Details zur Publikation

Kategorie Textpublikation
Referenztyp Zeitschriften
DOI 10.5194/gmd-11-1989-2018
Lizenz creative commons licence
Titel (primär) Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)
Autor Jing, M.; Heße, F.; Kumar, R. ORCID logo ; Wang, W. ORCID logo ; Fischer, T.; Walther, M.; Zink, M.; Zech, A.; Samaniego, L. ORCID logo ; Kolditz, O. ORCID logo ; Attinger, S.
Quelle Geoscientific Model Development
Erscheinungsjahr 2018
Department CHS; ENVINF
Band/Volume 11
Heft 5
Seite von 1989
Seite bis 2007
Sprache englisch
UFZ Querschnittsthemen RU5;
Abstract Most of the current large scale hydrological models do not contain a physically-based groundwater flow component. The main difficulties in large-scale groundwater modeling include the efficient representation of unsaturated zone flow, the characterization of dynamic groundwater-surface water interaction and the numerical stability while preserving complex physical processes and high resolution. To address these problems, we propose a highly-scalable coupled hydrologic and groundwater model (mHM#OGS) based on the integration of two open-source modeling codes: the mesoscale hydrologic Model (mHM) and the finite element simulator OpenGeoSys (OGS). mHM#OGS is coupled using a boundary condition-based coupling scheme that dynamically links the surface and subsurface parts. Nested time stepping allows smaller time steps for typically faster surface runoff routing in mHM and larger time steps for slower subsurface flow in OGS. mHM#OGS features the coupling interface which can transfer the groundwater recharge and river baseflow rate between mHM and OpenGeoSys. Verification of the coupled model was conducted using the time-series of observed streamflow and groundwater levels. Moreover, we force the transient model using groundwater recharge in two scenarios: (1) spatially variable recharge based on the mHM simulations, and (2) spatially homogeneous groundwater recharge. The modeling result in first scenario has a slightly higher correlation with groundwater head time-series, which further validates the plausibility of spatial groundwater recharge distribution calculated by mHM in the mesocale. The statistical analysis of model predictions shows a promising prediction ability of the model. The offline coupling method implemented here can reproduce reasonable groundwater head time series while keep a desired level of detail in the subsurface model structure with little surplus in computational cost. Our exemplary calculations show that the coupled model mHM#OGS can be a valuable tool to assess the effects of variability in land surface heterogeneity, meteorological, topographical forces and geological zonation on the groundwater flow dynamics.
dauerhafte UFZ-Verlinkung https://www.ufz.de/index.php?en=20939&ufzPublicationIdentifier=19264
Jing, M., Heße, F., Kumar, R., Wang, W., Fischer, T., Walther, M., Zink, M., Zech, A., Samaniego, L., Kolditz, O., Attinger, S. (2018):
Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)
Geosci. Model Dev. 11 (5), 1989 - 2007 10.5194/gmd-11-1989-2018