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Abstract 14 

 Anthropogenic heat (AH), an important urban heat source, is often overlooked or simplified 15 

in research on the driving mechanisms of the urban heat island effect (UHI), and case studies 16 

investigating the impacts of different AH estimation methods are scarce. This study estimated 17 

the AH in seven typical Chinese cities based on a remote sensing surface energy balance model 18 

( ) and an energy consumption inventory-machine learning model ( ). The intensity 19 

of the surface UHI was extracted using land surface temperatures, and then the linear mixed-20 

effects model and geographic detectors were used to analyze the driving effect of AH on the 21 

UHI. Despite the similar shapes of the spatial profile curves, the AH derived from the two 22 

models differed in both temporal and spatial characteristics, which was more typical in winter 23 

and in urban centers, and  had a more notable central spread feature than . The 24 

AH driving effects on UHI were notably influenced by spatial and temporal heterogeneity, 25 
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particularly in regions with distinct background climates. However, after controlling for the 26 

random effects of the background climate, AH still exhibited a considerable enhancing effect 27 

on the UHI.  outperformed  in terms of linear positive correlation and 28 

interpretation rate for UHI. Meanwhile, interactions with other potential factors enhanced AH 29 

driving effects. This study offers guidance for simulating and analyzing urban climates to 30 

propose practical and effective measures for optimizing urban thermal environments, with a 31 

focus on AH or and energy consumption control. 32 

Key words: Anthropogenic heat, Urban heat islands, Driving analysis, Spatiotemporal 33 

heterogeneity 34 

 35 

1. Introduction 36 

Urbanization has had the greatest impact on the transformation of the Earth’s environment, 37 

as evidenced by the growth in urban area and population in recent decades (Chapman et al., 38 

2017; Zhou et al., 2018). During the rapid process of urbanization, natural landscapes are 39 

replaced with impervious surfaces, changing the properties and geometries of the ground 40 

surface and influencing energy absorption, storage, and emission, as well as releasing additional 41 

anthropogenic heat (Firozjaei et al., 2020; Meng et al., 2018; Mirzaei and Haghighat, 2010; 42 

Voogt and Oke, 2003). Urban heat islands (UHIs) are a major environmental issue caused by 43 

urbanization, with substantially impacts on urban climate, ecology, and human health 44 

(Mohajerani et al., 2017; Ulpiani, 2021; Yang et al., 2022b). Understanding the underlying 45 

mechanisms of UHI is crucial for developing effective measures to optimize the quality of 46 
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human living space (Meng et al., 2022). 47 

Land surface temperature (LST) obtained through thermal infrared remote sensing has 48 

broader applicability compared to site-based atmospheric temperature measurements, which 49 

have spatial limitations (Bahi et al., 2019; Dewan et al., 2021). LST can determine the spatial 50 

and temporal characteristics of UHI and enhance our understanding of urban climate dynamics 51 

(Hu et al., 2020; Ward et al., 2016; Wu et al., 2022). Therefore, surface UHI based on LST has 52 

become a crucial aspect in urban thermal environment studies (Fu et al., 2022; Peng et al., 2012). 53 

The formation of UHIs is a result of a complex interaction between multiple factors affecting 54 

surface energy balance (Rizwan et al., 2008; Zhao et al., 2014); in recent years, there has been 55 

extensive exploration of the patterns driving UHIs in multiple regions and time periods. To 56 

identify feasible measures for thermal environment mitigation under specific climatic and 57 

geographic conditions, a wide range of potential UHI drivers related to urbanization are 58 

considered using statistical or machine learning methods. These drivers include factors such as 59 

vegetation and water distribution, the characteristics of artificial surfaces, landscape patterns, 60 

three-dimensional building structures, and human activity (Dewan et al., 2021; Fu et al., 2022; 61 

Hu et al., 2020; Hu et al., 2022; Liang et al., 2020; Meng et al., 2022; Mohajerani et al., 2017; 62 

Ramirez-Aguilar and Lucas Souza, 2019; Wang et al., 2021b). However, most current studies 63 

focus on the difference in energy balance between urban and rural areas due to changes in the 64 

physical properties of the land surface resulting from urbanization, often overlooking or 65 

simplifying anthropogenic heat (AH), which is a key energy source and driver of the urban 66 

thermal environment (Chapman et al., 2017; Peng et al., 2012; Yang et al., 2022a). Instead, 67 
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socioeconomic variables such as nighttime lighting, population density, gross domestic product, 68 

and road networks have been used as proxies for AH in UHI studies (Liang et al., 2020; Raj et 69 

al., 2020; Wang et al., 2021b; Wang et al., 2021c; Zhou et al., 2014), although these factors are 70 

not directly correlated with LST. The difficulties in obtaining AH data with spatial and temporal 71 

heterogeneity may be an important impediment to relevant studies (Dong et al., 2017; Sun et 72 

al., 2018).  73 

To support the exploration of the impact of AH on the urban thermal environment, 74 

numerous implementable AH estimation methods, models, and datasets have been proposed. 75 

