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Abstract

The exponential growth of herbicide-resistant weeds poses enormous challenges to the 

sustainability of food systems. While great efforts in weed management are being performed at 

the plot level, the influence of the landscape context on the presence of herbicide-resistant weeds

remains largely unknown. We tested these ideas through a large-scale sampling on two of the 

most important crops globally: maize and soybean. In Argentina, we co-developed with farmers 

the sampling of 2,846 soybean and 1,539 maize fields (covering an area of 159 million ha) and 

measured the presence of herbicide-resistant weeds, landscape context (field size, edge density, 

natural habitat size), management variables (e.g. fertilization), crop variety, farm identity and 

region. We found that smaller fields, with higher edge density, and neighboring larger natural 

habitats were associated to a lower presence of herbicide-resistant weeds. These results were not 

confounded with the influence of other management variables (e.g. fertilization), crop variety, 

farm or region. Landscape design is an important, but underrepresented, management tool that 

could help to achieve a sustainable control of weeds.

Key words:  herbicide, edge density, landscape design, natural habitat, weeds

Introduction

Herbicide-resistant weeds have spread worldwide at exponential rates and present one of the 

most critical challenges for extensive agriculture nowadays (Heap, 2014; Heap and Duke, 2018; 

Scursoni et al., 2019). Synthetic herbicides were introduced into agroecosystems 70 years ago 

and continue today as the main strategy to control weeds (Heap, 2014; Heap and Duke, 2018; 
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Vila-Aiub, 2019). Herbicide resistance emerges as predictable result of selection by repeated and 

intense use of herbicides (Dixon et al., 2021; Heap, 2014; Hicks et al., 2018). This is the case for 

large-scale monocultures, which have dominated agricultural landscapes, replacing more diverse 

farming systems and relying on high amounts of herbicides (Gage et al., 2019; Ramankutty et al.,

2018).

There are many alternatives to herbicides by which farmers may reduce the spread of 

herbicide-resistant weeds (Beckie, 2006; Heap, 2014; Scursoni et al., 2019). Solutions at the 

landscape scale belong to the least studied (Seppelt et al., 2020), but have enormous potential 

(Dauer et al., 2009). Since agricultural landscapes are being designed with increasing size of 

crop fields, they may enhance the spread of herbicide resistance in comparison to more diverse 

and complex landscapes. This could be explained by multiple hypotheses. For example, as 

resistance-inducing mutations are often linked to fitness costs in herbicide-untreated conditions 

(e.g., diversion of resources from reproduction to defense; Vila-Aiub 2019), more diverse and 

complex landscapes could promote the outcross of weeds inside crop fields with those outside 

crop fields and thus reduce the spread of herbicide-resistant traits. Also, as weed community 

composition inside a crop field changes with distance to field edge (Bourgeois et al., 2020), 

smaller fields neighboring large natural and semi-natural habitats can act as barriers to the spread

of herbicide-resistant traits. Here, we tested these ideas through a large-scale sampling on two of 

the most important crops globally: maize and soybean.
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Methods

In Argentina, we performed an extensive, standardized protocol on 1,539 maize and 2,846 

soybean fields covering an area of almost 1.6 million km2 (159 million ha; Fig. 1). The data were

gathered and systematized in collaboration with CREA (https://www.crea.org.ar/), a non-profit 

civil association integrated by more than 2,000 farming companies that share farming 

experiences and knowledge. The data are stored as CREA DAT (https://www.crea.org.ar/dat-

crea/), a unified agricultural database to analyze the main productive variables. For each field, 

we gathered data on the presence of herbicide-resistant weeds (two categories: present or absent),

field size (ha), spatial location (latitude and longitude), region (11 regions were considered 

according to CREA database), farm identity, crop variety, N fertilization (kg ha-1), and P 

fertilization (kg ha-1). When working with such a large number of sampling sites, collection of 

seeds and assaying of resistance frequency is impossible. Therefore, herbicide-resistant weeds 

were classified as “present” when at least one dominant and uncontrolled weed population of the 

herbicide-targeted species has been documented to evolve resistance. This is a valid estimate 

because samplings were performed after herbicide applications and because, where herbicide-

resistant weeds were present, we commonly observed more than one species of herbicide-

resistant weeds. Sampling effort was the same in small and large fields. All growers use similar 

standard methods of weed control based on the use of herbicides (and no tillage), mainly 

glyphosate, irrespective of field size. The historical land use and management intensity was 

accounted for in the statistical analyses through several proxies (see below).

