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Abstract 

Urbanization has caused significant changes of urban morphology in three-dimensional (3D) 

space. Although previous studies found a close association between 2D/3D urban morphology and 

land surface temperature (LST), the conclusions are various and the reasons lie in three 

fundamental components of urban morphology: physical form, resolution and time. Beijing’s old 

city includes massive vernacular and modern architecture, which provides an ideal laboratory for 

the studies. In a new approach, 3D landscape metrics were applied to analyze built forms from 

aspect of composition and configuration, and explain their contributions in LSTs together with tree 

height data across scales and seasons. The selected metrics explained over 80% variations of LST 

across seasons at large scales. Tree height contributed most during the hot season. Compared to 

composition, configuration metrics were less efficient for cross-scale LST changes. The relative 

importance of building features is scale-dependent. At small scales (under 105m), 3D composition 

features contributed more to LST, while 2D composition features turned to be dominant at larger 

scales (over 180m). At intermediate scales, 2D and 3D composition metrics together affect the 

LSTs. These variations indicate the scale and seasonal dependencies of how urban morphology 

affects LST, which provide important support for future urban transformation.  

Keywords: 3D landscape metrics, urban built forms, land surface temperature, scales, seasons, 

tree height  
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1. Introduction 

Urban morphology refers to the physical form of a city, which transforms and replaces 

continuously under the process of urbanization (Moudon, 1997; Oke et al., 2017; Song et al., 2020). 

Buildings and their neighboring environment are dominant components of urban morphology, that 

buildings can alter the reflection and absorption of solar radiation, as well as the proliferation of 

heat in urban area (Huang and Wang, 2019). One of well-documented environmental risks is urban 

heat island (UHI), defined as the temperature differences between urban and rural regions. The 

hazards related to urban heat island are various, including air pollution accumulation, vegetation 

phenology variations, sustainability of water supplies, and extreme heat events (Gober et al. 2011; 

Connors et al., 2013). In this case, studying the influence of urban morphology on urban heat 

environment is of great importance for future urban transformation and resilient cities. 

Satellite remote sensing (RS) provides high-resolution urban building data and spatially 

explicit land surface temperature (LST) with higher coverage than in-situ observations (Yu et al., 

2020; Guo et al., 2021). In the past decade, identification of the relationship between urban 

morphology and LST is increasingly found in the literature, aiming to reveal in-depth influencing 

mechanism and supply detailed scientific suggestions. Particularly, the influence of 3D urban 

morphology on urban heat has achieved great progress, due to the development of RS technology 

(Alexander et al., 2009; Wang and Wang, 2009; Awrangjeb et al., 2010) and introduction of 3D 

morphology metrics (Kedron et al., 2019; Guo et al., 2021). Most of these researches followed a 

very similar mode. LST-morphology data pairs were fistly created using moving window method, 

and then apply linear (e.g., Pearson correlation coefficient) or nonlinear models (e.g., random 

forest, and eXtreme gradient boosting) to discuss their correlation and contribution to LST. 

However, the conclusions are various, even contradictory. Positive, negative, important and 
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nonimportant are well documented in literature (Huang and Wang 2019; Guo et al., 2021; Lu et 

al., 2021; Li and Hu, 2022). This is related to three important fundamental components for urban 

morphology research: resolution, physical form, and time (Moudon, 1997). 

Resolution/scale involves the aspect looking at the arrangement of buildings, streets, public 

spaces, and land use (Moudon, 1997). For urban planning, scale represents the plan unit that knead 

the buildings, open space, lots and vegetation together. In this case, the cohesive and adjacent 

relationship of these elements vary with size of unit or scale. Scale usually refers to the size of 

moving window in literature (Yang et al., 2019; Li and Hu, 2022). To study the relationship 

between 2D/3D urban morphology and LST, various sizes have been selected: 25 m (Yang et al., 

2019), 60 m (Hu et al., 2020), 150 m and 540 m (Qiao et al., 2020), and 1 km (Wu et al., 2022). 

The dominant building features may change with sizes, and the corresponding influence on LST 

may change. For a 25 m window size, it corresponds to the single or limited buildings, the building 

spacing cannot be well displayed and spatial configuration of multi-building layouts is neglected. 

