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ABSTRACT 29 

Many plant traits covary with environmental gradients, reflecting shifts in 30 

adaptive strategies under changing conditions and thus providing information 31 

about potential consequences of future environmental change for vegetation 32 

and ecosystem functioning. Despite extensive efforts to map trait–environment 33 

relationships, the evidence remains heterogeneous and often conflicting, 34 

partially because of insufficient consideration of distinct trait syndromes for 35 

certain growth forms and habitats. Moreover, it is unclear whether traits of 36 

non-native and native plant taxa respond similarly to environmental gradients, 37 

limiting our ability to assess the consequences of future plant invasions. Here, 38 

using comprehensive data for Germany and the Czech Republic and a Bayesian 39 

multilevel modeling framework, we assessed relationships between three major 40 

plant traits (maximum height, Hmax; specific leaf area, SLA; and seed mass, SM) 41 

and environmental factors (7 climate variables and percentage of urban land 42 

cover) for native and non-native woody and herbaceous plant assemblages 43 

across six broad habitat types. We projected the trait change in these 44 

assemblages under future environmental change scenarios until 2081–2100 and 45 

quantified the change in trait difference between native and non-native plants. 46 

Our models depicted multiple trait–environment relationships, with several 47 

important differences attributed to biogeographical status and woodiness within 48 

and across habitat types. The overall magnitude of trait change is projected to 49 

be greater for non-native than native taxa and to increase under more extreme 50 

scenarios. Native woody plant assemblages may generally experience an 51 
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increase across all three traits, whereas woody non-natives may decline in Hmax 52 

and increase in SLA and SM. Herbaceous Hmax is expected to increase and SLA 53 

to decrease in most habitats. The obtained trait projections highlight the 54 

conditions under which non-native plants may prevail over natives and vice 55 

versa and can serve as a starting point for projecting future changes in 56 

ecosystem functions and services. 57 

 58 

Keywords: biological invasions, environmental filtering, global environmental 59 

change, scenario, trait-based approach, trait–environment relationship 60 

 61 

1 INTRODUCTION 62 

Economic globalization and human-induced environmental change over the 63 

last centuries have caused vast numbers of species to decline (Díaz et al., 2019), 64 

while a smaller yet substantial number of species has expanded beyond their 65 

historical ranges (i.e., non-native and neonative species; Essl et al., 2019; 66 

Seebens et al., 2017). As a result, previously unique species assemblages around 67 

the world are increasingly becoming impoverished, more alike, and less stable 68 

(Daru et al., 2021; Eichenberg et al., 2021; Finderup Nielsen et al., 2019; Winter 69 

et al., 2009; Yang et al., 2021), with serious, often irreversible, consequences for 70 

natural ecosystems and humans (Guo et al., 2020; Naeem et al., 2012; Pyšek et 71 

al., 2020). In the face of the highly threatened and uncertain future of 72 

biodiversity (Thuiller et al., 2005, 2019), it is important to ensure that the 73 
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scientific knowledge used to design biodiversity policies is easily updatable, 74 

synthesizable, and transferable across space and time. This, on the one hand, 75 

calls for approaches that generalize scientific outputs beyond individual species 76 

and, on the other hand, requires embracing the distinct ecological patterns 77 

displayed by different species groups (e.g., native vs. non-native; Liu et al., 78 

2017). 79 

Approaches with a focus on species traits (i.e., any measurable 80 

characteristic of a single organism, Violle et al., 2007) are increasingly put 81 

forward as a way towards predictive ecology (McGill et al., 2006; Violle et al., 82 

2014) and have been actively employed to study the effects of global 83 

environmental change (e.g., Madani et al., 2018; Myers-Smith et al., 2019). The 84 

premise of such approaches is that traits mechanistically link an organism’s 85 

performance to its environment and can be upscaled to understand and predict 86 

how the environment shapes species assemblages and ecosystem functioning 87 

(Bjorkman et al., 2018; Dubuis et al., 2013; Küster et al., 2011; Lavorel & 88 

Garnier, 2002; Musavi et al., 2016). Moreover, traits yield insights into the 89 

mechanisms of non-native species invasiveness (Drenovsky et al., 2012; Küster 90 

et al., 2008; Pyšek & Richardson, 2008) and can help reveal differences in the 91 

ecological roles and functions of native and non-native species (Hulme & 92 

Bernard-Verdier, 2018a, 2018b). However, trait differences between natives 93 

and non-natives have mostly been assessed independently of the environmental 94 

contexts (e.g., Divíšek et al., 2018; Mathakutha et al., 2019; van Kleunen et al., 95 

2010). In contrast, studies that compare how native and non-native traits shift 96 
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along environmental gradients and therefore allow extrapolating trait 97 

differences into different environmental conditions remain scarce (Gross et al. 98 

2013; Hanz et al., 2022; Henn et al., 2019; Knapp & Kühn, 2012; Sandel & Low, 99 

2019; Westerband et al., 2020). This highlights a mismatch between the trait-100 

based research on native species, which strongly focuses on environmental 101 

filtering and adaptation, and that on non-native species, which often 102 

insufficiently considers environmental gradients and thus provides only a 103 

limited ability to identify the circumstances under which non-natives 104 

functionally diverge from or converge with natives. 105 

Despite extensive recent efforts to map trait–environment relationships, 106 

the evidence on these relationships remains heterogeneous and often 107 

discordant. This might be partly attributed to insufficient consideration of 108 

distinct trait syndromes specific to different growth forms and habitats. 109 

Notably, woody and herbaceous plants occupy distinct sections in the global 110 

spectrum of plant form and function (Díaz et al., 2016), which highlights their 111 

unique adaptations to the environment and hence divergent trait–environment 112 

relationships (Šímová et al., 2018). Additionally, traits of woody species tend to 113 

be more strongly associated with climate than those of herbaceous species 114 

(Šímová et al., 2018). This suggests that when all growth forms in a study area 115 

are jointly analyzed, trait–environment relationships may appear weak. 116 

Nevertheless, it is a common practice for macroecological analyses to pool trait 117 

data for woody and herbaceous species together (e.g., Boonman et al., 2020; 118 

Moles et al., 2009, 2014; Ordonez et al., 2009; Wright et al., 2005) or to focus 119 
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only on woody taxa (e.g., Šímová et al., 2015; Swenson et al., 2012), thus 120 

hindering generalizations of trait–environment relationships. Moreover, the 121 

strength and direction of the associations between traits and environment may 122 

vary across different environmental conditions such as represented by habitat 123 

types. Most frequently, however, trait–environment relationships have been 124 

quantified either as pooled across habitats or for a single specific habitat type 125 

per study (e.g., montane open habitats, Dubuis et al., 2013; forests, Maes et al., 126 

2020; Wieczynski et al., 2019). For non-native species, habitat information has 127 

been primarily incorporated to compare the levels of invasion across broadly 128 

defined (Chytrý et al., 2008) and selected narrowly defined (e.g., grasslands, 129 

Axmanová et al., 2021; coastal dunes, Giulio et al., 2020; forests, Wagner et al., 130 