In addition, we used Argentina’s national Crop Data Layer (de Abelleyra et al., 2019) to 

quantify the landscape composition and configuration in circular sectors of a 1,500 m radius 
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around each field, as many weed seeds disperse at least 500 m from source populations (e.g., 

Dauer et al. 2007). The average distance between maize fields was 551.5 km (SD 321.78 km). Of

the total number of point pairs (1,332,528), only 0.26% were less than 3 km apart. In the case of 

soybean fields, the average distance was 506.8 km (SD 335.4 km). Of the total number of point 

pairs (4,131,375), only 1.1% were less than 3 km apart. For the landscape composition, we 

quantified the mean size of all patch areas of natural and semi-natural habitats (“natural habitats”

hereafter), which include grasslands, wetlands, shrublands and forests. For the landscape 

configuration, we quantified edge density (m ha-1) as the sum of the lengths (m) of all edge 

segments in the landscape, divided by the total landscape area (ha).

The presence of herbicide-resistant weeds was modeled through a generalized linear 

mixed-effects approach in R assuming a binomial error distribution (R version 3.6.3, glmmTMB 

package, glmmTMB function Brooks et al. 2017, R Core Team 2020). We established separate 

models for maize and soybean. All models considered region, farm identity, and crop variety as 

non-nested random-effects (i.e. random intercepts) to account for spatial, environmental, genetic,

and management influence on weed resistance. For fixed-effects, we estimated two models. The 

first included field size, edge density, natural habitat size, and their interactions as fixed-effects. 

From this model, we performed multi-model inference based on Akaike’s Information Criterion 

(AIC) (Harrison et al., 2018). Minimum adequate models were selected after evaluating the 

models resulting from all possible combinations of the predicting variables and their interactions 

(MuMIn package, dredge function) (Bartón, 2019). Relative importance values were calculated 

for each predictor by summing the Akaike weights over all models that include the predictor 

(MuMIn package, importance function). The predictor variable with the largest relative 
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importance value is estimated to be the most important for explaining variance in the response 

variable.

For the second model, fixed-effects included the predictors of the minimum adequate 

model plus N fertilization and P fertilization, which are important co-variables related to 

management and environmental conditions. Similar parameter estimates of our focused 

predictors (i.e. field size, edge density, and natural habitat size) between the first and the second 

model imply that their impacts are not confounded by other management and environmental 

variables (note that all models included the above-described random effects as a complementary 

way to account for spatial, environmental, genetic, and management variables). We tested 

statistical model assumptions using the DHARMa package (Hartig, 2021). No spatial 

autocorrelation was found in the residuals of the models (gstat package, variogram function). 

Variance inflation factors (VIFs) among all predictors (field size, habitat size, edge density, N 

fertilization, P fertilization ) were always lower than 1.8 in both maize and soybean databases.

Results and Discussion

We found that 22% of the 1,539 maize fields and 20% of the 2,846 soybean fields had herbicide-

resistant weeds. Such weeds have been a reality for farmers for decades. Associated yield 

reductions have been successfully overcome because the chemical industry provided until the 

late 80’s a steady supply of new herbicide sites of action to combat resistant weeds (Heap, 2014).