These can be divided into three categories: energy consumption inventory methods, surface 76 

energy balance methods, and building energy simulation methods (Sailor, 2011). Building 77 

energy simulation is considered the most accurate method for determining building heat 78 

emissions, but it has a high demand for data and cannot be applied in large-scale studies 79 

(Alhazmi et al., 2022; Nie et al., 2014; Vahmani et al., 2022). The energy consumption 80 

inventory method is the most common method for estimating AH and is highly applicable and 81 

scalable in various studies (Quah and Roth, 2012; Smith et al., 2009; Varquez et al., 2021). With 82 

advancements in communication and network technologies, big data with location-based 83 

semantic information, spatial interaction information, and real-time dynamic information have 84 

great potential in representing and explaining the spatiotemporal characteristics of human 85 

activities (Chen et al., 2020; Gao et al., 2017); combining these data with inventory methods 86 

can effectively improve the resolution of AH estimation (Liu et al., 2021; Ming et al., 2022; Xu 87 

et al., 2021). Furthermore, the combination of machine-learning algorithms allows for more 88 
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accurate and applicable AH models (Chen et al., 2020; Qian et al., 2022; Wang et al., 2022b). 89 

The surface energy balance (SEB) method uses micro-meteorological observation techniques 90 

such as the eddy covariance system to determine the terms in the SEB equation, with the 91 

residual term considered as the AH (Pigeon et al., 2007). The combination of SEB with 92 

quantitative remote sensing techniques (RS-SEB) allows for application on larger spatial scales 93 

(Kato and Yamaguchi, 2005), making it one of the most effective methods for obtaining high-94 

resolution AH and a common means of validating the results of AH estimation (Chow et al., 95 

2014; Peng et al., 2021; Zhou et al., 2012). Due to the strengths and weaknesses of various 96 

methods, multi-method mixed modeling and cross-validation have become an important 97 

direction for future AH studies (Wang et al., 2022a; Zheng and Weng, 2018). However, further 98 

investigation is necessary to examine the differences in the spatial and temporal distribution of 99 

AH estimated by different methods and its impact on the urban thermal environment.  100 

The study of the impact of AH on the urban thermal environment is still in the early stages 101 

of numerical simulation experiments (Molnar et al., 2020; Singh et al., 2022; Tao et al., 2022; 102 

Zhan and Xie, 2022) and lacks systematic analysis in real cases. Based on refined AH data, the 103 

role of AH in the urban thermal environment can be reflected more intuitively and convincingly 104 

through a mature statistical-based analysis from UHI driving studies (Hu et al., 2020), which 105 

also provide example arguments for numerical simulation studies. In this study, AH was 106 

modeled in seven cities in different geographic regions of China using two methods. The 107 

objectives of this study were to 1) investigate the differences in the spatial and temporal 108 

characteristics of different AH results, 2) explore the important relationships between AH and 109 
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UHI, and 3) examine the impacts of AH on UHI and its interactions with other potential factors. 110 

 111 

2. Study area and dataset 112 

2.1. Study area 113 

Since the late 1970s, China has undergone unprecedented economic development and 114 

urbanization (Cao et al., 2016; Schneider and Mertes, 2014; Yang et al., 2019), resulting in a 115 

dramatic increase in energy consumption and associated AH emissions. This has altered the 116 

energy flow in urban ecosystems and affected urban ecological processes such as urban regional 117 

climate and atmospheric environment, causing frequent extreme heat events, decreased air 118 

quality, and serious impacts on the health of residents in Chinese cities (Cong et al., 2022; Gu 119 

et al., 2016). One representative central city from each of the seven natural geographic regions 120 

of China (Zhao et al., 2015) was selected as the target area (Fig. 1). These cities serve as the 121 

economic, cultural, and transportation hubs of their respective regions and as well as the entire 122 

country, and they exhibit considerable variations in climate, topography, and other natural 123 

conditions. Hence, studying the driving mechanisms of AH and UHI in these cities will provide 124 

valuable information for urban thermal environment management. Due to their close integration, 125 

