)

As a result Equation (B.8) contains only local variables.

B.3. Experimental setup

The experimental setup represents one of the column experiments described in

Harms and Zehnder [1994]. Glass columns of 8.9 cm bed length above a glass

frit at the bottom and 1 cm inner diameter were filled with glass spheres of

0.45 mm diameter. This glass bead packing was fully saturated with phosphate-

buffered saline (PBS) and operated in down-flow mode by peristaltic pumping.

A bacterial suspension was percolated through the columns to allow for irre-

versible attachment of biomass equivalent to 0.248 mg protein per column. The

attached biomass was calculated from the difference between inflowing and out-

flowing biomass. The inflow was then switched first to cell-free PBS to remove
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planktonic and loosely attached cells and then to a 1.55 µM solution of 3-chloro-

dibenzofuran in PBS. The disappearance of the substrate 3-chlorodibenzofuran

during passage of the columns was used to calculate the specific degradation

activity in the columns. Control experiments with inactive biomass confirmed

that losses due to bioaccumulation, volatilization or sorption to tubing or col-

umn materials were negligible. A detailed description of the experimental pro-

cedures and measurement techniques is given in Harms and Zehnder [1994] and

an overview of parameter values measured for this experiment is provided in

Table B.1.

length l 8.9 cm

diameter of the column dc 1 cm

bead diameter d 0.0450 (+− 0, 005) cm

pore volume Vpor 2.45 cm3

porosity n 0.35

diffusion constant of the substrate D 6 · 10−6 cm2s−1

flow velocity V 1.25 mm s−1

maximum microbial degradation rate Vmax 0.326 nmol (mg protein)−1 s−1

half-saturation constant Km 231 nM

biomass in the column m 0.248 mg protein

concentration at the inlet cin 1.55 µM

Table B.1.: Measured parameters of the column experiment.

In order to apply our results to experimental data values for the Thiele modulus

Φ2 and the mass-transfer coefficient ktr have to be derived, which requires

reasonable estimates of typical length scale and specific surface, both needed

as scaling units [Vogel, 2002], [Hilfer, 2002].
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The maximum reaction rate in given by

kmax =
Vmaxm

Vpor
, (B.9)

the specific surface, i.e. the ratio of the reactive surface and the pore volume

for a packing of spherical beads is given as

av =

(
1

n
− 1

)
6

d
(B.10)

and the hydraulic radius as the typical length scale is

rhyd =
4

av
. (B.11)

This expression is equivalent to expressions in the literature [Wood et al., 2007]

based on different definitions of the specific surface.

Furthermore the maximum conversion rate is determined as

ktr =
π2

4

Dav
rhyd

=
π2

16
Da2v, (B.12)

which allows for the calculation of the Thiele modulus and the mass-transfer

coefficient using Equations (4.3), (4.12), and (4.5), respectively:

Φ2 =
kmaxrhyd
DKmav

=
4kmax

DKma2v
= 1.6 (B.13)

ktr =
π2

4

Dav
rhyd

=
π2

16
Da2v = 0.227. (B.14)
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