However, this is no longer the case, as no new herbicide sites of action have been delivered to the

market in over 30 years (Heap, 2014; Heap and Duke, 2018). In particular, glyphosate resistance 

evolution has shown an alarming increase among weeds in recent years (Gage et al., 2019; Heap 
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and Duke, 2018; Vila-Aiub, 2019). Genetically-modified glyphosate-resistant crops have enabled

farmers to use glyphosate in broadcast post-emergence applications in maize, soybean, cotton, 

canola, sugar beet and alfalfa, making glyphosate the most widely used herbicide globally (Gage 

et al., 2019; Heap and Duke, 2018).

In our study, the main resistant weeds reported for maize and soybean were Amaranthus 

sp., Conyza sp., Echinocloa sp., Chloris sp., Trichloris sp., and Sorghum halepense (Table 1). 

These six genii account for 63.8 % and 72.6 % of all records of main resistance occurrence in 

maize and soybean, respectively (Table 1). In total, Argentina has almost 30 weed species with 

resistance to different herbicides (http://www.weedscience.org/). The majority is resistant to 

glyphosate, due to the high dependence of maize and soybean crop systems on this herbicide 

(Scursoni et al., 2019).

Mixed-effects models showed that maize fields in landscapes with higher edge density 

and larger adjacent natural habitats had a lower presence of herbicide-resistant weeds (Fig. 1, 

Table 2). On the contrary, larger field sizes were associated with a greater presence of herbicide-

resistant weeds (Table 2). These effects were consistent between models with and without co-

variables reflecting the independent (not confounded) effects of edge density, natural habitat size,

and field size from other spatial, environmental, genetic and management variables relevant to 

weed management (Table 2). Soybean fields showed similar results (Fig. 1, Table 2): the 

presence of herbicide-resistant weeds was lower in landscapes with higher edge density but 

increased with field size. However, in this case no association with natural habitat size was 

found. Again, co-variable inclusion did not alter effects for edge density and field size 

substantially (Table 2).
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Diverse and complex landscapes could reduce the spread of herbicide-resistant weeds 

because of multiple reasons. For example, given that weed community composition inside a crop

field changes with distance to field edge (Bourgeois et al., 2020), smaller fields neighboring 

large natural and semi-natural habitats can act as barriers to the spread of herbicide-resistant 

traits. Also, given that there are fitness costs of herbicide resistance mutations in the absence of 

herbicide applications (Vila-Aiub, 2019), greater outcross between weeds inside and outside crop

fields may be promoted by more diverse landscapes with more edges and interactions with 

neighbor fields, thus reducing the spread of herbicide-resistant traits. If the amount of natural 

habitat is increased, weeds face more complex fitness landscapes with alternating selection 

targets. An implementation with a simultaneous reduction of field size could therefore provide an

effective natural control mechanism for herbicide-resistant weeds. Overall, our results can be 

seen as a starting point for discussing how future studies could be targeted to elucidate 

alternative explanations for the reduction of herbicide-resistant weeds in more complex 

landscapes. These could include a population genomics study of species with contrasting biology

(Dixon et al., 2021), sampling of vegetation in habitats neighboring fields with analysis of effects

of landscape features at nested spatial scales (Bourgeois et al., 2020) or more comprehensive 

analysis of components of the interaction with field management (Hicks et al., 2018).

The increase in herbicide reliance over the last decades exerted one of the strongest 

selection pressures ever experienced by weeds, which has inevitably led to the evolution of 

herbicide-resistance in an increasing list of weed species (Dauer et al., 2009; Vila-Aiub, 2019). 

While herbicide mixtures and herbicide rotations may slow the evolution of herbicide resistance, 

these practices are only delaying the inevitable when herbicides are the sole weed control 
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strategy (Gage et al., 2019; Hicks et al., 2018). Our results suggest that landscape design could 

be an important, complementary management tool to achieve a sustainable control of weeds. 

Agricultural landscapes could be designed with smaller agricultural fields, more edges, and 

natural habitats, with co-benefits for biodiversity and yield stability (Seppelt et al., 2020). 