Foshan and Guangzhou are treated as one region in this study and are referred to as Guangzhou 126 

in the following text.  127 
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 128 
Fig. 1. Geographical location, terrain, and administrative extents of the study areas. 129 

 130 

2.2. Dataset 131 

To calculate UHI intensities and obtain the surface parameters required for the RS-SEB 132 

model, the following data were used: MOD11A1 1000m resolution daily surface temperature 133 

and emissivity product, MOD09GA 500m resolution daily surface reflectance product from 134 

NASA (https://ladsweb.nascom.nasa.gov), ALOS 30m resolution global digital surface model 135 

(DSM) dataset (Tadono et al., 2016), 2017 10m resolution global land cover data, and 30m 136 

resolution global artificial impervious surface data (Gong et al., 2020; Gong et al., 2019). The 137 

meteorological parameters required for the RS-SEB model were obtained from the National 138 

Centers for Environmental Information site data (NCEI GIS Team, 2021) and ERA5 139 
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atmospheric reanalysis data (Muñoz Sabater, 2019) corresponding to the Terra satellite crossing 140 

moment. 141 

The energy consumption inventory-machine learning model used in this study is based on 142 

a previous study (Qian et al., 2022) and requires a large and diverse dataset including energy 143 

consumption, socioeconomic, point-of-interest, road/railway, nighttime illumination, surface 144 

temperature, and meteorological, and topographical data. The data sources and preprocessing 145 

are described in the original study (Qian et al., 2022). Additionally, population heat data 146 

obtained from cell phone user location information from the Baidu Huiyan big data platform 147 

(https://huiyan.baidu.com) were also included in this study to describe the dynamic population 148 

aggregation within the city to estimate the hourly gridded AH. The monthly average data for 149 

July and December 2017 (2016 for Guangzhou) in the study area were obtained based on the 150 

above data sources. 151 

 152 

3. Method 153 

This study was divided into two major parts (Fig. 2a): AH estimation and UHI driving 154 

analysis of the mean satellite transit moment in summer (July) and winter (December). First, 155 

the AH was estimated using a machine learning model that combined the energy inventory 156 

method and a remote sensing surface energy balance model. After the UHI intensity was 157 

calculated, a linear mixed-effects model and geographic detectors were used to examine the 158 

important relationships between AH and UHI. 159 
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 160 

Fig. 2. Workflow for (a) the whole study and (b) the energy inventory-machine learning model. 161 
AH: anthropogenic heat, SEB: surface energy balance, UHI: urban heat island. 162 

3.1 AH estimation 163 

3.1.1. Inventory based-machine learning method 164 

 The most common AH estimation method is the top-down energy consumption inventory 165 

method, which is based on large-scale energy consumption data and is downscaled step-by-step 166 

using specified spatial-temporal rules. In our previous study (Qian et al., 2022), we constructed 167 

an efficient AH estimation model combined with top-down inventory and machine learning 168 

(ML) algorithms. Further details on the data preprocessing, AH sample estimation, and model 169 

training evaluation can be found in Qian et al. (2022). Therefore, this study improved the 170 

training process of ML models using the stacking integration framework (Wolpert, 1992) to 171 

fully exploit the advantages of various ML algorithms. Furthermore, the monthly AH from the 172 

ML model is the average of the whole-day AH for that month, which may be further refined in 173 

time scales to obtain the AH at the Terra satellite transit moment for that month (Fig. 2b). The 174 

intraday variations in multi-source AH were estimated using population heat (PH) data within 175 

each grid and the intraday variation curve of industrial heat proposed in previous studies (Liu 176 
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et al., 2021; Zheng and Weng, 2018). The AH obtained using this method is denoted as  177 

and is calculated as follows: 178 

179 

180 

where  denotes the mean AH ( ) at time h of satellite transit for the corresponding 181 

month,  is the monthly mean industrial heat from the ML model,  is the intraday 182 

variation coefficient of industrial heat (%),  is the monthly mean transportation heat, 183 

building heat, and metabolic heat from the ML model, and  is the intraday variation 184 

coefficient of population (%).  and  are the PH values at time h in that month for 185 

weekdays and weekends,  and  are the number of weekdays and weekends in that month, 186 

and  and  are the average PH values for the entire day on weekdays and weekends. 187 

Detailed information about the stacking framework is provided in the Appendix. For the sake 188 

of brevity, AH derived using this method is hereafter referred to as . Both the calculation 189 

process and results have a resolution of 500 m. 190 

3.1.2. Remote sensing-surface energy balance model 191 

 AH has been recognized as an important source term in urban multiscale energy systems 192 

