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A B S T R A C T
Numerical simulations become a necessity when experimental approaches cannot cover the
required physical and time scale of interest. One of such area is a simulation of long-term
host rock behaviors for nuclear waste disposal and simulation tools involved in the assessment
must go through rigorous validation tests. The DECOVALEX project (Development of COupled
models and their VAlidation against EXperiments) is dedicated to this purpose by international
participants1. This work is part of the ongoing phase DECOVALEX–2023 (D–2023, Task G)
particularly aiming to simulate fracture behaviors under various conditions. Here, we cross-
verified a variety of numerical methods including continuous and discontinuous approaches
against four benchmark exercises with emphasis on numerical accuracy and parameterization
of the various numerical approaches. The systematic inter-comparisons of test cases highlight
advantages and disadvantages of the different numerical models. Numerical details on discretiza-
tion effects (e.g. mesh density and orientation) and domain size were investigated in detail
for practical applications. It became evident that meticulous attention to mesh resolution and
domain size is imperative for achieving accurate numerical simulations, even for static cracks.
Moreover, when comparing numerical methods to closed-form solutions for static cracks, all
models successfully reproduced the maximum crack opening but encountered challenges near the
crack tips. Finally, the paper discusses how to convert between and therefore compare parameters
of various numerical approaches. Our benchmark studies reveal that each model necessitates a
distinct number of parameters, even in simple scenarios like static crack aperture benchmarks. It
is generally more practical to employ fewer parameters to mitigate model over-parameterization
and enhance experimental feasibility.

1www.decovalex.org
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Acronyms
BPM–DEM Bonded Particle Model–Distinct Element Method
CAS Chinese Academy of Sciences
CMEFM–FEM Contact Modeling with Embedded Fracture Model–Finite Element Method
CNSC Canadian Nuclear Safety Commission
ETEL–FEM Embedded Thin Elastic Layer–Finite Element Method
GBM–DEM Grain Based Model–Distinct Element Method
hCA–FEM/xFEM Hybrid Cellular Automata–Finite Element Method/Extended Finite Element Method
IFDM–DEM Integral Finite Difference Method–Distinct Element Method
KAERI Korea Atomic Energy Research Institute
KIGAM Korea Institute of Geoscience and Mineral Resources
LIE–FEM Lower Dimensional Interface Elements–Finite Element Method
RWM/Q/UoE Radioactive Waste Management/Quintessa/University of Edinburgh
SSM/DynaFrax DynaFrax/Swedish Radiation Safety Authority
TUBAF Technische Universität Bergakademie Freiberg
UFZ Helmholtz–Centre for Environmental Research
VPF–FEM Variational Phase Field–Finite Element Method

Nomenclature
𝛼 Biot’s coefficient −

�̄� Standard scalar test function
𝝈′ Effective Cauchy stress tensor Pa

𝝈 Cauchy stress tensor Pa

𝝉 Traction force vector Pa

𝝉Γ Tangent vector to Γ −

𝜺 Total strain tensor −

𝜺e Elastic strain tensor −

𝒈 Gravity acceleration vector ms−2

𝓁 Regularization length parameter m

I Second-order identity tensor
𝐅𝑛 Contact normal force vector N

𝐅𝑠 Contact shear force vector N

𝐤 Intrinsic permeability tensor m2
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𝐧Γ Normal vector to Γ −

𝐮 Solid displacement vector m

𝐮𝑛 Contact normal displacement vector m

𝐮𝑠 Contact shear displacement vector m

𝐮0 Prescribed boundary displacement m

𝐧 Normal vector −

𝐪𝑝 Darcy velocity ms−1

𝐭Γ Total traction N

𝐯 Enriched Bubnov-Galerkin test function
𝜇 Fluid dynamic viscosity Pa s

𝜇𝑓 Friction coefficient −

𝜙 Porosity m3m−3

𝜓 Dilation angle °
𝜌 Density of the porous medium kgm−3

𝜌𝑓 Fluid density kgm−3

𝜌𝑠 Solid density kgm−3

𝑞F Fluid exchange
𝐴𝑐 Area of the sub-contact m2

𝑐 Cohesion Pa

𝐺𝑐 Fracture toughness Pam

𝐾𝑓 Inverse compressibility (moduli) of the fluid Pa

𝐾𝑠 Inverse compressibility (moduli) of the solid Pa

𝑘𝑛 Contact normal stiffness Pam−1

𝑘𝑠 Contact shear stiffness Pam−1

𝑝𝑓 Fluid pressure in the fracture Pa

𝑃𝑛 Penalty factor Nm−3

𝑝𝑝 Fluid pressure in porous medium Pa

𝑞𝑙 Rate of leak-off between the fracture and the porous medium m3 s−1m−2

𝑞𝑛 Prescribed normal flux m3 s−1m−2

𝑞𝑝 Fluid velocity in the porous medium ms−1

𝑞𝑝𝑠 Source/Sink term in the porous medium m3 s−1m−2

𝑇0 Contact stress at zero gap Pa
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𝑇𝑛 Contact stress Pa

𝑣 Scalar phase-field variable −

𝑊 (𝐮) Strain energy density Jm−3

𝑤 Aperture m

𝑒 Fourth-order elastic tensor

1. Introduction
This work is part of the DECOVALEX project in its 8th phase, where the acronym stands for DEvelopment of

COupled models and their VALidation against Experiments. DECOVALEX is an international research and model
comparison project which has initiated in 1992 [1]. The focus is a better model–driven understanding of coupled
thermo–hydro–mechanical–chemical processes in geosystems.

Fracture mechanics of brittle rocks related to thermo–hydro–mechanical (THM) processes is the main purpose of
Task G in DECOVALEX–2023. A graphical structure of Task G with its four steps is illustrated in Figure 1.

Figure 1: Overview of the Task G concept

• Step 1: Mechanical (M) results derived from constant normal load direct shear tests and constant normal stiffness
direct shear tests as well as high-resolution fracture surface scans (Technische Universität Bergakademie Freiberg
(TUBAF)) will build a starting point for fracture characterization.

• Step 2: Investigate hydro–mechanical (HM) results obtained with the GREAT cell (University of Edinburgh)
with focus on fundamental shear processes under complex 3D stress states.

• Step 3: Investigate and model thermo–mechanical (TM) results obtained from tri–axial tests conducted at the
Korea Institute of Civil Engineering and Building Technology (KICT) with focus on shear processes triggered
by thermal stresses.

• Step 4: Combining and upscaling near–field approaches for THM analysis.
The general concept of Task G is organized into a verification component followed by a validation phase. The

verification procedure is conducted first by systematic benchmark exercises (this paper) and then by analysis of given
experimental data. The validation procedure is based on blind predictions of experimental data (not known a–priori)
to test the physical validity of the model. The final goal of Task G is upscaling fracture mechanics processes from the
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laboratory to the field scale. A common tool of DECOVALEX for the verification–validation procedure is model and
code comparison by the participating teams.