2017) habitats, whereas how traits of non-native species arrange along 131 

environmental gradients within or across habitats has not been explored. 132 

Collectively, this calls for an explicit consideration of woodiness, habitat type, 133 

as well as biogeographical status in trait-based analyses. 134 

In this study, we used extensive plant distribution and trait data for 135 

Germany and the Czech Republic and a full Bayesian multilevel modeling 136 

framework to assess future trait change following the “assemble first, predict 137 

later” approach (Ferrier & Guisan, 2006). We (1) quantified relationships of 138 

traits central to plant life history (Díaz et al., 2016; Westoby, 1998) – namely, 139 

maximum height, specific leaf area, and seed mass – with climate and land use 140 

within native and non-native plant assemblages. Based on obtained trait–141 

environment relationships, we (2) determined the magnitude and direction of 142 
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plausible future change in mean trait values, which reflect the turnover of taxa 143 

and associated functions. The trait change was projected under seven combined 144 

climate and socio-economic scenarios for Europe for the period of 2081–2100. 145 

Considering the substantial variation in plant adaptive strategies across growth 146 

forms and environments, which may weaken or bias the environmental 147 

filtering signal if not accounted for (Catford et al., 2021), we addressed each of 148 

the goals separately for woody and herbaceous plants and for species pools of 149 

six different broad habitat types. 150 

 151 

2 MATERIAL AND METHODS 152 

2.1 Study area 153 

Our study area comprises the entire territory of two Central European 154 

countries, Germany and the Czech Republic. Both countries are characterized 155 

by a temperate climate with marked regional differences. Mean annual 156 

temperature (MAT) ranges from c. 4 °C at high elevations to 11 °C in the 157 

lowlands, being on average c. 8 °C. Total annual precipitation (TAP) averages at 158 

700 mm, ranging from 450 mm in north-eastern lowlands and the east to 1200 159 

mm in the south (Alps) and west (DWD, 2017). Land cover composition across 160 

the study area is represented by arable land (37–38%; as of 2018), forested land 161 

(30–35%), pastures and mosaic farmland (18–20%), artificial surfaces (7–9%), 162 

and semi-natural non-forested land including wetlands and water bodies (1–163 

4%) (EEA, 2021). The sprawl of artificial surface areas has been the main driver 164 
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of land-use change over the past two decades in Germany, whereas in the 165 

Czech Republic land-use change has been primarily marked by the expansion 166 

of forested land (EEA, 2021). For Germany, an increase in MAT by 2.8–5.2 °C 167 

and either a decrease or increase in TAP by up to 26% in 2071–2100 (compared 168 

to 1971–2000) is projected under severe climate change (RCP8.5) (DWD, 2018). 169 

For the Czech Republic, MAT is projected to increase by 4.1 °C and TAP – by 170 

up to 16% in 2081–2100 (relative to 1981–2010) under RCP8.5 (Český 171 

hydrometeorologický ústav, 2019). Climate change is expected to lead to more 172 

frequent extreme drought and rainfall events (Huang et al., 2015; Rulfová et al., 173 

2017; Štěpánek et al., 2016) and increased heatwave impacts (e.g., Krkoška 174 

Lorencová et al., 2018) in the study area, among other effects. 175 

 176 

2.2 Data 177 

Taxon-level data 178 

Using multiple open data sources, we collated data on plant taxon occurrences, 179 

biogeographical status, habitat affinity, and traits for the entire flora of the 180 

study area. We excluded aquatic (i.e., taxa with the Ellenberg moisture 181 

indicator value >9), holoparasitic, and fully mycotrophic taxa from analyses. 182 

Occurrence records. For Germany, we obtained grid-based native and alien 183 

plant taxon occurrence data from the FlorKart database (Datenbank FlorKart, 184 

NetPhyD & BfN, 2013) via the information online system FloraWeb 185 

(www.floraweb.de; accessed 5 February 2022). FlorKart is the most 186 
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comprehensive database on plant taxon distribution for Germany, being the 187 

result of the combined effort of thousands of volunteers, who were involved in 188 

floristic mapping and literature review. From the FlorKart data, which provided 189 

the status of each occurrence record, we excluded records of cultivated, 190 

erroneous, and doubtful occurrences. For the Czech Republic, we obtained 191 

grid-based taxon presence data (i.e., a single record per taxon per grid cell) from 192 

the Pladias – Database of the Czech Flora and Vegetation (www.pladias.cz; 193 

accessed 16 January 2022). The database resulted from the integration of over 194 

13 million records of c. 5,000 species, which originated from multiple national 195 

and regional projects, as well as additional data collection efforts within the 196 

Pladias project; it is the most complete database on vascular plant occurrence in 197 

the Czech Republic (Chytrý et al., 2021; Wild et al., 2019). From the Pladias 198 

data, we initially excluded records at the genus level. Records of presently 199 

missing or extinct taxa were also removed. Additionally, we excluded data for a 200 

few taxa that were known to occur in both countries but for which data were 201 

available from a single country only. 202 

The FlorKart and Pladias data were provided at the resolution of the 10’ 203 

longitude × 6’ latitude grid cells (corresponding to c. 12.0 km × 11.1 km on the 204 

50th parallel). Grid cells in both datasets were originally defined by the sheets 205 

(tiles) on the German topographical map (Messtischbla�tter) with a scale of 206 

1:25000 (TK 25), which is commonly used for floristic mapping. Because both 207 

databases are essentially compilations of many regional projects with different 208 

sampling intensities, we aggregated all data at the grid-cell level (N = 3,569) to 209 
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achieve a more homogeneous sampling effort across the study area. We also 210 

cropped the spatial grid to the combined borders of Germany and the Czech 211 

Republic and excluded all grid cells with a land area <117 km2, which 212 

corresponds to the size of the smallest grid cell not truncated by borders or 213 

coastlines. To further control for the differences in sampling effort, we 214 

excluded grid cells containing less than 83 of the 87 benchmark taxa. 215 

Benchmark taxa were taxa that based on the Beals smoothing method (Beals, 216 

1984; Carmona & Pärtel, 2021) occurred in each grid with a probability >0.98. 217 

These taxa were determined after all taxonomic names were standardized (see 218 

below) and taxa that did not meet the selection criteria (e.g., casual non-natives; 219 

see below) were removed. The final grid comprised 3,031 cells, of which 2,481 220 

were located majorly (i.e., >50% of grid cell area) in Germany and 550 in the 221 

Czech Republic. As grid cells were delineated by geographic minutes, their size 222 

varied with latitude from 117 (in the north) to 139.7 km2 (in the south). 223 

Biogeographical status. For Germany, we mostly relied on the information on 224 

the origin (native, non-native), introduction time (archaeophyte, i.e., 225 

introduced before the discovery of the Americas in 1492; neophyte, i.e., 226 

introduced after the discovery of the Americas), and establishment status 227 

(established, casual, cultivated) from the BiolFlor database (Kühn et al., 2004) 228 

and FloraWeb (www.floraweb.de). In case of discrepancies or missing 229 

information, we also checked other sources (e.g., Flora Germanica, www.flora-230 

germanica.de), giving preference to local and/or more recent evidence. For the 231 

