Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.1002/elsc.200900027
Titel (primär) The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge
Autor Babel, W.
Quelle Engineering in Life Sciences
Erscheinungsjahr 2009
Department UMB
Band/Volume 9
Heft 4
Seite von 285
Seite bis 290
Sprache englisch
Keywords Auxiliary substrate; Energetic evaluation; Upper limit; Yield coefficient
Abstract Microorganisms are used in biotechnology. They are either (i) aim and purpose of a process, e.g. with the production of single cell proteins, or (ii) mean to an end insofar as they serve as a catalyst or factory for syntheses (e.g. of products of primary and secondary metabolism, of enzymes and antibiotics) or for the degradation and detoxification of harmful organics and inorganics. In all cases, the efficiency and velocity, finally the productivity, are parameters which essentially determine the economy of the processes. Therefore, search for approaches to optimize these processes is a permanent task and challenge for scientists and engineers. It is shown that the auxiliary substrate concept is suitable to increase the yield coefficients. It is based on the energetic evaluation of organics, on the knowledge that organics as sources of carbon and energy for growth are deficient in ATP and/or reducing equivalents, and says that it is possible to improve the carbon conversion efficiency up to the carbon metabolism determined upper limit. The latter is determined by inevitable losses of carbon along the way of assimilation and anabolism and amounts to about 85% for so-called glycolytic substrates, e.g. glucose, methanol, and to about 75% for gluconeogenetic substrates, e.g. C2-substrates (acetic acid, hexadecane). The approach is explained and some experimental examples are presented. By simultaneous utilization of an extra energy source (auxiliary substrate) the yield coefficient can be increased (i) in glucose from about 0.5 to 0.7 g/g (by means of formate), (ii) in acetate from 0.34-0.4 to 0.5-0.65 g/g (by means of formate and thiosulfate, respectively), and (iii) in hexadecane from about 0.94 to 1.26 g/g (by means of formate). The precalculated yield coefficients and mixing ratios agree well with the experimentally attained ones. The approach is easily feasible and economically valuable.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=25
Babel, W. (2009):
The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge
Eng. Life Sci. 9 (4), 285 - 290 10.1002/elsc.200900027