This paper focuses on the systematic benchmark tests for hydro–mechanical (HM) coupled fracture mechanics
and examines a large variety of methods for this purpose such as Variational Phase Field–Finite Element Method
(VPF–FEM) by Helmholtz–Centre for Environmental Research (UFZ), Hybrid Cellular Automata–Finite Element
Method/Extended Finite Element Method (hCA–FEM/xFEM) by Chinese Academy of Sciences (CAS), Lower
Dimensional Interface Elements–Finite Element Method (LIE–FEM) by TUBAF, Contact Modeling with Embedded
Fracture Model–Finite Element Method (CMEFM–FEM) by Radioactive Waste Management/Quintessa/University
of Edinburgh (RWM/Q/UoE), Embedded Thin Elastic Layer–Finite Element Method (ETEL–FEM) by Canadian
Nuclear Safety Commission (CNSC), Grain Based Model–Distinct Element Method (GBM–DEM) by Korea Institute
of Geoscience and Mineral Resources (KIGAM), Bonded Particle Model–Distinct Element Method (BPM–DEM)
by DynaFrax/Swedish Radiation Safety Authority (SSM/DynaFrax) and Integral Finite Difference Method–Distinct
Element Method (IFDM–DEM) by Korea Atomic Energy Research Institute (KAERI) in Section 2. Two basic types
of benchmarks have been used, static and propagating fractures with different geometries (Section 3). Benchmark
results are compared against classical analytical solutions. The following aspects have been addressed: differences
in numerical treatment/approximation/assumption of fracture, differences in extra parameters introduced/required in
addition to the fracture mechanics theory, and equivalences/conversions of the parameters amongst the models (Section
4). The lessons learned from the benchmarks studies and next steps in Task G are summarized in Section 5.

2. Methods
This study focuses on the hydro-mechanical responses of a fractured rock under various controlled stress

magnitudes and orientations. In Section 2.1, we summarize the governing equations for poroelastic deformation, fluid
flow in porous media, and fluid flow in fractures. Furthermore, we briefly introduce the various numerical methods
that were involved in this project in Section 2.2.1.
2.1. Governing equations
Poro–elastic deformation description. The theory of linear poroelasticity proposed by Biot has generally been
used to model reservoir deformation [2]. By introducing the poroelastic effective stress 𝝈′ ∶= 𝝈(𝐮) + 𝛼𝑝𝑝I, and under
the assumptions of quasi–statics, the governing equations for the poroelastic deformation read:

∇ ⋅
(

𝝈′ − 𝛼𝑝𝑝I
)

+ 𝜌𝒈 = 𝟎 in Ω ⧵ Γ, (1)
𝝈 ⋅ 𝐧 = 𝝉 on 𝜕Ω𝑚𝑁 , (2)

𝐮 = 𝐮0 on 𝜕Ω𝑚𝐷, (3)
𝝈± ⋅ 𝐧Γ± = −𝑝𝑓𝐧Γ± on Γ±, (4)

where the density of porous medium is composed of both fluid and solid densities, 𝜌 = 𝜙𝜌𝑓+(1−𝜙)𝜌𝑠. The constitutive
relation for a poro–elastic material can be written as

d𝝈′ = e ∶ d𝜺e,

where 𝜺e =
1
2 (∇𝐮 + (∇𝐮)𝑇 ) = ∇𝑠𝐮 is the linearized strain.

Porous medium fluid flow description. The mass conservation with the momentum balance stated in the form of
Darcy’s law leads to the governing equations of fluid flow in a porous medium:

𝜌
(

𝛼 − 𝜙
𝐾𝑠 +

𝜙
𝐾𝑓

) 𝜕𝑝𝑝
𝜕𝑡

+ 𝜌𝛼∇ ⋅
𝜕𝐮
𝜕𝑡

+ ∇ ⋅ (𝜌𝐪𝑝) = 𝜌𝑞𝑝𝑠 in Ω ⧵ Γ, (5)

𝜌𝐪𝑝 = −
𝜌𝐤
𝜇
(∇𝑝𝑝 − 𝜌𝑓𝐠) in Ω ⧵ Γ, (6)

𝑝𝑝 = �̄�𝑝 on 𝜕𝑓𝐷Ω, (7)
𝜌𝐪𝑝 ⋅ 𝐧 = 𝜌𝑞𝑛 on 𝜕𝑓𝑁Ω, (8)
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Table 1
Numerical methods and codes

Team Numerical methods Codes

UFZ VPF–FEM OpenGeoSys-6 (Section 2.2.1)
CAS hCA–FEM/xFEM CASRock (Section 2.2.2)
TUBAF LIE–FEM OpenGeoSys-6 (Section 2.2.3)
CNSC ETEL–FEM COMSOL (Section 2.2.5)
RWM/Q/UoE CMEFM–FEM COMSOL (Section 2.2.4)
KIGAM GBM–DEM 3DEC (Section 2.2.6)
SSM/DynaFrax BPM–DEM PFC (Section 2.2.7)
KAERI IFDM–DEM TOUGH/3DEC (Section 2.2.8)

Fracture Fluid flow description. Reynolds’ lubrication model is generally used to simulate fluid flow in fractures
under the assumption of a low Reynolds number and constant pressure in the orthogonal direction to the flow. The
governing equations of the fluid inside the fracture read:

𝜕(𝜌𝑤)
𝜕𝑡

− ∇Γ ⋅
(

𝜌 𝑤3

12𝜇
∇Γ𝑝𝑓

)

+ 𝜌𝑞𝑙 = 𝜌𝑞𝑓𝑠 in Γ, (9)
𝜌𝑞𝑙 = −[[𝜌𝐪𝑝]] ⋅ 𝐧Γ on Γ, (10)

−𝜌 𝑤2

12𝜇
(∇Γ𝑝𝑓 − 𝜌𝑓𝐠) ⋅ 𝝉Γ = 0 on 𝜕Γ. (11)

2.2. Numerical methods
There exists several works on the numerical modeling of hydro–mechanical responses in fractured rock. Generally,

they can be classified into two types of approaches, sharp fracture approaches (xFEM and etc.) and diffuse fracture
approaches (phase-field models). In this study, eight teams collaborate to simulate and predict the hydro–mechanical
reaction of fractured rock using different numerical method and computing packages, Table 1.
2.2.1. VPF–FEM
Numerical method. Variational phase-field for fracture models have become one of the most extensively used
methods to simulate fracture propagation for a number of applications such as brittle [3, 4, 5], ductile [6, 7, 8, 9],
dynamic [10, 11, 12, 13] , fatigue [14, 15], interface [16, 17], desiccation [18, 19], environment assisted [20, 21, 22],
and hydraulic fracturing [23, 24, 25, 26, 27, 28]. Their popularity stems from their ability to represent the complex
evolution of any number of fractures without confining their propagation to any specific grid.
Mathematical model. Griffith’s criterion was reformulated by Francfort and Marigo [29] as the minimization of total
energy, which is the sum of potential and fracture surface energy defined as:

 (𝑢,Γ) ∶= ∫Ω⧵Γ
𝑊 (𝐮) dΩ + ∫Γ

𝐺c dΓ, (12)

the strain energy density and fracture toughness are represented by 𝑊 (𝐮) and 𝐺𝑐 , respectively. Evaluating the
crack surface energy for non-trivial crack geometry is challenging since it includes the surface integral over an
evolving discrete crack set Γ. To address this issue, the variational phase-field approach presented in [3] follows
the approximation of [30] via Γ-convergence [31]. The energy functional is regularized [3] by introducing a scalar
phase-field variable, 𝑣 ∶ Ω ↦ [0, 1] and a regularization length parameter 𝓁 > 0,

𝓁 ∶= ∫Ω
𝑣2𝑊 (𝐮) dΩ + ∫Ω

𝐺𝑐
4𝑐𝑛

(

(1 − 𝑣)𝑛

𝓁
+ 𝓁|∇𝑣|2

)

dΩ. (13)

The work done by fluid pressure, ∫Γ 𝑝𝑓 J𝐮 ⋅ 𝐧K dΓ, can be added to the total energy function, where 𝑝𝑓 is the “net”
pressure defined as the surplus pressure above the minimum stress and 𝐧 is the normal vector to Γ. The amount of jump
Mollaali et al.: Preprint submitted to Elsevier Page 6 of 25
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over Γ might be approximated as [23, 32]:

∫Γ
𝑝𝑓 J𝐮 ⋅ 𝐧K dΓ ≈ ∫Ω

𝑝𝑓 𝐮 ⋅ ∇𝑣 dΩ.

Because the toughness-dominated hydraulic fracturing regime takes no pressure loss in the crack into account, our
total energy is as follows:

𝓁 ∶= ∫Ω
𝑣2𝑊 (𝐮) dΩ + ∫Ω

𝐺𝑐
4𝑐𝑛

(

(1 − 𝑣)𝑛

𝓁
+ 𝓁|∇𝑣|2

)

dΩ + 𝑝𝑓 ∫Ω
𝐮 ⋅ ∇𝑣 dΩ. (14)

Therefore we minimize (14) with the mass balance constrain as follows:

(𝐮𝑖, 𝑣𝑖; 𝑝𝑓 ) = argmin
{

𝓁(𝐮, 𝑣; 𝑝) ∶ 𝐮 ∈  (𝑡𝑖), 𝑣 ∈ (𝑡𝑖, 𝑣𝑖−1), 𝑄𝑖 = ∫Ω
𝐮 ⋅ ∇𝑣 dΩ

}

. (15)

Computing package. The current model is implemented in an open-source code, OpenGeoSys [33]. OpenGeoSys
(OGS) is an open-source scientific project that aims to develop numerical methods for simulating thermo-hydro-
mechanical-chemical (THMC) processes in porous and fractured media. More information concerning the code and
simulation examples are freely available at https://www.opengeosys.org/.
2.2.2. hCA–FEM/xFEM
Numerical method. Cellular automata uses a local updating rule to solve the state variables. According to cellular
automata localization theory, only the states of the cell itself and its neighbours contribute to the state of the cell. We
can develop the updating rule for displacement, temperature and fluid pressure using local equilibrium conditions,
in which the local stiffness is taken from the element stiffness of FEM/xFEM [34, 35]. The hybrid cellular automata
scheme avoids the solution of large linear equations and the complexity herein. To represent the fracture, interface
elements or Goodman elements, internal interfaces or internal boundaries, and weak elements, are implemented .

In this study, the fluid flow and mechanical processes are sequentially coupled. The fluid mass balance and
momentum balance equations are expressed in Section 2.1. The equations can be solved via spatial and temporal
discretization. Instead of using traditional numerical methods, cellular automata technique is used for the solution of
displacement and fluid pressure on spatial scale by developing the local updating rule according to the local equilibrium
conditions,

𝐊𝑖𝑗Δ𝑯 𝑗 = Δ𝑄𝑖, (16)
where 𝐊𝑖𝑗 is the local nodal stiffness matrix, which is summation of stiffness of cell elements related to the cell node.
Δ𝑯 𝑗 is the incremental value of physical variable; Δ𝑄𝑖 is the incremental value of source term. When the incremental
value of physical variable is obtained, the incremental value of source term at its neighbour cell nodes can be solved.
The neighbour cell nodes will follow the same rule and the global calculation is divided into the iterations of cells one
by one. On temporal scale, an explicit finite difference scheme is used. The equation of the time derivative of specified
physical variable as a column vector is listed below,

{𝜕𝑯
𝜕𝑡

}𝑡 =
1
Δ𝑡

(𝑯 𝑡 −𝑯 𝑡−Δ𝑡) + 𝑜(Δ𝑡), (17)
where 𝑜(Δ𝑡) is an error item and

{𝜕𝑯
𝜕𝑡

} = {(
𝜕𝑯1
𝜕𝑡

) (
𝜕𝑯2
𝜕𝑡

)⋯ (
𝜕𝑯𝑛
𝜕𝑡

)}𝑇 , (18)
weak elements approach are chosen for fracture representation [36]. For a weak element, the stiffness of the element
depends on the size of the element and a simple formula is used for selecting the appropriate Young’s modulus for the
element, i.e.,

1
𝐸𝑓

= 1
𝐸𝑟

+ 1
(𝑘𝑛 × 𝑏)

, (19)

where 𝐸𝑓 and 𝐸𝑟 are Young’s modulus of fracture and rock matrix element, respectively. 𝑘𝑛 is the normal stiffness of
fracture and 𝑏 is the mean size of fracture element, which can be defined as the square root of fracture element area.
Mollaali et al.: Preprint submitted to Elsevier Page 7 of 25
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Computing package. The model is based on a self–developed software, CASRock, which is based on cellular
automata, FEM and xFEM [37, 38, 39, 40]. CASRock is a versatile software that can be used to simulate rock failure
processes, tunnel excavation, multi-field coupling, dynamic load effects, and more. Further information about the
software can be found at www.casrock.cn.
2.2.3. LIE–FEM
Numerical method. A diverse range of methods exists to capture fractures in porous media as embedded lower-
dimensional continua [41, 42, 43, 44, 45, 46, 47]. This lower–dimensional representation is often achieved by
integrating over one spatial dimension—usually the fracture thickness—subject to a set of assumptions, such as
parallel–plate flow. The lower-dimensional interface element (LIE) method has been developed to enhance the
capability of simulating hydraulic fracturing and shearing [48, 49]. Several constitutive formulations for the hydraulic
and mechanical behaviour of the discrete interface are available, such as elasto-plasticity or cohesive-zone models.
Mathematical model. A coupled hydraulic-mechanical problem is solved on a domain Ω = Ω+ ∪Ω− separated into
the two indicated parts by a sharp interface Γ representing the fracture. The weak form of the mechanical problem
reads

∫
Ω⧵Γ

[

𝝈 ∶ ∇𝐯 − 𝜚𝐠 ⋅ 𝐯
]

dΩ − ∫
Γ

𝝉Γ ⋅ [[𝐯]]Γ dΓ = ∫
𝜕Ω

𝝉 ⋅ 𝐯 dΓ, (20)

where an enriched Bubnov-Galerkin test function 𝐯 of the same space as the solid displacement itself was introduced,
consisting of a continuous (standard) part 𝐯c and a Heaviside enrichment 𝐻(𝐱)𝐚Γ in the form

𝐯 = 𝐯c +𝐻(𝐱)𝐚Γ, (21)
with the Heaviside function 𝐻(𝐱) = ±0.5 ∀𝐱 ∈ Ω± distinguishing the domains separated by the fracture.