Unfortunately, the opposite trend has been observed in most agricultural landscapes during the 

past decades (Ramankutty et al., 2018). The potential to control herbicide-resistant weeds might 

provide an important incentive to halt current destruction of natural habitats and design more 

diversified agricultural landscapes.
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Table 1. Frequency of weed species reported as the most dominant, second-most dominant, and 

third-most dominant in maize and soybean fields of Argentina.

Weed species
Dominant Second-most

dominant

Third-most

dominant

Overall

presence

Maize fields

Amaranthus sp. 24.7% 16.1% 24.1% 64.9%

Conyza sp. 9.7% 26.3% 31.0% 67.0%

Echinocloa sp. 11.2% 4.2% 6.9% 22.3%

Chloris sp./Trichloris sp. 9.4% 14.4% 3.4% 27.2%

Sorghum halepense 8.8% 3.4% 13.8% 26.0%

Others 36.2% 35.6% 20.8%

Soybean fields

Amaranthus sp. 40.7% 12.2% 4.3% 57.2%

Conyza sp. 11.5% 36.7% 25.7% 73.9%

Echinocloa sp. 8.6% 10.0% 4.3% 22.9%

Chloris sp./Trichloris sp. 6.0% 9.6% 17.1% 32.7%

Sorghum halepense 5.8% 7.8% 2.9% 16.5%

Others 27.4% 23.7% 45.7%
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Table 2. Results from mixed-effects models for the influence of field size, natural habitat size, 

and edge density on the presence of herbicide-resistant weeds. The best models were derived 

from comparing the Akaike information criterion (AIC) values of all possible combinations of 

predicting variables without co-variables (see Methods). In bold, values for which the 95 % 

confidence interval does not overlap with zero. Fixed-effect estimates and their standard errors 

for field size, natural habitat size, and edge density are very similar in models with and without 

co-variables showing their independent effects on the presence of herbicide-resistant weeds. The 

models also accounted for the variability in crop variety, management and environment by 

including variety, farm, and region as random-effects. The relative importance is the sum of the 

AIC weights of all the models with each predictor.

Maize Soybean

Model without co-variables Model with co-

variables

Model without co-

variables

Model with co-

variables

Relative

importance

Parameter

estimate

Parameter

estimate

Relative

importan

ce

Parameter

estimate

Parameter

estimate

Fixed effects (mean)

Intercept ----- -11.0 (1.5) -8.9 (1.6) ----- -10.0 -12.1 (1.1)

Field size 0.79 0.0040 (0.0030) 0.0043 (0.0030) 0.97 0.0063 (0.0023) 0.0075 (0.0025)

Habitat size 0.99 -0.010 (0.0040) -0.010 (0.0039) 0.46

Edge density 0.98 -0.054 (0.018) -0.058 (0.018) 0.97 -0.028 (0.011) -0.024 (0.012)

Field size ∙ habitat size 0.48 0.13

Field size ∙ edge density 0.28 0.61

Edge density ∙  habitat size 0.35 0.13

Co-variables

N fertilization 0.00036 (0.0068) -0.022 (0.088)

P fertilization -0.064 ( 0.022) 0.16 (0.040)

Random effects (sd)

Region 1.9 1.4 0.66 1.0

Variety 0.83 0.72 1.0 0.74

Farm 21.5 19.6 17.0 18.9

Delta AIC with null model 11 ---- 9 ----
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Figure legends

Fig. 1. Herbicide-resistant weeds are influenced by the landscape context. The presence of 

herbicide-resistant weeds was surveyed in 1,539 maize and 2,846 soybean fields across the 

extensive agricultural region of Argentina (left side). Edge density was associated with a lower 

presence of herbicide-resistant weeds in both maize and soybean fields (right side). The 

dispersion plots on the right side show the proportion of fields with herbicide-resistant weeds 

calculated at an interval of 5 m ha-1 of edge density (this was performed just for graphical 

purposes, the mixed-effects models focus on the presence of herbicide-resistant weeds at each 

field, see Methods). The satellite images on the bottom right are centered on soybean fields and 

visualize a gradient of edge density.

14

265

266

267

268

269

270

271

272

273

274



Fig. 1.
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