The dominant feature might be building height, and the influence on LST origins from building 

shade. For a 1 km window size, it corresponds to the street/block, which covers various styles of 

buildings. The vertical fluctuation of buildings tends to be stable, and the dominant morphological 

might be building coverage ratio, building spacing and openness. These features affect LST 

through heat accumulation and ventilation. In addition, the amplitude of incoming solar radiation 

and corresponding sensible heat flux and heat storage would vary more significantly over scales. 

The differences of urban morphology among scales are objective existence, therefore, studying 

multiscale relationship is conducive to have a cubic understanding on how urban morphology 

affects LST. 
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One challenge for the multiscale analysis is to find the turning point. Lots of literature is 

struggling for this, but needs more work (Peng et al., 2016; Lu et al., 2021; Li and Hu, 2022). The 

restricted availability of methods describing the built forms is one limit. The types and number of 

selected morphology metrics not only affect the accuracy of regressed LST, but also affect the 

final conclusion (Li and Hu, 2022). In addition to traditional two-dimensional (2D) features (e.g., 

building density, building number and building spacing), 3D building features (e.g., building 

height, building volume and sky view factor) that are closely related to surface roughness and 

surface energy balance, are arousing more and more interest in literature these years (Yang et al., 

2019; Li and Hu, 2022). Although Li and Hu (2022) have applied 3D shape and fractal index to 

explain urban LST, systematic and pointed metrics for spatial configuration of buildings layouts 

and other composition characteristics are so far insufficiently involved. Based on a land mosaic 

model and a surface gradient model, Guo et al., (2021) proposed a suite of 2D/3D landscape 

metrics that perform well in comparing urban morphology in China and Europe (Guo et al., 2022). 

The present study applies their metrics for measuring the composition and configuration 

characteristics under different scales, and then links them to LST. In built-up landscape, vegetation 

also needs to be considered for a higher accuracy in predicting LST. Although some vegetation 

indexes, such as NDVI, has been widely applied, they focus on describing whether a region has 

vegetation. However, trees affect LST more by their shade that reduces incoming solar radiation, 

which is why tree height might be a more efficient indicator (Wu et al., 2022).  

Impacts of urban morphology are dependent on seasons. The thermal demands of cities vary 

with climate zones and seasons from the aspect of thermal management (Ewing and Rong, 2008; 

Guo et al., 2021). In the northeast and northwest during winter, cold winds may carry away urban 

surface heat, and generate additional heating energy consumption and corresponding greenhouse 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



5 
 

gas emissions (Ewing and Rong, 2008). The increase in building density helps create a warm city 

environment, and can save a large amount of heating costs. During summer in tropical or 

subtropical regions, higher temperature within dense built environment leads to local abnormal 

airflow and even diseases related to heat pressure, which threaten the health of urban dwellers. 

Therefore, studying the association and relative importance of morphological features on seasonal 

LST is important for seeking an efficient urban heat management policy. An encouraging trend in 

the literature is that more and more researches focus on seasonal influence in different cities (Hu 

et al., 2020; Li et al., 2021), however, they usually select one RS imagine to represent the season, 

and the conclusions in this case might be biased by confounding factors (e.g., local weather 

condition). To address these problems, this study selected LST data extracted from Landsat 8 

remote sensing imagery over 12 months in Beijing’s old city, applied a suite of 3D landscape 

metrics to compare the urban morphology at different scales, and assessed the contribution of 

different factors on LST. We aimed to determine which building characteristic at which scale affect 

the LST significantly over seasons. 

2. Study area and Data 

2.1 Study area 

Beijing is the capital of China, covers approximately 16000 km2 with more than 20 million 

urban populations, and has a humid continental monsoon climate with severe dry winters, hot 

summers and strong seasonality. Our study focuses on Beijing’s old city (Fig. 1), which is located 

at the center of metropolitan area, with a covering area over 40 km2. There are lots of traditional 

architecture buildings (e.g., courtyard houses) and royal buildings (e.g., the Forbidden city). Since 

1950s, giant changes of buildings styles are witnessed due to significant urbanization, mainly the 

demolition of traditional buildings and the introduction of high-rise modern architectures along 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



6 
 

the main street (e.g., Chang’an street and Second Ring road). The courtyard houses, royal buildings 

and modern buildings shape the typical multiple-building landscape, which make Beijing’s old 

city an ideal laboratory for the studies of multiscale relationship between urban morphology and 

LST. 