Note that 𝝈 and 𝐭Γ are the total stresses and tractions, respectively, in a HM formulation of a fluid-saturated porous
medium in the sense of the effective stress principle:

𝝈 = 𝝈′ − 𝛼𝑝𝑝𝐈 with d𝝈′ = e ∶ d𝜺e (22)
𝝉Γ = 𝝉 ′Γ − 𝑝𝑝𝐧Γ with d𝝉 ′Γ = 𝐊fd𝐰e. (23)

The weak form for matrix flow based on a standard scalar test function �̄� reads

∫
Ω

�̄�
[

𝑆𝑝′S + 𝛼∇ ⋅ 𝐮′S − 𝛿Γ(𝐱)𝑞F
]

− 𝐪𝑝 ⋅ ∇�̄� dΩ = ∫
𝜕Ω

�̄�𝑞n dΓ, (24)

with the Darcy velocity 𝐪𝑝. The fluid exchange 𝑞F is active only at fractures where the following weak form is used:

∫
Γ

�̄�Γ
[

𝑏′S + 𝑏𝑆
f𝑝′S + 𝑏𝑞F

]

− 𝑏𝐪Γ𝑝 ⋅ ∇Γ�̄�Γ dΓ = ∫
𝜕Γ

�̄�Γ𝑞
Γ
n d𝑙. (25)

The mass exchange between fractures and matrix remains implicit as the current implementation assumes local
mass exchange processes between matrix and fracture to be sufficiently fast to ensure pressure continuity between both
compartments.
Computing package. The present model is implemented in the scientific open-source finite element software
OpenGeoSys [33, 50].
2.2.4. CMEFM–FEM
Numerical method. The RWM/Quintessa/UoE team applied a full contact representation of the embedded fracture
using the COMSOL Multiphysics® Structural Mechanics module [51], with an internal boundary load applied to
either side of the fracture to represent the fluid pressure. This approach allows the possibility of representing opening,
friction, separation, and other complex non-linear behaviours at the fracture surface, though only the zero friction case
is considered in the benchmark. The remainder of the domain is modelled as an elastic rock medium.
Mollaali et al.: Preprint submitted to Elsevier Page 8 of 25
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Mathematical model. The main equation for solving the system is standard solid mechanics solving for displace-
ment. Full details of this approach are in the COMSOL Multiphysics® Structural Mechanics module User Guide [51].

The contact boundary pair(s) representing the fracture is used to introduce contact forces when in contact; when
there is a gap, there is no contact and thus no contact force. By its nature, this method can be highly non-linear and
therefore can be difficult to solve. For this benchmark model, a penalty factor formulation is used which describes a
spring stiffness of two connecting boundaries in contact, defining the contact stress, which allows some (potentially
nonphysical) penetration as the contacts are forced together. The contact stress is governed by:

𝑇𝑛 =

{

−𝑃𝑛𝑔𝑛 + 𝑇0 if 𝑔𝑛 ≤ 𝑇0
𝑝𝑛

0 otherwise. (26)

Here, 𝑇𝑛 and 𝑇0 are the contact stress and contact stress at zero gap; 𝑔𝑛 is the gap; and 𝑃𝑛 is the penalty factor that is
tuned to give the required contact elasticity.
Computing package. COMSOL Multiphysics® using the Structural Mechanics module. COMSOL Multiphysics®
is a commercial application for simulation and coupled process modelling using the finite element method.
2.2.5. ETEL–FEM
Numerical method. The finite element method, implemented in the commercial software COMSOL Multiphysics®
[51], was used to numerically solve the governing equations of the mathematical model. Solid serendipity elements
are used to represent the intact granite, with cubic shape functions for the mechanical behaviour, and linear shape
functions for the flow behaviour. The fracture is represented as an interface with springs shear and normal directions
that connect adjacent solid elements. The normal and shear stresses across the fracture are proportional to the relative
shear and normal displacements through the spring constants.
Mathematical model. The mathematical model was developed from the theory of poro–mechanics [52], with the
governing equations in Section 2.1.
Computing package. The model was implemented in the COMSOL Multiphysics package. COMSOL solves partial
differential equations using the finite element method. The Structural Mechanics and Darcy’s flow modules of
COMSOL were used in this work. For more information: www.comsol.com.
2.2.6. GBM–DEM
Numerical method. In a grain-based model (GBM), the microstructure of rock–like material is represented as a group
of angular particles. Particles can be rigid or deformable (elastic or inelastic), while interfaces are treated as boundary
conditions between particles. The interaction of the particles (blocks) and their interfaces (contacts) is calculated using
a distinct element method (DEM) [53, 54, 55, 56].
Mathematical model. The calculation in the DEM alternates between the application of a force-displacement law at
all contacts and Newton’s second law for all blocks. At each timestep, the integration of the law of motion provides the
new block positions resulting from the known forces acting on the blocks. The contact forces are then updated from
the force-displacement law and known displacements. The elastic force increments at contact are calculated as

Δ𝑭 𝑛 = −𝑘𝑛Δ𝐮𝑛𝐴𝑐 (27)
Δ𝑭 𝑠 = −𝑘𝑠Δ𝐮𝑠𝐴𝑐 . (28)

where 𝑭 𝑛 is the contact normal force, 𝑭 𝑠 are the contact shear force vectors, 𝑘𝑛 is the contact normal stiffness, 𝑘𝑠 is
the contact shear stiffness, 𝐮𝑛 is the contact normal displacement, 𝐮𝑠 are the contact shear displacement vectors, and
𝐴𝑐 is the area of the sub-contact.

The contact model approximates linear representation of stiffness and yield limit, considering the displacement-
weakening as a result of loss in frictional, cohesive, and tensile strength at the onset of failure. If the maximum limit
for normal force or shear force is exceeded, the onset of failure is identified at the sub-contact, and the new contact
forces are corrected.
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The hydro–mechanical simulation is performed by sequentially alternating mechanical calculation and fluid
calculation. The fluid flow inside the fracture (zero-strength contacts or failed contacts) is approximated by two-
dimensional horizontal flow within parallel walls separated by a hydraulic aperture. The hydraulic aperture is updated
by the elastic opening, 𝐮𝑛𝑒 , due to the change in effective normal stress and the plastic opening, 𝐮𝑛𝑝, due to slip-induced
dilation:

Δ𝐮𝑛𝑝 = Δ𝝈′
𝑛∕𝑘𝑛 (29)

Δ𝐮𝑛𝑝 = 𝐮𝑠𝑝 tan𝜓, (30)
where 𝝈′

𝑛 is the effective normal stress, 𝐮𝑠𝑝 is the plastic shear displacement, and 𝜓 is the dilation angle.
The flow rate per unit width of the fractures is characterized by the cubic law [57]. The fracture pressures are

calculated and stored in the flow elements corresponding to the grid points of blocks. After flow rate calculations,
the pressures are updated taking into account the net flow into the flow element and possible changes in flow element
volume due to the incremental motion of the surrounding blocks:

Δ𝑝𝑓 = 𝐾𝑓𝑄Δ𝑡
𝑉

−𝐾𝑓 Δ𝑉
𝑉𝑚

, (31)

where 𝐾𝑓 is the bulk modulus of the fluid, 𝑄 is the sum of flow rates into the flow element from all surrounding
contacts, Δ𝑡 is the timestep, 𝑉 is the flow element volume, and 𝑉𝑚 is the average flow element volume of the previous
and current timesteps.
Computing package. The above approach is implemented into the commercial code 3DEC [58], a three–dimensional
DEM code. In the benchmark exercises, we generated a dense assemblage of tetrahedral blocks. The blocks were
assumed to behave elastically, and the embedded single fracture was assigned the Coulomb slip model.
2.2.7. BPM–DEM
Numerical method. In a bonded particle model (BPM), a material is simulated as an aggregate of rigid particles
(2D: disks, 3D: spheres) bonded at their contact points with finite stiffness and strength [59]. The numerical method
is called hydro–mechanical–coupled BPM, and hydro–mechanical coupled concept is developed and implemented in
a BPM [60].
Mathematical model. A flow of viscous fluid in a BPM and fluid pressures and volume driven breakages of bonds are
simulated. The concept of fluid flow algorithm is proposed by Cundall (unpublished technical note, 2000), which was
later modified by Hazzard et al. [60] and further modification was done by Yoon et al. [61, 62]. The pressure–driven
flow of viscous fluid between the two pore spaces is governed by the cubic law assuming that the flow is laminar
between two smooth parallel plates

A hydraulic aperture 𝑤 of the flow channel changes as a function of stress, 𝜎𝑛. In this HM benchmark modelling,
we use experimentally derived 𝑤 vs. 𝜎𝑛 relation from Hökmark et al. [63]:

𝑤 = 𝑤𝑖𝑛𝑓 +
(

𝑤0 −𝑤𝑖𝑛𝑓
)

exp(−0.15𝜎𝑛) (32)
where, 𝑤𝑖𝑛𝑓 is the hydraulic aperture at an infinite normal stress, 𝑤0 is the hydraulic aperture at no normal stress. We
compute the fluid pressure increase per time step Δ𝑡 in a pore space using,

Δ𝑝𝑓 = 𝐾𝑓

𝑉𝑑
(𝑄Δ𝑡), (33)

where, 𝐾𝑓 is the fluid bulk modulus, 𝑉𝑑 is the pore volume, 𝑄 is the sum of net flow rates in a pore volume. The fluid
pressure exerts traction on the surrounding particles. As a result, the particles displace, and the stress state at particle
contact changes which in turn changes the hydraulic aperture and thereby the flow field. This is two–way full coupling
between the particles (solid part) and the pore fluid (fluid part).
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Computing package. The modelling concept and mathematical formulation are implemented in the commercial
code Particle Flow Code 2D (PFC2D), a two–dimensional distinct element geomechanical modelling software [64],
using FISH programming.
2.2.8. IFDM–DEM
Numerical method. The integral finite difference method (IFDM) for thermal–hydraulic analysis [65] is coupled with
the distinct element method for discontinuum mechanical analysis [66], to describe the thermal–hydraulic–mechanical
analysis of fractured rock mass [67]. The discontinuum model consists of tetrahedral meshes and discontinuity faces,
and the discontinuities are assumed as elements with aperture–size width for the thermal–hydraulic analysis in IFDM.
IFDM and DEM exchange and reflect the thermal, hydraulic, and mechanical parameters in each time step of IFDM.
Mathematical model. The mechanical analysis is based on the interactions between blocks due to the movements
and rotations in DEM module. The interactions are calculated by Newton’s second law on each face of blocks and
the force–displacement law on each contact between blocks (Equations (27) and (28)). The contacts between blocks
represent the discontinuities, and the detailed mechanical models can be applied on each contact. In this study, the
linear normal and shear deformation models are assumed with the shear and tensile failure. When the normal and
shear stresses reach the tensile and shear strength of the discontinuity, the normal and shear stress yield and induce the
plastic displacement. Both elastic and plastic displacements in the normal direction on discontinuities accompany the
hydraulic aperture change, and the shear displacement also can induce the dilation of aperture based on the dilation
angle, which is the parameter regarding the discontinuity roughness. The permeabilities of discontinuities are updated
based on the hydraulic aperture change and the cubic law [57]. The updated permeability field in every mechanical
simulation is transferred to IFDM module for hydraulic analysis.

IFDM module constructs the elements and connections data for hydraulic analysis. The discontinuity elements
have appropriate hydraulic properties equivalently calculated or updated from the mechanical analysis. The fluid flow
in IFDM module is based on the mass balance equation between two adjacent elements. The mass balance equation
includes the multiphase and multicomponent fluid flow [65].

𝑑
𝑑𝑡 ∫Ω

𝑀 𝑖 𝑑Ω = ∫𝜕Ω
𝐣𝑖 ⋅ 𝐧 𝑑Γ + ∫Ω

𝑞𝑖 𝑑Ω, (34)

where, Ω is the volume of an arbitrary domain, 𝜕Ω is the closed surface of the domain with the normal vector 𝐧, 𝑀
is the mass per volume, 𝐣 is the mass flux, 𝑞 is the mass source/sink, and 𝑖 denotes each component. The mass flux
consists of individual phase fluxes calculated by Darcy’s law.

𝐣𝛽 = 𝜌𝛽𝐪𝛽𝑝 , (35)

where, 𝐣𝛽 is the mass flux of phase 𝛽, 𝜌𝛽 is the density of phase 𝛽, 𝐪𝛽𝑝 is the Darcy velocity in phase 𝛽. According to
the mass balance equation, the pore pressures on whole elements are updated, and the pore pressure data is transferred
to DEM module to be reflected for the mechanical analysis in every hydraulic time step.
Computing package. The model in this study is implemented in TOUGH2, a numerical simulator for multi
dimensional, multiphase, multicomponent fluid flows and heat transfer [65], and 3DEC, a block–based three–
dimensional distinct element method [66]. Additional TOUGH–3DEC linking algorithms for the coupled processes
are developed in FISH, FORTRAN, and MATLAB [67].

3. Benchmark Exercises
This section contains a set of benchmarks to verify the hydro–mechanical process in various simulation packages.