Czech Republic, we used the status information from Pyšek et al. (2012). Using 232 
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the information on the taxon status, we filtered plant distribution data. 233 

Specifically, for taxa that were native in one country and casual non-native in 234 

the other country, we retained only records from where those taxa were native. 235 

Likewise, for taxa that were native or established non-native in one country but 236 

known solely from cultivation in the other country, we considered only data 237 

from where those taxa were established. For non-natives that occurred in both 238 

countries but were established in only one of them, we kept all known 239 

occurrences if the number of occupied grid cells in each country was >1 and 240 

discarded singular casual occurrences at the country level. Although retaining 241 

occurrences of taxa that were considered casual in a country meant 242 

overestimation of the naturalized secondary range size in some cases, more 243 

importantly, it allowed us to ameliorate the differences in expert judgment 244 

regarding the degree of taxon establishment. Finally, we retained all native taxa 245 

and non-native taxa that had established populations in Germany and the 246 

Czech Republic in >1 grid cell across the study region. For consistency reasons, 247 

we assigned a single, highest achieved degree of establishment to each taxon 248 

(i.e., a taxon native in at least one country was treated as native across the study 249 

area), which is in accordance with the national treatment of taxa having several 250 

statuses in the country. 251 

Habitat affinity. To enable analyses at the habitat level, we assigned each taxon 252 

to at least one of the following six broad habitat types: forest, heathland and 253 

scrub, grassland, wetland, rock and scree, and human-made. Information on 254 

taxon habitat affinity was collated from multiple reference sources (namely, 255 
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BiolFlor, Kühn et al., 2004; Bundesamt für Naturschutz, 2017; EUNIS, Chytrý et 256 

al., 2020; DAISIE, Roy et al., 2020; Divíšek et al., 2018; KORINA, 257 

www.korina.info, accessed 4 August 2021; Sádlo et al., 2007), which used 258 

different habitat classification schemes. We grouped the habitat types in each 259 

data source into the six habitat types using expert knowledge (see Table S1 for 260 

habitat classification) and then merged all the data. For taxa represented in 261 

multiple sources, we only retained habitats listed in the majority of sources, to 262 

avoid reports of sporadic occurrences. 263 

Traits. We selected three traits for our analyses: (1) typical maximum plant 264 

height (Hmax; measured in m), (2) seed mass (SM; g), and (3) specific leaf area 265 

(SLA; mm2 mg-1). These traits depict major plant life strategies (Díaz et al., 2016; 266 

Westoby, 1998), correlate with many other important traits (Moles et al., 2007, 267 

2009; Wright et al., 2004), act as both response and effect traits (Hanisch et al., 268 

2020; Kühn et al., 2021; Pollock et al., 2012), and are well represented in open 269 

source trait databases (e.g., Kattge et al., 2020). We compiled trait data from 270 

multiple databases and online resources: LEDA (Kleyer et al., 2008), TRY 271 

(Kattge et al., 2011, 2020, accessed 1 October 2019; see Appendix S2 for 272 

references within TRY), EcoFlora (Fitter & Peat, 1994, www.ecoflora.co.uk, 273 

accessed 16 September 2021), Info Flora (www.infoflora.ch), iFlora (www.i-274 

flora.com), Kaplan et al., 2019, Vojtkó et al. (2020), World Species 275 

(worldspecies.org). We included Hmax measurements on vegetative and 276 

generative organs, SM measurements on dried seeds, and SLA measurements on 277 

sun and shade leaves and dry biomass. Where possible, we excluded trait 278 
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measurements from biomes outside our study area (e.g., tundra). Climbers were 279 

excluded from analyses of Hmax. In most cases, more than one trait value was 280 

available per taxon. We used these values to calculate the geometric mean, 281 

which is less sensitive to extreme values than other measures of central 282 

tendency, after accounting for possible outliers; we calculated Hmax as the 283 

geometric mean of the maximum height values provided in each data source. 284 

Additionally, we categorized each taxon as woody or herbaceous. Woody taxa 285 

were defined as perennials whose stems were either entirely lignified or had a 286 

lignified base. The information on woodiness was obtained directly or inferred 287 

from life form and growth form using the following data sources: Zanne et al., 288 

2014 via the R package growthform (v.0.2.3; Taseski et al., 2019); LEDA (Kleyer 289 

et al., 2008); BiolFlor (Kühn et al., 2004), Info Flora (www.infoflora.ch), Pladias 290 

(www.pladias.cz); TRY (Kattge et al., 2011, 2020); Encyclopedia of Life 291 

(eol.org). When the sources provided contrasting information, we assigned 292 

woodiness based on morphological descriptions provided in floras. Woody 293 

plants occurring in grasslands, wetlands, and rock and scree habitats were 294 

excluded from all analyses. Due to the low sample size and variation in trait 295 

values, we removed woody archaeophytes. 296 

Taxonomic names. To facilitate name harmonization, we initially extracted all 297 

the provided names including synonyms for each taxon in FloraWeb and 298 

Pladias and matched taxa using those names. This resolved many cases that 299 

would be problematic to standardize otherwise (e.g., a hybrid name in one 300 

dataset and a corresponding hybrid formula in the other). Subsequently, we 301 
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checked and updated full taxonomic names against the Plants of the World 302 

Online (POWO, 2022) using the R package taxize (Chamberlain & Szocs, 2013), 303 

Leipzig Catalogue of Vascular Plants using the R package lcvplants (v.2.0; 304 

Freiberg et al., 2020) and the GermanSL v1.5 checklist using the R package 305 

vegdata (v.0.9.8; Jansen & Dengler, 2008, 2010). The use of multiple taxonomic 306 

databases was necessary because our initial taxon list included many names 307 

with qualifiers, hybrid formulas, aggregates, etc., for which none of the 308 

available reference sources provided a single optimal solution. Taxonomically 309 

critical taxa (e.g., those in genus Taraxacum, Rubus) were aggregated at higher 310 

taxonomic levels (e.g., aggregate, section). Infraspecific taxa were generally 311 

aggregated to species or higher levels unless they were non-native. 312 

Our final dataset comprised 1,812 native, 181 archaeophyte, and 331 313 

neophyte taxa; Hmax was available for 96%, SLA for 74%, and SM for 88% of 314 

those taxa. 315 

 316 

Climate and land use data 317 

Baseline data. We retrieved baseline data on 14 macroclimatic variables from 318 

the 10’ × 10’ (c. 13 km × 18 km on the 50th parallel) CRU 1961–1990 dataset 319 

(New et al., 2002). The variables were total annual precipitation (TAP; mm), 320 

precipitation of the driest and wettest quarters (mm), precipitation of the driest 321 

month (Pdry; mm), precipitation of the wettest month (Pwet; mm), precipitation 322 

seasonality (coefficient of variation of monthly total precipitation, PCV; %), 323 
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mean annual temperature (MAT; oC), mean and minimum temperature of the 324 

coldest month (oC), mean temperature of the warmest month (oC), maximum 325 

temperature of the warmest month (Twarm; oC), mean temperature of the driest 326 

quarter (Tdry; oC), mean temperature of the wettest quarter (Twet; oC), and 327 

temperature seasonality (coefficient of variation of monthly average 328 

temperature; %). These variables are commonly used in macroecological trait-329 

based studies (e.g., Boonman et al., 2020; Šímová et al., 2018; Wieczynski et al., 330 