 

Figure 1. Location of study region. a) a sample of courtyard house; b) a sample of royal buildings; 

c) a sample of modern buildings in Beijing’ old city. 

2.2 Data 

For this study, 12 Landsat 8 images across 12 months are downloaded from USGS 

(https://earthexplorer.usgs.gov/) to retrieve LST. The retrieved LST product using atmosphere 

correction methods has a spatial resolution of 30 m with the accuracy around 1K by consulting 

literature (Jiménez-Muñoz et al., 2014; Berger et al., 2017). The climate in Beijing city has 
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seasonality, however, it’s hard to distinguish the specific data. For a better understanding of 

seasonal influence of urban morphology across scales, hot season (June, July, Aug, and September), 

moderate season (March, April, May, October, November), and cold season (December, January 

and February) were defined based on mean value of extracted LSTs across months (Appendix A1). 

3D building data comes from the Resource and Environment Science and Data Center, Chinese 

Academy of Science. Tree height data downloaded from Google Earth Engine comes from Global 

Forest Cover Change dataset with a spatial resolution of 30 m and good accuracy (RMSE = 6.6 m, 

MAE =4.45 m) (Sexton et al., 2013; Wu et al., 2022). All the data were geometrically corrected to 

WGS84/UTM Zone 50 N, and detailed information are shown in Table 1. 

Table 1. Data Source  

Data sources Data Local time Component-derived Spatial resolution  

Landsat 8 OLI/ 

TIRS 

21 Jan 2019  10:53  

land surface temperature 30 Meter 

03 Feb 2018 10:52  

26 Mar 2019 10:52  

08 Apr 2018 10:53  

13 May 2019 10:53  

14 Jun 2019 10:53  

27 Jun 2018 10:52  

17 Aug 2019 10:53  

02 Sep 2019 10:53  

20 Oct 2019 10:53  

05 Nov 2019 10:53  

04 Dec 2018 10:53  

Building data 2016 Building height and footprint  3 Meter 

Tree data  2015 Tree height and footprint  30 Meter 
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3. Methods 

Detailed data processing consists of three steps (Fig. 2): 1) Urban building metrics were 

calculated across 15 scales using building footprint and height information; 2) The LST over 12 

months were retrieved from Landsat 8 OLI/ TIRS remote sensing images; 3) Pearson correlation 

coefficient was applied to calculate the associations between metrics and LSTs across scales and 

months; 4) Random forest algorithm was applied to evaluate the relative importance of 

morphological metrics and tree height on affecting the LSTs across scales and months; 5) 

Multiscale relationships among seasons are obtained using temporal average. In step 3 and 4, only 

those windows with the spatial proportion of vegetation plus water below 0.3 were selected to 

create the building-LST data pairs. This is conducive to avoid the influence of large-body water 

and vegetation. In addition, for different scales, we only change the window size, but not change 

the original resolution of building data (3 m) within a window. Considering the spatial 

heterogeneity of urban landscape, the metrics at each scale were recalculated, not simple spatial 

aggregation. This kind of design is conducive to avoiding some modifiable area unit problems 

(MAUP) arising due to data resampling, to improve the fit to the real situation, and to strengthen 

the reliability of the multiscale relationship between urban morphology and LST. 
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Figure 2. Work flow chart.  

3.1. Building metrics 

Targeted analysis of building characteristics is vital to compare its influence on the urban heat 

environment within cities. The 3D landscape metrics applied in this study for measuring urban 

morphology, are designed based on patch mosaic model and gradient model (Guo et al., 2021). 