First, we compared the fracture aperture with Sneddon’s solution (static) [68]. Second, we verified the model with
plane-strain hydraulic fracture propagation in a toughness dominated regime based on Sneddon’s solution [68]. To
account for the infinite boundaries in Sneddon’s closed-form solution, we considered a large finite domain. Third, we
conducted a benchmark with the same domain size as the laboratory experiment while applying differential stresses
at the boundaries. Fourth, the third benchmark was repeated with an inclined fracture. Lastly, we provide mesh and
domain studies. Figure 2 summarizes the overviews of benchmarks. Table 2 lists the material properties.
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(a) (b)

(c) (d)

Figure 2: Benchmarks overview. (a) benchmark 1 : static horizontal fracture under a constant pressure, (b) benchmark 2 :
propagating horizontal fracture in the toughness dominated regime, (c) benchmark 3 : static horizontal fracture under a
constant pressure with differential in–situ stress and (d) benchmark 4 : static inclined fracture under a constant pressure
with differential in–situ stress. The unit of domain sizes is meter [m].

3.1. Benchmark 1: static fracture aperture under a constant pressure
A line fracture [−𝑎0, 𝑎0] × {0} (𝑎0 = 0.1m) with no external loading and an internal fluid pressure of 𝑝 = 1 MPa

was applied on the fracture surfaces and we compared the fracture aperture with the analytical solution [70] (p. 29) for
the fracture half-opening:

𝑢(𝑥, 0) =
2𝑝𝑎0
𝐸′

√

1 − (𝑥∕𝑎0)2, (36)

where 𝑢 is the displacement 𝐸′ is the plane strain Young’s modulus (𝐸′ = 𝐸∕(1 − 𝜈2)) with 𝜈 is Poisson’s ratio, 𝑝 is
the fluid pressure inside the fracture. To account for the infinite boundaries in the closed-form solution, we considered
a large finite domain [−10𝑎𝑜, 10𝑎𝑜] × [−10𝑎𝑜, 10𝑎𝑜] (Figure 2). The effective element size, ℎ, is 1 × 10−3 m.

Computed fracture half–aperture and error profiles from different numerical methods are compared against the
analytical solution (Eq. (36)) in Figure 3. The errors are computed as a difference from the closed form solution. The
error profiles demonstrate that the aperture in the middle of the fracture is in good agreement with the close form
solution, however near the fracture tip, most numerical solutions are highly inaccurate.
3.2. Benchmark 2: Propagating fracture in the toughness dominated regime

Under the toughness dominated regime without leak-off, the energy dissipation by the fluid viscosity is negligible
compared with the energy released for the fracture surface creation [71]. Therefore, in this regime, we can neglect the
Mollaali et al.: Preprint submitted to Elsevier Page 12 of 25
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Table 2
Rock parameters of granite used in the direct shear tests [69].

Name Symbol Value Unit

Young’s modulus 𝐸 49.75 × 109 Pa
Fracture toughness † 𝐾𝐼 0.95 × 106 Pa ⋅ m1∕2

Poisson’s ratio 𝜈 0.26 –
Compressive strength 𝜎𝑐 120.54 × 106 Pa
Tensile strength 𝜎𝑡 7.02 × 106 Pa
Friction angle (Mohr) 𝜙 52.5 ◦

Basic Friction angle (Mohr) 𝜙𝑏 30 ◦

Cohesion 𝑐 22.5 × 106 Pa
†𝐺𝑐 = 𝐾2

𝐼 (1 − 𝜈
2)∕𝐸

(a)

(b)

Figure 3: (a) Fracture half–aperture profiles and (b) error from different numerical methods compared against the closed-
form solution.

pressure loss within the fracture and can derive the pressure and the length evolution using Eq.(36) [72, 73, 23, 74, 75,
76, 77]. From Eq.(36), we have the work of the pressure force as

(𝑅) =
2𝑝2𝑎2

𝐸′ . (37)
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Applying Clapeyron’s theorem, the elastic energy is
(𝑅) = −

𝜋𝑝2𝑎2

𝐸′ , (38)
and the energy release rate with respect to the crack length 𝑎𝑜 propagating along the initial inclination is

𝐺(𝑅) = − 𝜕
𝜕(2𝑎)

=
𝜋𝑝2𝑎
𝐸′ . (39)

According to Griffith’s criterion [78], in a quasi-static volume control setting1, the fracture propagates when 𝐺 = 𝐺𝑐

and the critical volume for crack propagation is 𝑉𝑐 ∶=
√

4𝜋𝐺𝑐𝑎3

𝐸′ . The corresponding pressure and the fracture length
evolution are:

𝑝(𝑉 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸′𝑉
2𝜋𝑎2𝑜

for𝑉 < 𝑉𝑐

[

2𝐸′𝐺2
𝑐

𝜋𝑉

]
1
3

for𝑉 ≥ 𝑉𝑐 ,

(40)

𝑎(𝑉 ) =

⎧

⎪

⎨

⎪

⎩

𝑎𝑜 𝑉 < 𝑉𝑐
[

𝐸′𝑉 2

4𝜋𝐺𝑐

]
1
3

𝑉 ≥ 𝑉𝑐 .
(41)

The normalized pressure 𝑝𝑓∕𝑝𝑐 and the normalized crack length∕𝑎0 are plotted against the normalized volume
𝑉 ∕𝑉𝑐 in Figs 4. While VPF–FEM slightly overestimates the peak pressure, LIE–FEM slightly underestimates it. As
the crack grows, both converge to the closed–form solution curve.

(a) (b)

Figure 4: (a) Pressure and (b) fracture length evolution against injected volume

3.3. Benchmark 3: Static straight fracture under constant pressure with differential in–situ stress
To compare our results with laboratory experiments, we conducted a static benchmark with horizontal fracture and

a sample size of 0.5 m × 0.5 m. The total length of fracture is 0.17 m. The fluid pressure within the fracture gives
𝑝 = 12 MPa. The material properties are listed in Table 2.

Figure 5 shows the aperture profiles for the Granite specimen with a plane horizontal fracture. The aperture profiles
reveal that there is a 2 𝜇m discrepancy between different numerical approaches, which could be related to the presence
of in–situ stresses and the influence of computational domain size.

1The fracture propagation is always unstable with pressure control.
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Figure 5: Aperture profile for the Granite specimen with a plane horizontal fracture.

3.4. Benchmark 4: Static inclined fracture under constant pressure with differential in–situ stress
To account for the effect of inclination, we replicated benchmark 3 with an inclined fracture. The fracture is inclined

by 30◦ to horizontal. The remaining material and geometrical properties are identical to those of benchmark 3.
Figure 6 shows the aperture profiles for the granite specimen with an inclined fracture. In comparison to

horizontal fracture in Benchmark 3, the fracture inclination dominated the discrepancies between the results of different
approaches.

Figure 6: Aperture profiles for the Granite specimen with a plane inclined 30◦ fracture.

3.5. Mesh studies
This section investigates the numerical aspects of discretization effects such as mesh size and orientation.

3.5.1. Mesh size effect
We studied a mesh sensitivity by analyzing the convergence of the aperture profile for different mesh discretizations.