2019) and have been projected under different climate scenarios (see below). 331 

We rescaled all variables to the 10’ × 6’ spatial resolution by resampling original 332 

values onto a 0.5’ × 0.5’ grid and then averaging obtained downscaled values 333 

within each 10’ × 6’ grid cell using the R package raster (v.3.4-13; Hijmans, 334 

2021). As a baseline for land use, we used Corine Land Cover (CLC) data for the 335 

year 2000 (CLC, 2020), which we aggregated to the 10’ × 6’ spatial resolution 336 

using the R package raster (Hijmans, 2021). Additionally, we determined which 337 

of the six habitat types (see Habitat affinity) were present in each grid cell using 338 

the Ecosystem types of Europe 2012 raster dataset (EEA, 2018). Forests, 339 

grasslands, and human-made habitats were present in all 3,031 grid cells, 340 

whereas heaths and scrub occurred in 2,091, wetlands in 966, and rock and 341 

scree habitats in 337 grid cells. 342 

Scenario projections. We obtained climate and land-use projections for the 343 

period of 2081–2100 from the IMPRESSIONS project (www.impressions-344 

project.eu). The core of the project is the IMPRESSIONS Integrated Assessment 345 

Platform (IAP2), which combines a suite of sectoral models within a web-based 346 
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platform and generates quantitative future projections for multiple indicators 347 

across Europe at 10’ × 10’ spatial resolution. The IAP2 includes three 348 

Representative Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and 349 

four European Shared Socio-Economic Pathways (Eur-SSP1, Eur-SSP3, Eur-350 

SSP4, and Eur-SSP5; Kok et al., 2019) and permits modeling individual and 351 

joint impacts of climate and socio-economic change until 2100. As part of its 352 

output, the IAP2 provides per-cell area proportions of seven land-use types 353 

(arable, intensive grassland, extensive grassland, urban, managed forest, 354 

unmanaged woodland, and unmanaged land). We downloaded climate 355 

projections directly from the IMPRESSIONS data repository 356 

(ensemblesrt3.dmi.dk/data/IMPRESSIONS; accessed 10 August 2020). To 357 

simulate land use projections, we ran the IAP2 for baseline conditions and for 7 358 

combinations of climate and socio-economic scenarios, for each using 3 359 

different dynamically downscaled CMIP5 climate models (listed in Table S2). 360 

Next, we matched land use classes in CLC and IAP2 and evaluated the 361 

agreement at the 10’ × 10’ resolution between the two baseline datasets. The 362 

agreement was high only for urban land, whereas other land-use types showed 363 

considerable disagreement (Pearson’s r = 0.15–0.68), based on which we used 364 

only the percentage of urban land (U%) in further analyses. We did not consider 365 

using the baseline IAP2 projections to parametrize our models because of their 366 

inferior spatial resolution and accuracy compared to CLC data. 367 

 368 

2.3 Data analyses 369 
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Data preparation 370 

We first log10-transformed all traits to reduce the skewness of their 371 

distributions and the effect of extreme values. Then, separately for woody and 372 

herbaceous native, neophyte, and archaeophyte taxa within selected habitats, 373 

we averaged each trait at the grid cell level, omitting taxa with missing trait 374 

values. This means that when all the 6 habitat types were present in a grid cell, 375 

we computed up to 24 mean values per trait per grid cell (after excluding 376 

woody archaeophytes across all habitats and all woody taxa in grasslands, 377 

wetland, and rock and scree; see above). The obtained trait mean values were 378 

used as response variables in statistical models. Trait means based on less than 4 379 

taxa were heuristically excluded from analyses. For analyses, we separately 380 

scaled trait means of woody and herbaceous native, neophyte, and 381 

archaeophyte plant assemblages at the habitat level to zero mean and unit 382 

variance. We did so because we aimed to capture how taxon status, woodiness, 383 

and habitat moderated the effects of climate and land use, rather than to 384 

quantify their direct effects on traits. Moreover, such scaling allowed us to 385 

impose a single spatial autocorrelation structure across habitats and thus 386 

quantify all effects within a single model (as opposed to, for example, fitting a 387 

separate model for each habitat type). 388 

To reduce the redundancy among the potential environmental predictor 389 

variables, we performed variable selection based on the variance inflation factor 390 

(VIF) and Pearson’s correlation coefficient (r) using the functions ‘vifstep’ and 391 

‘vifcor’, respectively, in the R package usdm (v.1.1-18; Naimi et al., 2014). Out 392 
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of the initial 15 predictor variables, we retained 8 (7 variables with VIF <10 and 393 

one additional with |r| <0.7). Namely, we kept Pdry, Pwet, PCV, Tcold, Twarm, Tdry, 394 

Twet, and U%. Prior to analyses, we scaled these variables to the mean of zero and 395 

unit variance to aid model parametrization and interpretation. The per-cell 396 

number of taxa (Ntaxa), which we controlled for in analyses, was scaled similarly 397 

to trait values. 398 

 399 

Statistical models 400 

We assessed trait– environment relationships using linear multilevel models. 401 

All models were parameterized within the full Bayesian framework using the 402 

Hamiltonian Monte Carlo sampling algorithm implemented in the modeling 403 

software Stan (Carpenter et al., 2017) via the function ‘brm’ in the R package 404 

brms (v.2.14.4; Bürkner, 2017). We modeled individual trait per-cell mean 405 

values as the function of climatic variables and U% (continuous predictors) and 406 

taxon biogeographical status, woodiness, and habitat (categorical predictors). 407 

More specifically, we developed a suite of slope-only models, in which we 408 

included a single continuous predictor and its two- and three-way interactions 409 

with taxon status and woodiness that were allowed to vary by habitat (i.e., 410 

habitat was modeled as a group-level effect). We excluded the main effects of 411 

origin, woodiness, and habitat from the models, as those equaled 0 due to the 412 

prior scaling of response variables (see Data preparation). The models allowed 413 

us (1) to quantify the extent to which the effects of climate and the level of 414 

urbanization differ across native and non-native taxa, herbaceous and woody 415 
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taxa, as well as different habitats, and (2) to incorporate this potential context-416 

dependency into future projections of spatial trait distributions. To account for 417 

residual spatial autocorrelation, we included conditional autocorrelation 418 

structure (CAR) with grid cell identifier as a grouping factor in all our models. 419 