Using four levels of heterogeneity defined by McGarigal et al. (2012), ‘cells’ refer to the building 

pixels, ‘patches’ refer to the enclosed building region according to various height thresholds, and 

‘classes’ refer to the mixture of different building patches with similar building height. In this 

study, the height thresholds for building classes were: low buildings (below 10 m), sublow-rise 

buildings (10 m – 20 m), middle-rise buildings (20 m – 30 m), subhigh-rise buildings (30 m – 100 

m) and high-rise buildings (over 100 m). The selected metrics consist of composition metrics and 

configuration metrics, aiming to characterize the surface fluctuation, building diversity and spatial 

structure characteristics (e.g., compactness and spatial arrangement regularity) in a built-up 

landscape (Table 2). The composition metrics are further divided into 2D and 3D metrics 
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depending on whether 3D vertical landscape elements were taken as main variable for calculation 

or not.  

Table 2. Selected building metrics for measuring urban morphology. 

Metrics Abb. Type Measure of the … 

Building coverage ratio BCR Composition-2D building coverage degree in a window. 
Edge density ED Composition-2D building segmented by the boundary. 
Euclidean nearest-
neighbor Mean Distance 

ENN Composition-2D isolation degree of each buildings class, and can be 
taken as indicator for measuring the road width. 

Patch density PD Composition-2D evenness and building number of urban building 
pattern.

Mean building height BH Composition-3D mean height of urban buildings. 
Surface area SA Composition-3D surface fluctuation compared with plane area 
Mean Volume index VOL Composition-3D mean volume of urban buildings. 
Building surface slope  SSL Composition-3D integral slope of building surface, which is the sum 

of surface fluctuation at adjacent building pixels. 
Surface developed ratio SDR Composition-3D deviation of building surface to projected plane 
Standard deviation of 
height 

SQ Composition-3D undulation of the urban buildings surface. 

Percentage of patch type PLAND Composition-3D proportion of each buildings class in the urban 
building pattern, including low-rise (LB), sublow-
rise (SLB), middle-rise (MB), subhigh-rise (SHB) 
and high-rise buildings (HB). 

Landscape shape index LSI Configuration deviation between patch shape and regular circle or 
square with same area.

Building Shade metrics CNI Configuration effect of buildings forming ventilation paths, 
defined by the ratio between building height and 
building spacing (ENN).  

Largest patch index  LPI Configuration largest space occupation of single building.
Landscape division 
index 

LDI Configuration aggregation degree of buildings. LDI = 0 when the 
landscape consists of single patch 

Landscape fractal 
dimension index 

LFI Configuration irregularity and complexity of urban buildings 
landscape shape. 

Shannon’s diversity 
index  

SHDI Configuration diversity of urban buildings landscape. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



11 
 

Cohesion index  COI Configuration connectivity and aggregation of the urban building 
pattern.

Proximity index PROX Configuration proximity, defined by the ratio between building 
height and square of building spacing (ENN). 

3.2. Random Forest 

The random forest is a nonlinear ensemble model based on decision trees for classification or 

regression (Hutengs and Vohland, 2016).  For regression, the decision tree partitions the data based 

on the thresholds for the covariates, and it can grow continuously by recursively dividing data 

(Logan et al., 2020).  Compared with single decision tree, random forest have better generalization 

preformation and well reduce the variance of the model. During the process of forest generation, 

it generates an internal unbiased estimate of generation error, with better accuracy among current 

algorithms. In addition, Random Forest is advantageous of reducing the risk of over-fitting by 

averaging a large number of de-correlated individual trees, and can deal with the multi-collinearity 

issue in the linear models, even a large proportion of data is missing. After training samples, the 

variables can be reclassified based on their contribution to the final regression value. In this study, 

LST is selected as the predictor, while the building features and tree height consist of a new 

variables group for regression (regression tree set-up: number of regression trees = 600, minimum 

number of observations per tree leaf = 5). Then, the relative importance ( ) of metric  can be 

obtained using following equation. 

 

where  is the set of all features for the training dataset with dimension ,  is the permutation 

subset of  with dimension ,   is the difference of predicted value 

with and without feature  using feature set . Through temporal average, we can get relative 

importance  of feature  on LSTs over different experimental setups (various scales  
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and seasons ). Based on the descending order of relative importance among variables, 5 

importance levels are defined: IM1 (variables ranked 1 – 5), IM2 (variables ranked 6 – 10), IM3 

(variables ranked 11 – 15), IM4 (variables ranked 16 – 20), IM5 (variables ranked 21 – 24). This 

is conducive to further illustrate how dominant factors change with scales. 