(Chapman et al., 2017; Pigeon et al., 2007), whereas the sum of the energy received and released 193 

from the surface system remains constant during transformation and transfer, and the surface 194 

energy balance method considers the residual term of the energy budget as the AH-induced 195 

disturbance. Kato and Yamaguchi (2005) first proposed the remote sensing surface energy 196 

balance (RS-SEB) model for AH estimation. This model, which applies quantitative remote 197 
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sensing techniques to estimate surface energy, has been widely adopted in urban-scale studies 198 

(Firozjaei et al., 2020; Wong et al., 2015; Yu et al., 2021). In this study, a similar RS-SEB model 199 

was constructed to estimate the daytime AH following the previous modeling process: 200 

 201 

where  denotes the net radiation,  represents the sensible heat flux,  is the latent heat 202 

flux, and  indicates ground or conductive heat flux at the material surface. However, due to 203 

the uncertainty in the calculation of parameters at night, G and AH are combined as the principal 204 

surface heat sources during nighttime to represent the release of heat storage at night (Kato and 205 

Yamaguchi, 2007): 206 

 207 

where  represents the intensity of heat storage release at night and its magnitude reflects the 208 

intensity of AH at the city scale. Considering the coarse spatial resolution of thermal infrared 209 

remote sensing, the influence of mixed pixels on the calculation of surface parameters required 210 

for RS-SEB cannot be overlooked (Liu et al., 2020). Therefore, in this study, fixed surface 211 

parameters such as aerodynamic resistance were computed using high-resolution DSM and land 212 

cover data, and their pixel values at coarse resolution (500 m) were calculated using sub-pixel 213 

aggregation. For specific information on RS-SEB parameter calculation and model construction, 214 

please refer to Kato and Yamaguchi (2005) and Zhou et al. (2012). For brevity, the AH with a 215 

spatial resolution of 500 m based on this method is referred to as . 216 

3.2. UHI intensity 217 

 In this study, urban heat island intensity (UHII) was defined as the difference between the 218 
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urban LST and the mean LST of the surrounding rural areas (Clinton and Gong, 2013; Zhou et 219 

al., 2014), Therefore, the boundaries of the urban built-up areas and rural areas of the city must 220 

be determined. The impervious surface distribution density (ISDD) was calculated to describe 221 

the extent and density of impervious surface in a specified radius around a pixel (Firozjaei et 222 

al., 2020; Meng et al., 2018): 223 

 224 

where s represents the center pixel,  is the value of the ith pixel within radius r (impervious 225 

pixel = 1; permeable pixel = 0),  is the distance between pixel i and the center pixel, and n 226 

is the total number of pixels within a circle of radius r (1,000 m). Urban built-up area boundaries 227 

were extracted using the city clustering algorithm (CCA) based on the obtained ISDD 228 

(Rozenfeld et al., 2008). The rural area in this study is defined as a buffer zone around an urban 229 

area that is the same size as the urban area (Dewan et al., 2021; Zhou et al., 2014); the UHII 230 

can be calculated using the following equation: 231 

 232 

where  represents the surface temperature within the urban area of the city and  is 233 

the average surface temperature in rural areas. 234 

3.3. Relationship between AH and UHI 235 

 Linear mixed-effects models and geographic detectors were used to elucidate the 236 

relationship between AH and UHI. AH estimation models are the empirical and physical 237 

expressions of this intrinsic relationship; however mathematical and statistical approaches can 238 

provide a more intuitive and interpretable result. 239 
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3.3.1. Mixed effects model 240 

 This study aimed to determine the practical contribution of AH to UHII by using a linear 241 

mixed-effects model. In multi-regional and multi-temporal studies, UHII is largely determined 242 

by climatic context, including geographical area, season, and diurnal factors. Thus, the role of 243 

AH may not be significant. Mixed-effects models (Bollen and Brand, 2010; Sheiner and Grasela, 244 

1991) could be used to address this issue. We treated the variation in UHII with AH as a fixed 245 

effect, while regional, seasonal, and diurnal factors were considered random effects and were 246 

included in the analysis as categorical variables (Table A1). By excluding the random effects, 247 

we could determine the actual impact of AH in a multi-spatial and temporal environment, and 248 

also reflect the important role of climate context. In this study, nested effects between different 249 

random effects were considered and implemented in R, and the optimal mixed-effects model 250 

was selected based on the Akaike information criterion. 251 

3.3.2. Geographic detectors 252 

Geographic detectors are a set of statistical methods for detecting spatial differentiation and 253 

revealing the driving forces behind it. They are divided into four modules: factor detection, 254 

interaction detection, risk detection, and ecological detection (Wang and Hu, 2012; Wang et al., 255 