Additionally, in all our models we controlled for Nspp, by including this metric 420 

as another predictor variable because sometimes average trait values were 421 

correlated with Nspp. In particular, this correlation was negative for Hmax, 422 

suggesting that taxon-richer grid cells had on average a higher proportion of 423 

shorter taxa. Such a pattern may reflect sampling effort (e.g., smaller plants are 424 

more likely to remain undetected; Chen et al., 2013) as well as present a 425 

genuine ecological phenomenon (Aarssen et al., 2006). In either case, we chose 426 

to control for Ntaxa in our models, as otherwise its effect could be incorrectly 427 

attributed to the environmental predictors. A model for each environmental 428 

predictor can be written as follows: 429 
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where �� is the per-cell mean trait value for the ith observation (i = 1, …, Nobs), 430 

calculated for each combination of habitat type, woodiness and biogeographical 431 

status; �� is the environmental predictor; �� is woodiness; �� is biogeographical 432 

status; �� is the number of taxa; ��
��, ��

��, ��
���, ��

��� are slopes for the 433 

interactions between variables indicated in the superscript in the jth habitat type 434 

(j = 1, …, Nhabitats); ��
�� is the slope for the interaction between �� and �� in the jth 435 

habitat type; ��
��� is the slope for the interaction between ��, �� and �� in the jth 436 

habitat type; 	�is the residual effect of the ith observation; 
	 is the residual 437 

spatial random error for the kth grid cell (k = 1, …, Ncells); 
��, 
��, 
���, 
��� 438 

are the overall slopes for the interactions specified in the subscript; ���
 , ���
 , 439 

����

 , ����


  are the habitat-level variances for the slopes; ��
 is the residual 440 

variance; and Σ is the covariance matrix, as defined in a conditional 441 

autoregressive model. We chose to fit separate models for each environmental 442 

predictor because of the high complexity of a full model (i.e., for each 443 

environmental predictor, we estimated 12 model parameters) and possible 444 

collinearity due to a large number of interaction terms with the same 445 

categorical predictors. 446 

To prevent the sampler from considering highly implausible values, we 447 

used zero-centered weakly informative priors, which we chose based on prior 448 

predictive checks (Wesner & Pomeranz, 2021). For each model, we ran 4 chains 449 

with 10,000 iterations per chain, starting from default values. We discarded the 450 

first half of each chain as a warm-up and thinned the other half at the interval 451 

of 4, which resulted in 5000 draws from the posterior distribution for each 452 
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parameter. The potential scale reduction factor, �� (Gelman & Rubin, 1992), was 453 

close to 1 for all our models, indicating convergence. 454 

 455 

Model predictive performance 456 

We evaluated model predictive performance using exact k-fold cross-validation. 457 

To avoid the potential overestimation of predictive performance, the folds were 458 

determined as spatial blocks (Roberts et al., 2017). For that, we overlaid a 3 × 3 459 

spatial-block grid onto the grid of the study area (Figure S1) using the function 460 

‘spatialBlock’ in the R package blockCV (v2.1.4; Valavi et al., 2019), which 461 

resulted in 8 spatial blocks, two of which we subsequently merged to achieve a 462 

more even distribution of grid cells across folds. We then assigned all data 463 

points within a grid cell to a specific fold and performed a 7-fold cross-464 

validation with the function ‘kfold’ in the R package brms (Bürkner, 2017). As 465 

the measures of model predictive performance, we calculated the k-fold 466 

information criterion (kfoldIC) and the root mean square error based on cross-467 

validated predictions (RSME; Table S3). 468 

 469 

Future projections 470 

For each trait, we obtained projections of per-cell mean trait values on baseline 471 

and scenario data (7 RCP–SSP scenario combinations × 3 dynamically 472 

downscaled CMIP5 climate models for each RCP; see Table S1). We set the 473 

scaled Ntaxa to 0 in all projections. These projections were computed as the 474 
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weighted average of posterior predictive distributions from the eight models 475 

each with a single environmental predictor variable. For averaging, we used 476 

Bayesian stacking of predictive distributions (Yao et al., 2018), a method that 477 

explicitly optimizes individual model weights to maximize the leave-one-out 478 

predictive density. As input for Bayesian stacking, we provided the expected log 479 

pointwise predictive densities based on the results of k-fold cross-validation. 480 

We then calculated the projected per-cell change in each trait under each 481 

scenario as the difference between the medians of the projected future and 482 

baseline posterior predictive distributions. To enable comparison across 483 

biogeographic statuses, we rescaled trait change values of archaeophytes and 484 

neophytes to the standard deviations (SD) of a baseline trait distribution for 485 

native taxa of corresponding woodiness and habitat. To assess the overall 486 

magnitude of trait change, we calculated a Euclidean distance between 487 

projected per-cell posterior means of the three traits on the baseline data and 488 

scenario data. 489 

To summarize the effects of all environmental predictors across all three 490 

traits and to visualize the direction of those effects in the multivariate space, we 491 

performed separate redundancy analyses (RDA) on the subsets of the projected 492 

trait change that corresponded to all unique combinations of biogeographical 493 

status, woodiness, and habitat across all the scenarios using the R package vegan 494 

(v.2.5-7; Oksanen et al., 2020). As the measure of individual predictor 495 

contribution, we calculated the length of the vectors with the initial point at 496 

(0,0) and the terminal point at the scores of the first two RDA axes. The vectors 497 
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reflected the weighted effect sizes of the predictors that were used to calculate 498 

posterior predictive distributions. 499 

All statistical analyses and visualizations were performed in the R 500 

environment v4.1.0 (R Core Team, 2021). 501 

 502 

3 RESULTS 503 

Overall, we observed a high degree of variability (i.e., the spread across 504 

posterior distributions) and uncertainty (i.e., the spread within posterior 505 

distributions) in the magnitude and direction of the projected per-cell change 506 

in maximum height (Hmax), specific leaf area (SLA), and seed mass (SM) under 507 

environmental change scenarios. The variation in the projected trait change 508 

was pronounced at all three grouping levels considered in the analyses, i.e., 509 

taxon biogeographical status, woodiness, and habitat type, and increased with 510 

the degree of environmental change (Figures 1–4, S2–S7, S14). Likewise, the 511 

degree of uncertainty associated with individual per-cell projections varied 512 

across the grouping levels and was generally higher under more extreme 513 

scenarios, being driven much more by climate change than urbanization 514 

(Figures S8–S13). The lowest likelihood of trait change (i.e., >50% grid cells 515 

with projected posterior credible intervals excluding zero) was observed under 516 