4. Results 

4.1. Changes of urban morphology features at locations and scales 

This study selected 15 window sizes from 30 m to 300 m. The spatial distribution of selected 

morphological metrics at 90 m is shown in Fig. A2, which illustrated a significant location-

dependent pattern. For the courtyard houses region and royal buildings, the building density, 

building coverage ratio, spatial proportion of low-rise and sublow-rise buildings, landscape 

fragmentation, shape index, edge density, fractal dimension index exceeds that significantly than 

the modern building region, while the latter displayed a built-up pattern with higher building height, 

surface area, volume, building spacing, diversity and building surface fluctuation (indicated by SQ, 

SSL and SDR). In addition, higher trees are more distributed at the urban parks and royal garden. 

The trees along the modern buildings also showed a relatively higher tendency than that in the 

courtyard houses region.   

The frequency distribution density (Fig. 3, applying kernel smoothing at spans of 60, 120, 180, 

240, 300 m) of selected metrics indicates the discrete level of data distribution. The higher the peak 

value, the denser the data here. Focusing on the horizontal axis, the position corresponding to peak 

value tended to increase with the increase of scales, particularly for the absolute indicators (e.g., 

ENN, BH, SA and VOL). Larger window size means more buildings included and the open space 

among buildings can be better displayed. However, the changing tendency of peak values differ 

from metrics type. The peak values of 3D composition metrics tended to decrease with size 
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increasing (except metrics for measuring spatial proportion of building types because most of them 

were distributed around zero), while those of 2D metrics and most configuration metrics tended to 

increase. Increasing peak values with sizes means more data aggregation. When studying coupled 

influences on LST with other metrics, if the peak value of one metric had an increasing tendency 

with sizes, the ability of this metric in explaining LST might get improvement, conversely verse. 

In this case, 3D characteristics and corresponding surface fluctuation might be dominant for 

describing urban morphology at small sizes, but with the increase of window size, the role of 3D 

metrics turned to be weaker and that of 2D and configuration characteristics got strengthened. This 

replacement is likely to causing different influence on urban heat environment across scales. 
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Figure 3. Variations of Kernel distribution density over selected scales (x-axis means the value 

range, while y-axis means the density value). The estimate is based on the normal kernel function, 

using the window parameter (bandwidth=2). ‘2D’ represents 2D composition metrics, ‘3D’ 

represents 3D composition metrics, and ‘con’ represents configuration metrics. 
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4.2. Association between morphological metrics and LST over scales and seasons  

Among the 2D composition metrics, the building coverage ratio (BCR) is positively related 

the LST, similar phenomena are also seen in edge density (ED) and patch density (PD; see Fig. 4). 

Building spacing (ENN) is negatively related to LST. Higher building coverage, complex edge 

condition and compact building layout lead to more hat accumulation and less heat loss. More 

solar radiation is transferred into sensible heat fluxes and more heat storage is stored into the 

buildings, which together cause a higher LST. In addition, with the increase of window size, the 

Pearson coefficients tended to increase and reached a stable state. The changing tendency of 3D 

metrics with scales are similar with 2D scales.  Most of metrics displayed a negative relationship 

with LST except low-rise building proportion. Negative values mean that significant building 

surface fluctuation might cool neighborhood environment. The reason is that selected 2D metrics 

are related to more sensible heat fluxes, but 3D metrics directly affect the spatial distribution of 

incoming solar radiation. This also explained the differences for 2D and 3D metrics over seasons. 

3D metrics showed higher association with LST during cold seasons, different with 2D metrics 

that showed higher association during hot season. During hot season with strong radiation, heat 

accumulation caused by 2D features might be significant on the influence of LST than the building 

shade. When it turned into cold season, spatial distribution of incoming solar radiation would be 

the main reason for LST changes. 
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Figure 4. Variations of Pearson correlation coefficients (y-axis) for different metrics group over 

different scales (x-axis). ‘2D’ represents 2D composition metrics, ‘3D’ represents 3D composition 

metrics, and ‘con’ represents configuration metrics; the season is indicated by Hot, Moderate, and 

Cold (sect. 2.2). 
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The association between LST and configuration metrics among scales were similar with 

composition metrics. The lower coefficients are expected at small sizes. Under these sizes, the 

single window only involves limited buildings, therefore, the spatial configuration of building 

layouts is not obvious. With the increase of window size, the Pearson coefficients tended to 

increase because more and more buildings are included and building styles tended to be multiple. 