We repeated benchmark 1 with varying mesh sizes, ℎ = 0.001, 0.003, 0.006, and 0.01 m (Figure 7). As can be seen in
Figure 7b, for hCA–FEM/xFEM, the results converge when ℎ = 0.003m, arriving at a slightly higher profile than the
closed–form solution. That is possibly explained by the fact that a softer elastic material representing the fracture may
be dependent on the choices of the material properties. Figure 7c shows the results of BPM–DEM approach. We see
with the increase of the mesh density, the calculated fracture aperture keeps increasing until converges at slightly higher
values than the closed–form solution. This can be explained by the choices of penalty spring stiffness. By contrast, the
results of CMEFM–FEM approach are quite close to the analytical solution. This may be attributed by: (𝑖) the use of
contact stress instead of contact force that somehow alleviates the sensitivity of penalty spring on the mesh sizes, (𝑖𝑖)
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the advantages of combining FEM interpolation for continuum mechanics and contact calculation for discontinuum
mechanics, and (𝑖𝑖𝑖) well–constrained penalty springs. Figure 8 shows similar yet magnified patterns of convergence
of the maximum aperture calculated by these different approaches.

(a)
(b)

(c) (d)

Figure 7: Fracture aperture profiles of (a) VPF–FEM, (b) hCA–FEM/xFEM, (c) BPM–DEM and (d) CMEFM–FEM with
different mesh sizes compared against the analytical solution.

Figure 8: Convergence curve for the error of maximum aperture with different mesh sizes for benchmark 1.
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3.5.2. Mesh alignment with inclined fracture in VPF–FEM
One of the advantages of the VPF–FEM is that we do not need to explicitly mesh the fracture and hence fractures

do not have to propagate along pre-defined mesh elements. To see the effect of the alignment of mesh and fracture on
fracture aperture, we repeated benchmark 4 with two different mesh inclinations (Figure 9) to see the impact of the
alignment of mesh and fracture on fracture aperture . The fracture aperture is computed based on the line integral of
the gradient of the phase field variable. [23, 79].

Figure 10 shows the aperture profiles from the VPF–FEM for the granite specimen with an inclined fracture.
The aperture profile oscillates with the non-aligned mesh while the profile is smooth with the aligned (Figure 9a).
The computation of aperture is inaccurate in the vicinity of the fracture tip because the crack’s normal direction is
improperly identified from the gradient of the phase field variable.

(a) (b)

Figure 9: Initial phase field profile (a) not aligned mesh with inclined fracture and (b) aligned mesh with inclined fracture
in VPF–FEM approach.

Figure 10: Aperture profiles for the Granite specimen with a plane inclined 30◦ fracture using VPF–FEM approach.

3.6. Domain size study
To investigate the effect of domain size and boundaries, we performed a series of examples with the same

material and geometrical parameters, fracture size, and boundary conditions as benchmark 3 but with different
domain sizes. We used four distinct computational domain sizes (m), Ω = [−0.125, 0.125] × [−0.125, 0.125],
Ω = [−0.25, 0.25] × [−0.25, 0.25], Ω = [−0.5, 0.5] × [−0.5, 0.5], and Ω = [−0.75, 0.75] × [−0.75, 0.75] (Figure
11).
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Figure 12 shows the results of using different domain sizes by different approaches. Despite the differences
in the results which are similar to Figure 7, all the models show results converge when the domain size reaches
or exceeds Ω = [−0.5, 0.5] × [−0.5, 0.5]. A notable difference between different teams is when the domain size
Ω = [−0.25, 0.25] × [−0.25, 0.25]. Differently from other FEM and DEM approaches, the results calculated by
IFDM–DEM show that when the domain size reaches Ω = [−0.25, 0.25] × [−0.25, 0.25], the boundaries do not have
an impact on the fracture aperture. Closer examination of the results of Ω = [−0.25, 0.25] × [−0.25, 0.25], we found
good agreement of the results by different approaches. Even though the width converges by increasing the domain size
for each team, there is still a relatively significant difference between the calculated width in different team results.
This difference could be due to (𝑖) the lack of resolution for the region near the thin fracture for finite elements and (𝑖𝑖)
the sensitivity to penalty springs.

Figure 11: Domain size study for benchmark 3: Ω = [−0.125, 0.125] × [−0.125, 0.125], Ω = [−0.25, 0.25] × [−0.25, 0.25],
Ω = [−0.5, 0.5] × [−0.5, 0.5], and Ω = [−0.75, 0.75] × [−0.75, 0.75]. The unit of domain sizes is meter [m].
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(a) (b)

(c) (d)

(e)

Figure 12: Aperture profiles of (a) VPF–FEM, (b) hCA–FEM/xFEM, (c) BPM–DEM, (d) CMEFM–FEM, and (e) IFDM–
DEM for the Granite specimen with a plane horizontal fracture with different domain sizes.

4. Discussion
This section highlights the challenges and factors that impacted the numerical hydro–mechanical modeling of

fracture processes. First, we briefly compare the benchmark results of the numerical methods used in this study. Next,
each numerical approach’s physical and numerical parameters are provided.
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Table 3
Geometric representation of fractures in different software/codes by teams.

Team Fractures mechanics Fracture flow
Continuous Discontinuous Equi–dimensional Reduced–dimensional

VPF–FEM ✓ ✓

hCA–FEM/xFEM ✓ ✓

LIE–FEM ✓ ✓

CMEFM–FEM ✓ ✓

ETEL–FEM ✓ ✓

GBM–DEM ✓ ✓

BPM–DEM ✓ ✓

IFDM–DEM ✓ ✓

4.1. Comparison of the fundamentals of different approaches
The differences in our approaches include numerical interpolation for the rock matrix, geometric representation of

fractures in fluid flow and mechanics, and the coupling schemes between the fluid flow and mechanics. Additionally,
meshing applied for fractures and the chosen parameters impact the computational results.
Geometric and hydro–mechanical representations of fractures The geometric representation of fractures can be
categorized into continuous and discontinuous models for mechanics, and equi–dimensional and reduced–dimensional
models for fluid flow. Equi–dimensional and reduced-dimensional representation refers to the dimension representing
fractures compared with the dimension of the rock matrix. For example, if a fracture is represented with 2D elements
in a 2D model, it is equi–dimensional. If a fracture is represented as 1D pipes/line segments, or with no additional
degrees of freedom, the model is reduced–dimensional. Table 3 lists the different approaches of representing fractures
in the software/codes that are used by different approaches.

For the benchmark problems, the equi–dimensional or reduced–dimensional fracture representation does not
make a significant difference because the fluid pressure loss within the fracture is negligible. On the other hand, the
mechanical representation of fractures influences the aperture or deformation of a fracture. The mesh needs sufficient
resolution for the fracture to capture its deformation by various mechanical formulations.

The hCA–FEM/xFEM, ETEL–FEM, and VPF–FEM approaches tackle solid fracture in a continuum manner,
whereas the LIE–FEM, CMEFM–FEM, GBM–DEM, BPM–DEM, and IFDM–DEM approaches treat it in a discontin-
uum manner. The VPF–FEM approach can describe a fracture with a slightly coarser mesh compared to conventional
finite element methods because the fracture is indirectly represented by the phase field variable in a diffused manner.