RCP4.5 and RCP8.5 for woody native SLA in human-made habitats and for 517 

archaeophyte SM in human-made habitats and heaths and scrub. 518 
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Below, we focus on the posterior means of the projected per-cell 519 

posterior distributions, which reflect the overall trends in our projections but 520 

do not embrace the uncertainty, for the least and most extreme scenarios 521 

(RCP2.6 Eur-SSP1 and RCP8.5 Eur-SSP5, respectively) to illustrate the 522 

maximum future option space for 2081–2100. The results for other scenarios are 523 

presented in the Supplementary Material. 524 

 525 

3.1 Projected trait change 526 

When all traits were considered, the magnitude of trait change was expected to 527 

be on average higher in forests, heaths and scrub, and grasslands than in other 528 

habitat types (Figure 1a), for non-natives than natives (Figure 1b), and for 529 

woody than herbaceous plants (Figure 1c). The direction of the projected 530 

individual trait change often diverged for herbaceous vs. woody plants as well 531 

as for natives vs. neophytes (Figure S14). 532 

In all scenarios, the mean trend for Hmax of herbaceous plant assemblages 533 

in tree- and shrub-dominated habitats was positive throughout the study area, 534 

being more pronounced for archaeophytes and neophytes than for natives 535 

(Figures 2a,c, S2a–f). In other habitats, the change of Hmax was expected to be 536 

more heterogeneous spatially and across biogeographical statuses. Notably, in 537 

grassland and rock and scree habitats, herbaceous native Hmax was projected to 538 

show very little to no change, whereas herbaceous neophytes were anticipated 539 

to increase in Hmax, especially in grasslands (Figure 2a,c, S2g–l, S15a,c). As for 540 
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woody plant assemblages, only Hmax of natives demonstrated a predominantly 541 

positive trend, with the highest increase projected for human-made habitats 542 

under RCP8.5 SSP5; meanwhile, Hmax of neophytes tended to mostly decrease 543 

(Figures 2b,d, S3, S15b,d). 544 

Similar to Hmax, the projected change of SLA varied with taxon 545 

biogeographical status, woodiness, and habitat (Figures 3, S4–5). Herbaceous 546 

SLA was projected to mainly decrease, with some exceptions (e.g., native SLA 547 

in wetlands; Figures 3a,c, S4). At the same time, the degree of this decrease 548 

tended to be lower for natives than neophytes (S16a,c). In contrast, woody SLA 549 

was anticipated to increase for both natives and neophytes, with the latter 550 

increasing more than natives in forest and heaths and scrub habitats (Figures 551 

3b,d, S5, S16b,d).  552 

The overall magnitude of SM change was comparable to that of Hmax and 553 

SLA. In forests and heaths and scrub, woody native and non-native SM was 554 

projected to only increase, whereas in human-made habitats neophyte SM 555 

showed a decline (Figures 4b,d, S7a–e, S17b,d). The direction of projected 556 

change in herbaceous SM was less uniform and varied spatially and with habitat 557 

and biogeographical status (Figures 4a,c, S6, S17a,c). Particularly, SM of 558 

archaeophytes tended to respond opposingly to natives and neophytes and was 559 

more likely to decrease in the majority of habitats (Figures 4a,c, S6). 560 

 561 

3.2 Contribution of environmental predictors 562 
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Across all three traits, Twarm and Tcold captured the highest amount of variation 563 

in the projected trait change, followed by PCV, Pdry, and Pwet; the contributions 564 

of Tdry, Twet, and U% were considerably smaller (Figure S18). The role of 565 

individual environmental predictors generally varied with taxon 566 

biogeographical status, habitat, and woodiness (Figure 5). Nonetheless, some 567 

predictors showed highly consistent associations with the projected trait 568 

change. For example, a projected increase in herbaceous SM correlated mostly 569 

positively with PCV and negatively with Pdry; the opposite was, however, 570 

observed for herbaceous neophyte SM in forest, heaths and scrub, and rock and 571 

scree habitats. Similarly, Tcold contributed positively to the SM increase in 572 

woody plant assemblages, apart from neophytes in human-made habitats. 573 

Meanwhile, Twarm and Tcold exhibited a strong positive relationship with both 574 

herbaceous and woody Hmax, except for human-made habitats and woody 575 

neophytes, for which the relationship was reverse. In some cases, the effect of 576 

temperature on Hmax was not as pronounced as that of Pwet and PCV. Particularly, 577 

native Hmax in grasslands and human-made habitats was strongly positively 578 

affected by Pwet and PCV, whereas in rock and scree habitats native Hmax was 579 

negatively associated with the two predictors. With few exceptions, herbaceous 580 

SLA correlated negatively with Twarm, Tcold, and Pdry. Additionally, native 581 

herbaceous SLA positively correlated with Pwet in all habitats apart from 582 

wetlands, whereas non-native herbaceous SLA consistently showed a negative 583 

relationship with Pwet. Unlike herbaceous SLA, native and neophyte woody SLA 584 

was strongly positively related to Twarm, Tcold, and Pdry (Figure 5). 585 
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 586 

4 DISCUSSION 587 

In this study, we quantified the broad-scale relationships of three traits central 588 

to plant life history – maximum plant height (Hmax), specific leaf area (SLA), and 589 

seed mass (SM) – with eight selected environmental variables, and used the 590 

obtained relationships to project the trait change under seven plausible 591 

scenarios of future environmental change in Central Europe. We explicitly 592 

modeled the variation in trait–environment relationships associated with plant 593 

woodiness, biogeographical status, and habitat type, to account for the fact that 594 

different types of plant assemblages may exhibit unique adaptations to the 595 

environment, hence making some aspects of mechanistic context-dependence 596 

explicit (Catford et al., 2021). We showed that the three traits were projected 597 

both to increase and decrease to varying degrees across and – in many cases – 598 

within habitats and that the overall magnitude of this change was expected to 599 

be on average higher for non-native than native taxa (Figure 1b) and under 600 

more extreme scenarios (Figures S2–S7). Moreover, we found that in the future, 601 

distinct environmental responses of native and non-native plants may lead to 602 

even higher trait values than currently observed for non-natives (e.g., 603 

herbaceous Hmax in most habitats) as well as to a reduced average native–non-604 

native trait difference (e.g., woody Hmax; Figures S15–17), which may result in 605 

altered competitive hierarchies among natives and non-natives (Kunstler et al., 606 

2016). 607 

 608 
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4.1 Projected overall trait change across habitat types 609 

The overall magnitude of trait change was projected to be higher in forests, 610 

heaths and scrub, and grassland habitats compared to rock and scree, wetland, 611 

and human-made habitats (Figure 1a). This result, at least for wetlands and rock 612 

and scree habitats, may reflect both the low sensitivity of these habitat types to 613 

the environmental change as well as the limitations of our approach to capture 614 

environmentally-driven trait variation at smaller scales. In particular, rock and 615 

scree habitats are highly stable systems defined by environmental stress more 616 

than by macroclimate, whereas wetlands are strongly shaped by local 617 

hydrology, which we did not account for, and show much less turnover along 618 

macroclimatic gradients than other habitats. Moreover, the spatial resolution of 619 

our analyses might have been too coarse to capture the environmental gradients 620 

that traits of wetland and rock and scree plant assemblages respond to. Human-621 

made habitats, on the other hand, are typically more environmentally 622 

homogeneous and generally contain plants that are pre-adapted to disturbance 623 

and warm and dry conditions (Kalusová et al., 2017). Therefore, it is expected 624 

that human-made habitats would often contain plant taxa characterized by 625 

relatively large SLA and small SM, irrespective of macroclimate. Nevertheless, 626 

this result once again underlines the importance of incorporating habitat 627 

information into macroecological analyses, as failing to do so might blur the 628 

environmental signals that exist at a particular spatial scale. 629 

 630 

4.2 Projected change in maximum height 631 
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Our results showed that the hierarchy of environmental drivers shaping the 632 

large-scale distribution of plant height is largely habitat-specific and that the 633 

trait patterns found across non-native plant assemblages often deviate from 634 

those found in native assemblages. Specifically, temperature plays the dominant 635 

role in the projected change of Hmax in forests and heaths and scrub, while in 636 

other habitats, the effect of precipitation prevails. Similarly, a strong positive 637 

association between temperature and plant height has been detected across 638 

habitat types and within specific habitats at the continental (e.g. Šímová et al., 639 