LDI, LFI, PROX and LSI were positively related to LST, while COI and LPI negatively related to 

LST. Complex building shape indicated by LFI and LSI, larger surface area to building spacing 

ratio (PROX), and complex edge condition (LDI) would lead to increase of LST. Larger largest 

patch index (LPI) means more building shade, while better patch cohesion condition (COI) is 

conducive to urban ventilation, which lead to lower LST. In addition, most of configuration metrics 

showed a higher value during hot season. The reason is similar to 2D composition metrics, which 

affect LST mainly through heat accumulation through complex buildings layout. 

4.3. Relative importance of morphological metrics in influencing LST across scales and seasons  

With the increase of window size, mean values of R2 tended to increase from 0.51 to 0.82, 

while that of RMSE tended to decrease from 1.2 to 0.7, as expected (Fig. 5a and 5b). Three scale 

groups were further defined: small scales (30 m – 90 m) with an obvious increase of R2, medium 

scales (105 m – 165 m) with a slow increase of R2, and large scales (180 m – 300 m) with relatively 

stable variations of R2. Fig. 5c displays the monthly variations of RMSE for regressed LST, which 

indicates a lower accuracy at hot seasons than moderate and cold seasons. This seems to 

correspond with the changes of solar radiation, sun duration and intensity. For the relative 

importance of selected metrics, tree height displayed the highest contribution to the variations of 

LST at most scales (Fig. 5d). Another point is the season-dependent impacts, particularly at large 

scales. Significant influence of tree height was revealed during hot season. This is due to coupling 
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function of building shade and latent heat fluxes. During the cold season, the solar radiation is very 

low and the tree leaves fall, reducing evapotranspiration and the influence on LST.  

 

Figure 5. a) Variations of R2 for predicting LST over scales using random forest; b) Variations 

of RMSE over scales; c) Variations of RMSE over months; d) Relative importance of tree height 

in predicting LST over scales and months. ‘1’ means the top-1 importance, and so on. Red line in 

each box indicates the median value. 

For the relative importance of building metrics, there were no significant differences along 

seasons (Appendix A3), but significant across scales (Fig. 6). Fig. 6a displayed the detailed 

changes of relative importance of each metric at small, medium and large scales. 2D composition 

metrics (PA, ED, ENN and PD) all showed much higher importance to the variations of LST than 

3D and configuration metrics at large scales. The results turned to be opposite at small scales that 

3D metrics, particularly BH, SA, VOL and surface fluctuation parameters (SQ, SSL and SDR). 

Fig. 6b displayed the changes of relative importance of various metrics groups over scales. It’s 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The results turned to be opposite at small scales that



19 
 

significant that 3D metrics tended to decrease, while 2D metrics tended to increase with size 

increasing. The crossing point existed in the medium scales (105 m – 165 m), that the 2D and 3D 

metrics both showed higher contribution to the LST. Another point is that the relative importance 

of configuration metrics is below I3 across all scales, much lower than composition metrics (2D 

and 3D metrics), which might indicate a relative weak influence of configuration metrics. In 

addition, according to the results of  

 

Figure 6. a) Changes of relative importance of each metric at a specific scale group (small, medium 

or large) for all seasons; b) Changes of relative importance of various metrics belonging to the 

same building metric type (2D composition, 3D composition or configuration metrics) for all 

seasons. Red line in each box means the median value. 
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5. Discussions and Conclusions 

5.1. Influencing mechanisms of urban morphology on LST over scales 

Multiscale studies for the relationship between urban morphology and LST is increasingly 

found in the literature, and aim to find the turning point over scales. We found some excited 

conclusions. In this study, we applied a suite of building metrics for measuring urban morphology 

and the results indicated that with increase of window size, 2D composition and configuration 

gradually replace the dominant role of 3D composition metrics for describing urban morphology, 

which coincided with Li and Hu (2022) for the same region. This change is important and 

conducive to further reveal in-depth influencing mechanisms between urban morphology and 

urban heat environment.  