2010). The basic assumption is that if an independent variable has a substantial effect on a 256 

dependent variable, the spatial distributions of the independent and dependent variables should 257 

be similar. Geographic detectors can identify complex linear and nonlinear relationships 258 

between independent and dependent variables, and the analysis results are not affected by 259 

multivariate covariance (Wang et al., 2021a). This study employed the factor detection module 260 
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to measure the UHI spatial heterogeneity induced by AH, which is quantitatively described by 261 

the q-statistic: 262 

 263 

where h is the layering of the dependent variable Y or factor X, namely the classification or 264 

zoning,  and  are the variances of the Y values for layer h and the entire region, 265 

respectively. The value range of q is [0,1], and a larger value indicates a more notable spatial 266 

heterogeneity of Y or a stronger interpretation of Y by X. Interaction detection assesses the 267 

interaction of the two factors on the target variable, represented by the stacked q-value. In 268 

addition to AH, this study calculated UHI drivers that were commonly used in previous studies 269 

(Peng et al., 2012; Wu et al., 2022; Yang et al., 2017) to determine the interaction between AH 270 

and other drivers (Table A2), including landscape pattern index, class level index of impervious 271 

surface and vegetation, enhanced vegetation index (EVI) and surface albedo. 272 

 273 

4. Results 274 

4.1. Characteristics of AH distribution  275 

The AH and nighttime  values were obtained for the seven cities during spring and 276 

summer using both models (Fig. 3). The  was notably stronger during the day than at 277 

night in the same season, and it was stronger in summer than in winter in the southern regions 278 

(Shanghai, Wuhan, Chengdu, and Guangzhou), where summer temperatures were high and 279 

winter temperatures were relatively mild, but in the northern regions (Beijing, Shenyang, and 280 

Lanzhou), where winters are extremely cold, the winter  was stronger. For daytime 281 
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, the AH values in the urban built-up area were much larger in summer than in winter, 282 

while the spatial distribution of  at night in winter was more consistent with the urban 283 

boundaries. Despite the similar distribution ranges, the AH obtained by the two models differed 284 

in both temporal and spatial details. The extent and intensity of  were stronger than 285 

 in the summer in some cities, whereas  was generally weaker in the winter. The 286 

high values of  were remarkably clustered in the urban center and radiated outward, 287 

whereas the high values of  were mainly distributed in the low-rise areas and industrial 288 

areas around the urban areas, and were weak in the urban center with dense high-rise buildings. 289 

 290 
Fig. 3. Spatial and temporal distribution of anthropogenic heat and nighttime heat storage: (a)–291 
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(d)  in summer daytime, winter daytime, summer nighttime and winter nighttime, 292 
respectively; (e)–(f)  in summer and winter daytime, respectively; (g)–(h) heat storage 293 
( ) in summer and winter nighttime based on RS-SEB, respectively.  294 

To better reflect the spatial and temporal differences in the results of the different models, 295 

the AH in Beijing and Shanghai were selected for the spatial profile visualization of urban areas 296 

(Fig. 4). AH exhibited a roughly peaked curve, with high values in the central region where the 297 

impervious aggregation density was the strongest. The summer daytime curves of AH for the 298 

two models were similar, particularly in regions dominated by built-up areas, whereas there 299 

were large differences in peripheral regions dominated by rural areas, primarily in the 300 

anomalously low and high values of  in the periphery regions. During the winter,  301 

was lower than  during the daytime, especially in metropolitan areas. The  in 302 

Beijing was slightly lower at night than during the day, whereas the  in Shanghai 303 

decreased more notably at night. In contrast, the nighttime  in Beijing was very strong, 304 

whereas the nighttime  in Shanghai was closer to the daytime AH values. The spatial 305 

distribution of  was smoother than that of the AH profiles.  306 
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 307 
Fig. 4. Spatial profiles of AH and nighttime heat storage ( ) based on different methods in (a) 308 
Beijing and (b) Shanghai. Each unit of “Row” and “Col” refers to one grid (500 m) of rows and 309 
columns, respectively.310 