2018; forest understories, Padullés Cubino et al., 2021) and regional scales (e.g., 640 

forest understories, Maes et al., 2020; mountain grasslands and rock and scree, 641 

Dubuis et al., 2013). Moles et al. (2009), on the other hand, reported that the 642 

best predictor of plant height at the global scale is the precipitation of the 643 

wettest month, which is supported by our results for Hmax in grasslands and 644 

rock and scree habitats. Interestingly, while the relationships for native woody 645 

assemblages add to the current consensus on the effect of climate on woody 646 

plant height (Šímová et al., 2018; Swenson et al., 2012), the results for 647 

neophytes may suggest that woody non-natives are preadapted to a different 648 

subgradient of the global climatic gradient – in particular, to hotter and drier 649 

conditions – where the opposite, negative relationship with temperature can 650 

occur (Madani et al., 2018; Moles, 2018). A negative relationship between Hmax 651 

of invasive neophytes and Tcold was also shown by Milanović et al. (2020), 652 

although the mechanisms behind this phenomenon remain unclear. 653 

 654 
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4.3 Projected change in specific leaf area 655 

Contrary to several previous studies (Dubuis et al., 2013; Rosbakh et al., 2015; 656 

Šímová et al., 2018), herbaceous native and neophyte SLA correlated primarily 657 

negatively with temperature, and only herbaceous archaeophyte SLA tended to 658 

show the opposite. Somewhat unexpectedly, another pronounced driver of 659 

herbaceous SLA change, Pdry, also had mainly a negative effect on SLA across all 660 

herbaceous assemblages, whereas Pwet had a positive and negative influence on 661 

herbaceous native and neophyte SLA, respectively (Figure 5). A negative shift 662 

of native SLA along the Pdry gradient appears in disagreement with a previously 663 

documented negative effect of drought on SLA (Wellstein et al., 2017; Wright 664 

et al., 2005). This pattern may be attributed to the fact that within Central 665 

Europe, plants with evergreen, low-SLA leaves predominantly occur in the 666 

mountains (where precipitation is high) (Chytrý et al., 2021). In contrast to 667 

herbaceous SLA yet in alignment with previous reports (Šímová et al., 2018; 668 

Swenson et al., 2012), SLA across all woody assemblages exhibited a strong 669 

positive relationship with temperature as well as Pdry. As a result, it is predicted 670 

that environmental change will lead to an increase in woody native SLA and 671 

even more so in woody neophyte SLA (Figures 3b,d, 5, S5), which may allow 672 

non-natives to gain a further advantage over natives (Pyšek & Richardson, 673 

2008).  674 

Reflecting the combined effect of all the predictors, our projections 675 

forecasted mostly a decrease in herbaceous SLA; an increase throughout the 676 

study area was projected only for native herbaceous SLA in wetlands and 677 
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archaeophyte SLA in forests, and a partial increase in SLA was projected for 678 

archaeophytes in wetlands and human-made habitats and for herbaceous 679 

neophytes in grasslands and human-made habitats (Figures 3, S4). Despite a 680 

general projected shift towards more conservative resource-use strategies, our 681 

projections suggest that herbaceous neophyte SLA will be affected less than that 682 

of herbaceous natives (Figures S4, S16). This may lead to a further increase in 683 

the SLA imbalance between native and non-native taxa towards the latter in 684 

the region (Divíšek et al., 2018), possibly resulting in an even higher proportion 685 

of invasive non-natives (Pyšek & Richardson, 2008). The alteration of the SLA 686 

composition will undoubtedly affect ecosystem functioning. For example, an 687 

overall decrease of SLA in grasslands may lead to higher root biomass 688 

(Klimešová et al., 2021) and total soil carbon (Garnier et al., 2004), as well as 689 

reduced nutrient cycling (Lavorel et al., 2011) and productivity (Brun et al., 690 

2022). 691 

 692 

4.4 Projected change in seed mass 693 

Our results show that overall drier, less stable climates may on average 694 

contribute to an increase in herbaceous SM but a decrease in woody SM. This 695 

finding is congruent with previous studies (Baker, 1972; Dubuis et al., 2013; 696 

Šímová et al., 2015; Swenson et al., 2012; Vandelook et al., 2018) and at least 697 

partially explains the heterogeneous relationships of SM and precipitation in 698 

the literature (discussed in Moles, 2018). Notably, while this pattern holds for 699 

natives and archaeophytes across all habitats, neophytes often deviate from it. 700 
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Specifically, we observed the opposite effect of the precipitation amount and 701 

seasonality on herbaceous neophyte SM in tree- and shrub-dominated as well as 702 

rock and scree habitats and on woody neophyte SM in human-made habitats 703 

(Figures 5, S14). Such divergence from native herbaceous SM may be 704 

confounded with the turnover in the growth form, i.e., the proportional 705 

increase of small-seeded, short-leaved neophytes in drier areas (Sandel et al., 706 

2010). Additionally, the contrasting responses of native and non-native plant 707 

assemblages to precipitation may be due to the differences in the duration of 708 

their exposure to the environment and the fact that many non-natives are still 709 

actively spreading. For archaeophytes, the positive effect of precipitation is 710 

likely to be overwhelmed by the negative effect of higher temperatures, leading 711 

to the overall decrease in SM (Figures 4, S6). Importantly, for woody SM, the 712 

overall effect of precipitation may be not as pronounced as that of temperature. 713 

Particularly, our results point to a strong positive association of woody SM with 714 

Twarm and Tcold (Figure 5), which drives the projected increase in woody SM 715 

(Figures 4b,d, S7). This is in line with previous studies, which also documented 716 

a strong positive effect of temperature on SM of woody plants (Moles et al., 717 

2014; Šímová et al., 2015, 2018; Swenson et al., 2012) and highlighted that 718 

herbaceous SM is less sensitive to temperature than woody SM (Šímová et al., 719 

2018). 720 

 721 

4.5 Differences in the response between native and non-native taxa 722 
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The observed differences between native and non-native plant assemblages 723 

once again point out that biogeographical origin affects species performance, via 724 

eco-evolutionary novelty of non-natives (Heger et al., 2019; Saul et al., 2013) or 725 

due to their pre-adaptation to specific conditions (Maron et al., 2004). For 726 

example, non-native species often originate from more nitrogen-rich habitats 727 

(Dostál et al., 2013) and therefore are characterized by higher SLA. In the long 728 

run, the differential response of native and non-native species to environmental 729 

factors might lead to even stringer differences in their trait compositions, and 730 

this is especially likely for neophytes. Such differences suggest that ecosystem 731 

functions provided by future neophyte assemblages may not be redundant to 732 

those currently provided by natives. On the contrary, functions currently 733 

provided by natives may be replaced with different functions provided by 734 

neophytes, thus leading to the increase of functional turnover rather than its 735 

buffering in the course of global change. 736 

 737 

4.6 Study shortcomings 738 

In our analyses, we aggregated plant trait data to the taxon level and then to the 739 

