PD Dr. Thomas Maskow
Contact
PD Dr. Thomas Maskow
Scientist
Department of Environmental Microbiology
Working Group Ecothermodynamics / Biocalorimetry
Helmholtz Centre for
Environmental Research - UFZ
Permoserstr. 15, 04318 Leipzig, Germany
Phone +49 341 235-1328
thomas.maskow@ufz.de

CV / Scientific Career
1988
Diploma in Theoretical and Physical Chemistry,
TU Leuna-Merseburg
1988-1992
PhD, University of Halle-Wittenberg;
Subject: 'Thermodynamics of complex multicomponent mixtures'
1992-1996
Head of the analytical division of the engineering consultants 'R. Meyer Laboranalysen Umwelttechnik GmbH'
1996-2001
Postdoc at the Department of Environmental Microbiology at the UFZ Centre for Environmental Research Leipzig-Halle
since 2001
Senior scientist at the Department of Environmental Microbiology at the UFZ Centre for Environmental Research Leipzig-Halle
2002
Guest researcher at the Institute of Biological Sciences, University of Wales, Aberystwyth (University of Wales Aberystwyth College Research Fund)
2004
Guest researcher at the Laboratoire de Genie Chimique et Biologique (LGCB), Ecole Polytechnique Fédérale de Lausanne (founded by EPFL)
2005
Habilitation at the Technical University Dresden ' Thermodynamic Characterization and Calorimetric Control of Microorganisms in Transient Growth States '.
2006 - 2009
Election in the ' Scientific and Technical Council ' of the Helmholtz Centre of Environmental Research UFZ
2007 - 2009
Guest researcher for one month per year at China University of Geosciences, Wuhan, Hubei province, P.R. China (founded by DAAD/CSC)
2010 - 2012
Chair person of the ISBC (International Society for Biological Calorimetry)
14 June 2018
Awarded with the Lavoisier-Medal by the International Society for Biological Calorimetry (ISBC)
Research interests
I am highly interested in a quantitative understanding of bioconversions in natural and technical systems. This is a basic prerequisite to develop a sustainable chemistry and to clean up polluted sites. Irreversible thermodynamics is for that purpose though particularly valuable but surprisingly seldom used. Thus, I develop both biothermodynamic models and new real time analytical tools for analysis and control of complex biological systems. The field of applications of such models and tools comprises the adaptation of microbes to hostile environments, food webs in ecosystems, new concepts for bioenergy generation and optimization of technical biosynthesizes. The consideration of heterogeneous systems (e.g. biofilms, subsurface processes) or the inclusion of light (e.g. photosynthesis) and electrical energy (e.g. microbial fuel cells) in biothermodynamic considerations are challenges for the future.
Current research
- Linking energy and matter balances in complex soil systems
- Biotechnological processes for recycling of microplastics
- Biothermodynamic models for complex networks in metabolism (system biology) as well as in ecosystems
- Role of bacteriophages and predatory bacteria in ecosystems (from an bioenergetic perspective)
- Biological effects of nanoparticles
- Research on new control strategies for bioprocesses basing on physical signals which reflects metabolic changes in statu nascendi,e.g. calorimetry, impedance spectroscopy and redox processes
Lecture course
Bioprocess technology, BA Riesa University of Cooperative Education
Biophysics and biophysical chemistry; study course: Bioprocess engineering (WS), Dresden University of Technology
Ouantitative biotechnology (contributions), Leipzig University
Frisch gePresst
2023 (1)
- Maskow, T., Schlosser, D. (2023):
Lignocellulose-Verwertung durch Pilze mit metabolischer Wärme erfassen
Biospektrum 29 (3), 321 - 323
Volltext (DOI)
2022 (4)
- Assael, M.J., Maitland, G.C., Maskow, T., von Stockar, U., Wakeham, W.A., Will, S. (2022):
Commonly asked questions in thermodynamics, second edition
CRC Press / Taylor & Francis, Boca Raton, FL, 498 pp.