4.2. Relationship between AH and UHI 311 

The spatial and temporal characteristics of UHI were determined using the LST map (Fig. 312 
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5 and Table A3). UHI was strongest during summer daytime in most regions, with the exception 313 

of Lanzhou, where an urban cold island was observed during the daytime in both summer and 314 

winter due to its arid and sparsely vegetated conditions. UHI was weaker during winter daytime 315 

compared to summer, but in Guangzhou, which is located in the tropics, the UHI was much 316 

stronger during winter daytime than in other regions, although the nighttime UHI was not 317 

pronounced. However, in most regions, a strong UHI was observed during both summer and 318 

winter nighttime, with a distinct central radiative distribution. 319 

 320 
Fig. 5. Surface temperatures in major built-up and rural areas in each city at different time 321 
periods. 322 

In general, there was a clear positive relationship between the AH and UHII (Fig. 6). The 323 

positive relationship between  and UHII was strong during summer daytime in most 324 

cities, but weak during the winter daytime and relatively substantial at night. However, the 325 

relationship between  and UHII in Lanzhou and Guangzhou was different: notable in 326 
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Lanzhou only at night and in Guangzhou only during the daytime. Compared with 327 

 and nighttime  had stronger linear correlations with UHII, and this relationship was 328 

highly significant (p<0.001) in most cases. The results of the mixed-effects model (Table 1) 329 

indicated that random effects, such as regional, seasonal, and diurnal effects, had high variance, 330 

suggesting a substantial impact on the UHI. After excluding random effects, the positive linear 331 

contribution of AH to UHI remained significant (p<0.001). This shows the fixed warming effect 332 

of AH in the urban thermal environment, and the slope is a measure of the impact of AH on 333 

UHII. The greater slope of  indicated a stronger influence than , but the larger 334 

random effects also implied that  was more susceptible to interference from the urban 335 

background climate. 336 

 337 
Fig. 6. Relationship between UHII and (a)–(b)  for summer and winter, respectively; 338 
(c)–(d) daytime  and nighttime  for summer and winter, respectively, in major built-339 
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up and rural areas.  340 

 341 

Table 1. Results of the mixed-effects model based on AH and UHII (Z-Score normalization). 342 

AH type 
Random effect Fixed effect 

Random term Variance explanation Intercept Slope 

 AH | Region/Season/Time 39 % -0.02 0.49*** 

 AH | Region/Season 74 % -0.04 0.66*** 

 343 

4.3. The driving effects of AH on UHI 344 

The q-value of the geographic detectors captured the extent to which the independent 345 

variables accounted for the target variables and explored the role of AH in driving surface UHI 346 

(Fig. 7). The interpretation rate for  was higher during summer and winter nights. In all 347 

cities except Guangzhou and Lanzhou, the interpretation rate of  was not greatly 348 

different between summer daytime and nighttime. The interpretation rate of  was much 349 

stronger during winter nighttime than daytime in most cities, but the opposite was true for 350 

Guangzhou. The explanatory rate of daytime  was generally higher than that of  351 

and was stronger in summer than in winter. The explanatory rate of nighttime  was the 352 

strongest for UHI, particularly during winter nighttime. However, the interpretation rate of 353 

nighttime  in Guangzhou was lower than that of  in daytime for both winter and 354 

summer. Overall, the results from the different AH models showed notable differences in terms 355 

of the driving effects on UHI in multiple spatial and temporal scenarios. 356 
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 357 
Fig. 7. Interpretation rate (q-value) of AH and  on UHII calculated using factor detection. 358 

The interaction between AH and all the factors improved the interpretation rate for UHI 359 

(Fig. 8). Generally, the interactions were similar to the results of the separate effects of AH, 360 

with the interaction of AH having the lowest interpretation rate during winter daytime and a 361 

relatively high rate during summer daytime, except for Guangzhou and Lanzhou. The effects 362 

of these factors did not differ greatly, but were influenced by spatial and temporal heterogeneity. 363 

For the interaction of , the impervious surface and vegetation factors differed 364 
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considerably, particularly at night with clear dividing lines in the interpretation rate plot, 365 

whereas albedo was a more prominent factor, often exhibiting large differences from the other 366 

factors and was the most dominant enhancer during winter daytime when the overall 367 

interpretation was low. The interaction characteristics of the other factors with  and  368 

were similar to , but the interaction was stronger due to the higher explanatory rate of 369 

 and , which could even reach 100% in Beijing and Lanzhou during winter nights. 370 

The role of albedo, however, was not as prominent in  and  and the interaction 371 

interpretation rate of the landscape-level factors was weak.  372 

 373 
Fig. 8. Interaction interpretation rate for UHII (q-value) between other driving factors and (a) 374 

, (b)  and nighttime . 375 

 376 

5. Discussion 377 

5.1. Implications of the AH from different methods 378 

The distinction between the inventory-based method and the energy balance method was 379 

evident in the definition and calculation of AH, which was reflected in the spatial and temporal 380 
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distribution of AH and its relationship with UHI. The method based on energy consumption 381 

inventories follows the assumption that heat generated from anthropogenic energy consumption 382 

is immediately released into the atmosphere as sensible heat (Kotthaus and Grimmond, 2012; 383 