Combining the results of correlation and relative importance of building metrics, the 

composition metrics showed higher influence on the variations of LST than configuration metrics 

across scales. Similar findings were also indicated by Liu et al. (2018) and Guo et al. (2021).  

Composition metrics focus on the measurement of building number, density, building spacing and 

surface roughness, which directly affect the incoming solar radiation and corresponding sensible 

heat fluxes. The configuration metrics focus on the spatial structure of buildings layout in projected 

plane, rather than the vertical information. This may affect LST through heat accumulation and 

urban ventilation condition, which explained the correlation with LST, but the weakness in 

reflecting building shade might lead to less importance than composition metrics.  

Among the composition, 2D metrics and 3D metrics differ with scales. At large scales, the 

relative importance of 2D metrics totally exceed that of 3D metrics. This conclusion is similar with 

Lu et al. (2021), Huang and Wang (2019), and Li and Hu (2022). In their studies, when the window 

size over 120 m, building coverage ratio turned to be the most important among all the metrics. At 
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small scales, the influence of 3D metrics on LST are much more significant than 2D metrics. Our 

finding is coincided with Li and Hu (2022), who found a higher importance of building height at 

60 m. The difference over scales indicated the changes of influencing mechanisms. Larger scale 

means more buildings included in one window, and more incoming solar radiation are transferred 

into sensible and soil heat fluxes. In addition, for a dense and irregular built-up landscape, these 

heats are hard to release, and may lead to more heat storage and heat accumulation, then leading 

to higher LST. At small scales, the building height, surface area, volume and SQ are the dominant 

building characteristics over windows. Higher values generate more building shade, reflect more 

solar radiation, and lead to weaker energy transformation. The results indicated that this influence 

may exceed the influence of heat accumulation on LST, and causing a higher importance of 3D 

than 2D composition metrics.  

In this study, the selected metrics can explain over 80% variations of LST across seasons at 

large scales. Even at small scales, our results performed much better than the same-type researches. 

In additional to more building features considered, another reason is the tree height. Tree height 

was the most important factor for the variations of LST in most of months and scales. Comparing 

with other vegetation index (e.g., NDVI), tree height is much more sensitive to the reflected solar 

radiation. Higher trees and wider leaves might cause stronger evapotranspiration and larger shade, 

which is conducive to cool the neighborhood environment. In contrast, we made additional 

experiments to compared the accuracy with tree height and without tree height (Fig. 7).  The results 

indicated that tree height data can improve the model accuracy well, particularly at small scales. 

Considering the significant cooling effect, tree height should be involved for the studies of 

relationship between urban morphology and LST.  
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Figure 7. Differences of R2 (a) and RMSE (b) in predicting LST using tree height and without. 

Red line in each box means the median value. 

5.2. Influencing mechanisms of urban morphology on LST over seasons 

The changes of influencing mechanism also get demonstration across seasons. Pearson 

correlation coefficients showed a stronger influence of 2D composition metrics than 3D metrics 

during hot season, but a weaker influence during cold season. This conclusion is the same with 

Guo et al. (2021) and Huang and Wang (2019). For Beijing’s old city, the solar radiation is quite 

strong from June to September. In spite of lots of building shade from high-rise buildings and 

efficient evapotranspiration from vegetation and water, strong convection between air and building 

surface together with dense building layouts lead to high temperature. The metrics which are 

sensitive to this influence, such as building coverage ratio, patch density and building spacing, all 
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displayed higher correlations at these months. During the cold season in Beijing, the human 

comfort is significantly different with the sun rise and without, because of weak solar radiation 

and short sun duration. And lower solar elevation angle lead to larger building shade area, 

particularly around the high-rise buildings. Li et al. (2021) supported this point that they found a 

higher contribution of building shade index on winter temperature.  