10’ × 6’ grid-cell level for a total of 24 unique assemblages defined by plant 740 

woodiness, biogeographical status, and habitat type. Although this precluded us 741 

from incorporating intraspecific trait variation, the resolution of trait data was 742 

sufficient to accurately model the trait variation due to species sorting as the 743 

function of environmental predictors. Moreover, we ensured that trait data 744 

were representative of our study area by primarily using data sources for 745 
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Central Europe and where possible excluding data from environments not 746 

found in Germany or the Czech Republic. Additionally, the decisions made 747 

during data preparation (e.g., the use of geometric vs. arithmetic mean for trait 748 

averaging) might have to a certain extent influenced our results, especially for 749 

non-native plants, whose number per grid cell was typically low. This problem, 750 

however, was to some extent ameliorated by partial pooling of parameter 751 

estimates for different plant assemblages within the multilevel modeling 752 

framework. We generated trait change projections using Bayesian stacking of 753 

predictive distributions from individual-predictor models (Yao et al., 2018), 754 

instead of parametrizing predictive models with all environmental predictors at 755 

once. In our case, the latter was difficult to implement because the same 756 

categorical variables (i.e., woodiness and biogeographical status) would be 757 

included in many interaction terms with intercorrelated environmental 758 

predictors (Figure S19), which might have led to spurious results (Duncan & 759 

Kefford, 2021). Finally, the obtained projections of future trait change were 760 

highly uncertain (Figures S8–13), which indicates that other important 761 

predictors of trait composition need to be identified and incorporated into 762 

further analyses (e.g., soil variables, Joswig et al., 2022). 763 

 764 

4.7 Conclusions 765 

In this study, we assessed how habitat-specific plant trait values might shift 766 

under future environmental change. Our results depicted the frequently 767 

neglected distinctions in trait–environment relationships that are contingent 768 
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upon plant woodiness, biogeographical status, and habitat type, thereby 769 

explaining some of the existing idiosyncrasies within the literature and 770 

producing more informative and refined projections of future trait changes. The 771 

obtained projections, although uncertain and requiring more global change 772 

drivers to factor in, provide an insightful perspective on the conditions under 773 

which non-native plants may prevail over natives and vice versa and can serve 774 

as a starting point for exploring changes in ecosystem functions and services in 775 

a rapidly changing world. 776 
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FIGURES 1130 

 1131 

FIGURE 1 1132 

The projected absolute overall per-cell change across the three traits, plant maximum height 1133 

(Hmax), specific leaf area (SLA), and seed mass (SM), at the habitat (a), biogeographical status 1134 

(b), and woodiness (c) levels under the least extreme combined climate and socio-economic 1135 

scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 1136 

Eur-SSP5) for 2081–2100. The overall trait change was calculated as a Euclidean distance 1137 

between projected per-cell posterior means of the three traits on baseline data and scenario 1138 

data. Boxes show 25%, 50%, and 75% quartiles, and whiskers show 95% credible intervals. 1139 

 1140 

FIGURE 2 1141 

The projected per-cell (10’ × 10’) change in the log10-transformed maximum plant height 1142 

(Hmax) under the least extreme combined climate and socio-economic scenario (RCP2.6 Eur-1143 

SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081–1144 

2100, for herbaceous (a, c) and woody (b, d) taxa in six broad habitat types. The trait change 1145 

here is expressed as the posterior means of per-cell model predictions. The violin plots depict 1146 

the distributions of predicted values across the study area and climate models (Table S1) and 1147 

the boxplots provide summary statistics of those distributions (boxes show 25%, 50%, and 1148 

75% quartiles and whiskers give roughly 95% credible intervals). For each habitat by 1149 

woodiness combination, the trait change is presented in standard deviations (SD) of the 1150 

baseline trait distribution of native taxa for that combination. For example, the overall 1151 

change of 0.60 in Hmax of forest herbaceous neophytes under the RCP2.6 Eur-SSP1 scenario 1152 

indicates that the average Hmax of this assemblage is projected to increase by 0.60 SD, relative 1153 

to the current Hmax distribution of natives. Note the different scaling of Y-axes. Projections 1154 

under other scenarios are illustrated in Figures S2, S3 (projected per-cell posterior means), 1155 

S8, S9 (projected per-cell posterior standard deviations). 1156 

 1157 

FIGURE 3 1158 

The projected per-cell (10’ × 10’) change in the log10-transformed specific leaf area (SLA) 1159 

under the least extreme combined climate and socio-economic scenario (RCP2.6 Eur-SSP1, 1160 

all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for herbaceous (a, c) 1161 

and woody (b, d) taxa in six broad habitat types. Projections under other scenarios are 1162 

illustrated in Figures S4, S5 (projected per-cell posterior means), S10, S11 (projected per-cell 1163 

posterior standard deviations). Other details are as in Figure 2. 1164 
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 1165 

FIGURE 4 1166 

The projected per-cell (10’ × 10’) change in the log10-transformed plant seed mass (SM) under 1167 

the least extreme combined climate and socio-economic scenario (RCP2.6 Eur-SSP1, all 1168 

climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081–2100, for 1169 

herbaceous (a, c) and woody (b, d) taxa in six broad habitat types. Projections under other 1170 

scenarios are illustrated in Figures S6, S7 (projected per-cell posterior means), S12, and S13 1171 

(projected per-cell posterior standard deviations). Other details are as in Figure 2. 1172 

 1173 

FIGURE 5 1174 

The relative contribution of individual environmental predictors to the projected change in 1175 

herbaceous (a–r) and woody (s–x) plant maximum height (Hmax), specific leaf area (SLA), and 1176 

seed mass (SM), calculated using redundancy analysis (RDA). A separate RDA was performed 1177 

on each subset (N = 24) of per-cell projections across all the scenarios, representing a unique 1178 

combination of taxon biogeographical status, habitat, and woodiness. Shown are the RDA 1179 

scores of the predictors (as vectors) and traits (as triangles; centered at seed mass) for the two 1180 

first RDA axes (RDA1, RDA2). RDA1 and RDA2 together captured 91–100% of the variation 1181 

in the data. The lengths of vectors are proportional to the magnitude of the effects of 1182 

respective predictors on the three traits simultaneously. The overall contributions of each 1183 

predictor, calculated as the combined length of respective vectors across all the RDA spaces, 1184 

are shown in Figure S18. The angles among the vectors and triangles reflect their correlation, 1185 

which equals the cosine of the angle. For example, the angle between SM and precipitation 1186 

seasonality is acute for most assemblages, indicating their strong positive correlation. 1187 

  1188 
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