Smith et al., 2009). However, in reality, this heat is absorbed, stored, or dissipated into the 384 

atmosphere as latent heat. Thus,  should be considered as the maximum sensible heat 385 

generated by anthropogenic activities. In contrast, RS-SEB ignores the perturbation of AH on 386 

terms other than the sensible heat term; thus,  could be considered as an increase in near-387 

surface atmospheric sensible heat caused by AH (Firozjaei et al., 2020; Kato and Yamaguchi, 388 

2005). This explains why  had a stronger linear correlation and explanatory rate with 389 

the surface UHI. In urban centers with a high density of high-rise buildings,  was 390 

generally lower than  due to non-negligible heat storage perturbation and impacts of 391 

building shading, and stronger heat storage efficiency in winter further reduced its value (Kato 392 

and Yamaguchi, 2007; Wong et al., 2015; Yu et al., 2021). Because  is derived from 393 

urban energy consumption and does not have a direct effect on the urban thermal environment, 394 

its interpretation of UHI was lower. However, its interaction with other factors could be 395 

explained as the efficiency of  as sensible heat release, causing an increase in LST. The 396 

interaction of  with other factors represents the warming effect of anthropogenic 397 

sensible heat influenced by surface properties and is influenced by the urban background 398 

climate, building materials, and meteorological conditions. At night, the main energy source 399 

besides AH is the heat stored in urban surface materials that dissipates in the form of long-wave 400 

radiation (Zheng et al., 2021; Zhou et al., 2014). Therefore, the  in this study reflected the 401 
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UHI distribution at night and confirmed the determining effect of the combined contribution of 402 

artificial surfaces and AH sources to the nighttime UHI.  403 

In general, the differences in physical meanings and numerical values determine the 404 

differences in the distribution characteristics and environmental effects of  and  405 

under various conditions. When examining the characteristics of human activities and their 406 

environmental impact,  is more appropriate, as it comes directly from energy 407 

consumption and social economy, whereas  is a better choice for urban energy budgets 408 

and direct impacts on the thermal environment. However, the suitability of these methods is not 409 

absolute as the definitions of the AH input required by analytical or simulation methods must 410 

be considered. Clarifying the implications of AH input is critical to obtain more accurate and 411 

robust conclusions when investigating the driving role of human activities on UHI. 412 

5.2. Implications for UHI mitigation 413 

The inclusion of AH in climate simulations can considerably improve model performance 414 

and reliability for meteorological parameters and air pollutants, whereas urban numerical 415 

simulation studies that do not consider AH are physically incomplete (Chen et al., 2016; Molnar 416 

et al., 2020). Because of the differences in the implications of AH estimated via different 417 

methods, there are limitations in using only a broad definition of AH to study the urban thermal 418 

environment and climate change (Liu et al., 2022a). It is critical to select the most appropriate 419 

AH input under different AH coupling schemes for various climate and urban canopy numerical 420 

models (Molnar et al., 2020; Narumi et al., 2009). Currently, the dominant coupling scheme in 421 

studies is to use the AH obtained through inventory-based methods as sensible heat, but latent 422 
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and storage heat should not be disregarded as they are important energy dissipation pathways 423 

(Vahmani et al., 2022; Yu et al., 2021). Therefore, the scarcity of comparative simulation studies 424 

using multiple AH inputs hinders a thorough understanding of the urban thermal environment, 425 

thus limiting the development of AH-based UHI mitigation measures. 426 

 In contrast, despite extensive research into UHI driving mechanisms, it is difficult to 427 

propose feasible thermal environment mitigation measures for developed land, whereas AH is 428 

controllable as an important heat source within cities, and such control has been effective in 429 

UHI mitigation (Liu et al., 2022b). Therefore, future research should focus on a deeper analysis 430 

and simulation of AH to achieve a reduction in energy consumption and an increase in urban 431 

thermal comfort through the reasonable control of AH. However, the differences in AH effects 432 

on the urban thermal environment are heavily influenced by the background climate, resulting 433 

in some synchronization with UHII variations as well as notable regional differences. As a 434 

result of the spatial and temporal heterogeneity of UHI and driving mechanisms, thermal 435 

mitigation measures must be tailored to local and temporal conditions, particularly in regions 436 

where the background environment differs markedly from the general situation, as in the 437 

particular characteristics of Lanzhou and Guangzhou in this study. The continental arid climate, 438 