Volltext (DOI) - Duong, H.L., Paufler, S., Harms, H., Maskow, T., Schlosser, D. (2022):
Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products
New Biotech. 66 , 97 - 106
Volltext (DOI) - Duong, H.L., Paufler, S., Harms, H., Schlosser, D., Maskow, T. (2022):
Fungal lignocellulose utilization strategies from a bioenergetic perspective: Quantification of related functional traits using biocalorimetry
Microorganisms 10 (8), art. 1675
Volltext (DOI) - Zhou, L.-J., Wang, Y.-Y., Li, S.-L., Cao, L., Jiang, F.-L., Maskow, T., Liu, Y. (2022):
Core–shell polydopamine/Cu nanometer rods efficiently deactivate microbes by mimicking chloride-activated peroxidases
ACS Omega 7 (34), 29984 - 29994
Volltext (DOI)
2021 (4)
- Fricke, C., Klee, T., Richter, S., Paufler, S., Harms, H., Maskow, T. (2021):
Numerical heat flow and transport simulation as a development tool for the design of isothermal microcalorimeters
Thermochim. Acta 706 , art. 179070
Volltext (DOI) - Greinert, T., Vogel, K., Maskow, T., Held, C. (2021):
New thermodynamic activity-based approach allows predicting the feasibility of glycolysis
Sci. Rep. 11 , art. 6125
Volltext (DOI) - Korth, B., Heber, C., Normant-Saremba, M., Maskow, T., Harnisch, F. (2021):
Precious data from tiny samples: Revealing the correlation between energy content and the chemical oxygen demand of municipal wastewater using micro-bomb combustion calorimetry
Front. Energy Res. 9 , art. 705800
Volltext (DOI) - Vogel, K., Wei, R., Pfaff, L., Breite, D., Al-Fathi, H., Ortmann, C., Estrela-Lopis, I., Venus, T., Schulze, A., Harms, H., Bornscheuer, U.T., Maskow, T. (2021):
Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry
Sci. Total Environ. 773 , art. 145111
Volltext (DOI)
2020 (8)
- Fricke, C., Harms, H., Maskow, T. (2020):
How to speed up the detection of aerobic microbial contaminations by using isothermal microcalorimetry
J. Therm. Anal. Calorim. 142 (5), 1933 - 1949
Volltext (DOI) - Fricke, C., Xu, J., Jiang, F.-L., Liu, Y., Harms, H., Maskow, T. (2020):
Rapid culture‐based detection of Legionella pneumophila using isothermal microcalorimetry with an improved evaluation method
Microb. Biotechnol. 13 (4), 1262 - 1272
Volltext (DOI) - Greinert, T., Vogel, K., Mühlenweg, J.-K., Sadowski, G., Maskow, T., Held, C. (2020):
Standard Gibbs energy of metabolic reactions: VI. Glyceraldehyde 3-phosphate dehydrogenase reaction
Fluid Phase Equilib. 517 , art. 112597
Volltext (DOI) - Greinert, T., Vogel, K., Seifert, A.I., Siewert, R., Andreeva, I.V., Verevkin, S.P., Maskow, T., Sadowski, G., Held, C. (2020):
Standard Gibbs energy of metabolic reactions: V. Enolase reaction
BBA-Proteins Proteomics 1868 (4), art. 140365
Volltext (DOI) - Vogel, K., Greinert, T., Harms, H., Sadowski, G., Held, C., Maskow, T. (2020):
Influence of cytosolic conditions on the reaction equilibrium and the reaction enthalpy of the enolase reaction accessed by calorimetry and van ‘t HOFF
Biochim. Biophys. Acta-Gen. Subj. 1864 (10), art. 129675
Volltext (DOI) - Vogel, K., Greinert, T., Held, C., Harms, H., Maskow, T. (2020):
Application of irreversible thermodynamics to determine the influence of cell mimicking conditions on the kinetics of equilibrium reactions of the glycolysis
Biophys. J. 118 (3, Suppl. 1), 346a - 347a
Volltext (DOI) - Vogel, K., Greinert, T., Reichard, M., Held, C., Harms, H., Maskow, T. (2020):
Thermodynamics and kinetics of glycolytic reactions. Part II: Influence of cytosolic conditions on thermodynamic state variables and kinetic parameters
Int. J. Mol. Sci. 21 (21), art. 7921
Volltext (DOI) - Vogel, K., Greinert, T., Reichard, M., Held, C., Harms, H., Maskow, T. (2020):
Thermodynamics and kinetics of glycolytic reactions. Part I: Kinetic modeling based on irreversible thermodynamics and validation by calorimetry
Int. J. Mol. Sci. 21 (21), art. 8341
Volltext (DOI)