In contrast, the other models represent fractures as explicit surfaces that can handle discontinuous displacement
fields. The key functionalities are (𝑖) to account for displacement jumps (open or slip); and (𝑖𝑖) to impose a
unilateral constraint when the fracture is close (continuous displacement and discontinuous displacement gradient). The
computation of slip adds another complexity because it involves not only the changes of contact states but also contact
pairs. The contact algorithms used in this study (e.g. CMEFM–FEM) employ the penalty method to prevent over–
penetration with small differences in the formulation. In CMEFM–FEM, contact stresses are calculated and integrated
on segments, which is more accurate especially when element sizes are uneven. The fracture is connected to the solid
rock by springs, in both shear and normal directions in ETEL–FEM approach. On the other hand, the contact model
in DEM (GBM–DEM, BPM–DEM, IFDM–DEM) computes contact forces based on the contact areas.
Numerical interpolation The numerical approaches in this research can be classified as FEM and DEM–based
approaches in general. FEM’s key advantage is its ability to handle complicated geometry and smoothly varying
properties and variables. The main disadvantage of FEM in fracture mechanics is that it needs refined elements
around fracture tips, which may force re-meshing as fractures propagate [80]. Indeed, the mesh must conform to
fractures as they propagate, increasing the computational cost. Several techniques to solve the re-meshing problem
have been proposed (Universal Meshes [81], XFEM [80], Variational Phase-field [82]). On the other hand, DEM is
computationally costly and struggles to achieve the same level of accuracy for continuous variables, but it would be
much better at resolving contact loads.
Mollaali et al.: Preprint submitted to Elsevier Page 20 of 25



DECOVALEX 2023 - Task G - HM Benchmarking

Table 4
Physical and numerical parameters

Method Static Propagating

VPF–FEM 𝐸, 𝜈, 𝓁 𝐸, 𝜈, 𝓁, 𝐺𝑐
hCA–FEM/xFEM 𝐸, 𝜈, 𝐤 –
LIE–FEM 𝐸, 𝜈, 𝑘𝑛, 𝑘𝑠 𝐸, 𝜈, 𝑘𝑛, 𝑘𝑠, 𝐺𝑐
CMEFM–FEM 𝐸, 𝜈, 𝜌, 𝑝𝑛 –
ETEL–FEM 𝐸, 𝜈, 𝐤 –
GBM–DEM 𝐸, 𝜈, 𝜌, 𝑘𝑛, 𝑘𝑠 –
BPM–DEM 𝐸, 𝜈, 𝜌, 𝑘𝑛, 𝑘𝑠, 𝜇𝑓 –
IFDM–DEM 𝐸, 𝜈, 𝜌, 𝑘𝑛, 𝑘𝑠, 𝐤 –

Different numerical approaches interpolate the variables within the computational elements differently. In FEM–
based approaches, linear or higher order interpolation is available to rigorously treat mechanical deformation. On the
other hand, DEM approaches may suffer when the interpolation is 1D linear (spring connected elements), but these
issues can be overcome with a well–constrained Poisson’s ratio [83].
Coupling schemes In this study, the nonlinear hydro-mechanical problem is solved using staggered and monolithic
coupling schemes. The coupled equations are solved simultaneously in a monolithic approach while the mechanical
and fluid flow equations are solved separately in a staggered approach. As an example, Figure 13 illustrates the coupling
schemes of the VPF–FEM (staggered scheme) and LIE–FEM (monolithic scheme).

(a) (b)

Figure 13: Coupling fluid flow and solid deformation algorithm in poroelastic media by (a) VPF–FEM and (b) LIE–FEM.

The staggered scheme has the advantage of allowing each set of governing equations to be solved by a different
solver without the need for a computationally more competent unified solver. Furthermore, from the standpoint of
computer programming, the governing equations in a staggered approach can be implemented within an existing
mechanical or fluid flow computer code, providing more desired programming adaptability. However, because one of
the processes (fluid flow or mechanics) is “frozen" while the other process is solved, it is known to pose some stability
issues depending on which secondary variables (i.e. stress or strain) is chosen to be frozen and some stabilization
parameters may be necessary [84, 85]. In this study, the staggered scheme is used in the following approaches: VPF–
FEM, hCA–FEM/xFEM, GBM–DEM, BPM–DEM, IFDM–DEM.

In monolithic schemes, the mechanical and fluid flow equations are combined into a single problem and solved
simultaneously with a single solver. The interface conditions, i.e., the continuity pressure defined by the monolithic
problem, do not require sub-iterations to satisfy. As a result, monolithic schemes are often known as strongly coupled
algorithms and numerically more stable [86]. The LIE–FEM, CMEFM–FEM, and ETEL–FEM approaches utilized
the monolithic scheme for hydro-mechanical coupling.
4.2. Numerical/Physical parameters

Table 4 lists the numerical and physical parameters required for the different approaches. Even for seemingly simple
physical problems such as our benchmark examples of the static crack aperture, each of the models requires a different
set of parameters.
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The key parameters for the discontinuous approaches are the stiffness of the penalty spring in both normal
and shear directions (LIE–FEM, CMEFM–FEM, GBM–DEM, BPM–DEM, IFDM–DEM). VPF–FEM requires the
regularization length parameter 𝓁, which is a numerically parameter originally, but is regarded as a physical property
in recent studies [87, 88].

5. Conclusions
This research is part of the DECOVALEX 2023 project, which aims to better understand geosystems via the lens

of coupled thermo–hydro–mechanical–chemical processes. This study summarizes a comprehensive set of numerical
methods in hydro-mechanical coupled fracture mechanics including continuous (VPF–FEM, hCA–FEM/xFEM, and
ETEL–FEM) and discontinuous approaches (LIE–FEM, CMEFM–FEM, GBM–DEM, BPM–DEM, and IFDM–
DEM).

We introduced a systematic benchmarking procedure to quantitatively evaluate and compare various numerical
algorithms for hydro-mechanical coupled fracture mechanics. We deliberately devised benchmark problems as
physically simple as possible while maintaining the important physics so that the problem set helps us examine each
model’s advantages and disadvantages in detail that could be masked behind the physical complexity in a more complex
problem setting. Furthermore, our study demonstrates that even if an approach can match the closed-form solution
under a benign condition (e.g., symmetric loading), its prediction can differ from other approaches under more realistic
conditions.

We observed that all numerical approaches could reproduce the results of closed-form solutions in the benchmarks
when suitably conditioned. On the other hand, the mesh study shows that different mesh resolutions are required to
match closed-form solutions. Furthermore, the domain size study reveals that domain boundaries significantly influence
the results, and the numerical methods are influenced differently in small domain sizes. This observation highlights
the importance of investigating mesh and domain sizes in practical numerical modeling applications.

The qualitative comparisons between the numerical methods and closed-form solutions for static cracks show that
all presented models can reproduce the maximum crack opening, but have difficulties near the crack tips.

Our simple benchmark settings show that each model requires a different number of parameters, even for simple
physical problems, such as our static crack aperture benchmark examples. Using fewer parameters is in general more
practical because it can prevent model overparameterization and ease experimental efforts.

The presented benchmark study will assist future experimental analysis within the DECOVALEX project. Future
studies should expand a set of benchmark examples to more complex phenomena of fracture mechanics such as
nucleation and complex fracture morphology and include validation against experiments.
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