urban basin topography, and large amount of bare soil around urban areas contribute to the cold 439 

island effect during daytime in Lanzhou, whereas in Guangzhou, the warm and rainy climate 440 

results in dense and moist land around the urban area, implying higher thermal inertia (Hafner 441 

and Kidder, 1999; Pandey et al., 2014), which may be an important reason for the considerably 442 

nighttime UHI. Other regions have unique characteristics that contribute to the variability of 443 
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AH driving effects. However, the strong UHI and AH effects in the summer are an urgent 444 

concern. Even if the AH input cannot be reduced, its warming effect can be mitigated to some 445 

extent by adjusting other potential drivers, such as increasing urban vegetation cover and 446 

building material albedo, or altering the urban landscape structure. However, although the UHI 447 

is high at night in winter, this additional heat helps to improve thermal comfort in cold climates 448 

and reduces heating energy consumption, demonstrating how capitalizing on the warming 449 

impact of AH and ∆S works in cold scenarios. This study serves as an important theoretical 450 

foundation for analyzing UHI from the perspective of AH and provides new ideas for more 451 

precise urban climate simulations to serve as more effective urban thermal environment 452 

optimization measures. 453 

5.3. Limitations and uncertainties 454 

The underlying mechanism of urban heat islands is a complex integration of multiple factors 455 

(Hu et al., 2020), particularly in multi-regional and multi-temporal analyses, making it 456 

challenging to arrive at a uniform and systematic conclusion. Furthermore, this study 457 

considered the impact of AH using two models, producing some reasonable results overall, but 458 

it was difficult to gain a thorough understanding of the physical mechanism in all regions and 459 

at all times due to the limitation of the scale of this study (Peng et al., 2012). More rigorous 460 

analyses can be performed for specific regions and time phases. Furthermore, due to cumulative 461 

parametric errors in the equation residuals, RS-SEB may produce larger errors in non-urban 462 

areas with less precise parameter settings than in urban areas, and the uncertainty assumptions 463 

raise some issues (Park et al., 2016; Sailor, 2011). Therefore, improving the accuracy of the 464 



27 
 

estimations of the SEB terms and their parameters is a priority for subsequent studies. Possible 465 

areas of improvement in the future could include more reasonable heat storage models, finer 466 

meteorological observation data, and high-resolution multispectral remote sensing images for 467 

improved AH estimations based on RS-SEB. 468 

 469 

6. Conclusion 470 

This study investigated the differences in the spatial and temporal distributions and impacts 471 

of different AH models and their relationships with UHI. First, we estimated AH using an RS-472 

SEB model, an improved energy consumption-machine learning model, and nighttime  in 473 

seven Chinese cities, extracted the UHI based on remote-sensing LST, and analyzed the driving 474 

effects of AH on UHI and the interactions with other factors using a linear mixed-effects model 475 

and geographic detectors.  476 

Although  and  were similar in distribution, there were considerable 477 

differences in temporal and spatial details, with  showing more aggregation in urban 478 

centers and radiating outward, whereas  was relatively weaker.  was notably 479 

weaker than  during the daytime in winter. UHI was strong during summer daytime and 480 

winter nighttime and has a stronger positive relationship with  at this time, whereas 481 

 and  had a stronger linear correlation with UHI than . The mixed-effects 482 

model confirmed the inherent warming effect of AH on the cities, but also showed the 483 

significance of background climatic factors in affecting the differences between  and 484 

 and their relationship with UHI. According to the geographic detectors,  had a 485 
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stronger impact on UHI during the daytime and nighttime in summer and winter than at other 486 

times, and the driving effects of  and  were stronger. The interaction of other 487 

potential driving factors with AH enhanced the interpretation rate of UHI, and the general trend 488 

of the interaction effects was similar to that of separate AH effects, but varied considerably 489 

between different factors. The surface albedo had a more salient impact on the  driving 490 

effects, whereas the interaction of  with other factors had a high interpretation rate (close 491 

to 100%). 492 

AH obtained based on different methods has different implications in various spatial and 493 

temporal scenarios, and it is necessary to clarify the definition of AH in urban thermal 494 

environment research to reach more scientific and rigorous conclusions. In addition, the 495 

selection of AH inputs that match the coupling scheme of numerical and urban canopy models 496 

is an important topic that cannot be ignored in future urban climate simulations. More crucially, 497 

AH is the most important controllable driving factor of UHI and the key to a feasible urban 498 

thermal comfort optimization scheme, although the situational heterogeneity in the role of AH 499 

requires attention. 500 
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