In spite of no seasonal significance of relative importance of building metrics, a larger RMSE 

was displayed during the hot months, and then moderate, cold seasons, which coincide with the 

changes of Pearson coefficients. Lower regression accuracy indicates a much more complex 

relationship between LST and urban morphology. During hot season, latent heat fluxes are stronger 

than that at cold season. In this study, although we make a filter of windows (spatial proportion of 

water plus vegetation less 0.3), some vegetation (green roof materials and vegetation along vertical 

walls) or water regions are included in the window for calculation. The mixed pixels in LST map 

is 30 m resolution, which is controlled by various land use and land cover types. More important, 

the metrics that we selected in this study are sensible to sensible heat fluxes, hardly to reflect latent 

fluxes. Although we consider tree height, the parameters directly related to evapotranspiration (e.g., 

volume and surface area) is neglected. However, at cold season, the latent heat flux is very weak 

because of weak solar radiation, bared trees and frozen water. Most of net radiation from sun are 

transferred into sensible heat fluxes and heat storage, which lead to a higher accuracy of regressed 

LST. 

5.3. Recommendations for urban planning  

The scale in this study refers to the window size, which represents different aspects to 

understand urban morphology. Our results demonstrate a scale-dependent influence of urban 

morphology on LST, and may supply some useful scientific suggestions for urban planning from 
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the aspect of heat management. Large scales represent the large-scale relationships, while small 

scales represent the local conditions and planners may follow the order: first the whole, then the 

parts. At large scales, people need to consider the coverage of buildings, building spacing, and the 

configuration with other land use or land cover types firstly. This might have an important 

influence on the urban heat environment for the whole city. Later, in local regions, 3D surface 

roughness might be considered in addition to 2D plane features. This is the scale that 2D and 3D 

composition together affect LST, suggested by our study. For more details, the building height, 

surface fluctuation, and building spacing should be considered, which might be conducive to create 

better ventilation paths and more efficient heat release.  

5.4. Potential application and limitations of this study 

One potential application of urban morphological indicators is for LST downscaling. Remote 

sensing hardly extracts the high resolution LST product because the thermal infrared bands only 

detect a range of low-energy wavelength (Hutengs and Vohland, 2016; Pu, 2021). One useful 

solution is to develop downscaling models. The morphological indicators can be taken as 

influencing factors for predicting high-resolution LST in urban regions. One thing needs to mind 

is that most of literature assume the relationship as scale-independent (Pu, 2021). Our study has 

proofed scale effect for the relationship between urban morphology and LST, but this relationship 

is relatively stable within a certain scale range. We suggested the ratio from native resolution for 

LST downscaling to target resolution should not be too large, and it’s best to control under 3 times. 

Another application is large-comparison of urban morphology across the world. With the 

development of high-resolution remote sensing sensors (e.g., Sentinel series), building footprint 

and building height products at nation, continent and global scale have been released (Frantz et al., 

2021; Esch et al., 2022; Yang et al., 2022). Together with the temporal analysis, we can understand 
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spatiotemporal changes of urban morphology across the world, and discuss the influence of 

urbanization on urban development as well as their potential influence on urban ecosystems. 

Impacts of urban morphology on LST may depend on seasons, day/night, regions and scales. 

This study considered the seasons and scales during the daytime, but omitted nocturnal influence 

and regions. The nocturnal urban temperature is highly related to human comfort, and may cause 

more power consumption for cooling or heating, which in turn, lead to serious air pollution and 

greenhouse gas emissions (Salamanca et al., 2014; Guo et al., 2021). The urban morphology, 

particularly the physical form varies from cities (Guo et al., 2022), may lead to various influence 

on LST. In addition, regardless of the use of the linear Pearson coefficient or the nonlinear relative 

importance of the metrics on LST, they are not directly related to the cooling or heating efficiency 

of building features. Partial dependence plots might supply the solution. For further studies, we 

would integrate these factors to see whether there is similarity of the influence among cities from 

scale and season. 
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Appendix A 

 

Figure A1. Monthly variations of extracted LSTs and defined three seasons in Beijing’s old city. 

Red line in each box means the median value. 
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Figure A2. Spatial distribution of selected building metrics and tree height at 90 m scale. ‘2D’ 

represents 2D composition metrics, ‘3D’ represents 3D composition metrics, and ‘con’ represents 

configuration metrics. 
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Figure A3. Relative importance of each building metric over seasons. ‘2D’ represents 2D 

composition metrics, ‘3D’ represents 3D composition metrics, and ‘con’ represents configuration 

metrics.  
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