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Abstract 1 

Soil organisms are often classified using methods targeting individual groups of taxa (e.g., bacteria, fungi 2 
and invertebrates), which hampers our ability to directly compare the relative abundance of different 3 
groups across environmental gradients. We posit that the use of protein biomarkers could help to provide 4 
a more real representation of the cross-kingdom soil microbial populations. Here, we tested if the 5 
abundant proteins ATP synthase F(0) complex (ATPS), elongation factors (EF), glyceraldehyde-3-6 
phosphate dehydrogenase (GAPDH), GroEL, pyruvate dehydrogenase (PyrDH), RNA polymerase beta 7 
chain (RNAP), and translation initiation factor 2 (TIF) could be used to describe the taxonomic composition 8 
of microbial communities. As positive control, we used a mock community with different relative 9 
abundances of algae, archaea, bacteria, and viruses. We tested this approach on a previously published 10 
soil metaproteomes from which we randomly selected samples from forests, grasslands, and shrublands 11 
(each n=10). Unfortunately, the biomarker approach is not feasible for viruses as these organisms do not 12 
share single genes. All biomarkers showed decent accuracy to determine the relative abundances of 13 
archaea, bacteria, and eukaryota in the mock community. However, false positive hits dominated on 14 
phylum level probably due to sequence homology. Archaeal proteins were only detected in the soil 15 
samples when EF was used as biomarker at an abundance of 0.7%. Bacteria dominated the EF-16 
metaproteome and were most abundant in shrublands (64.4%) while eukaryotes were more abundant in 17 
forests (25.6%). In compliance with previously published results, the correlation analysis revealed the 18 
impact of mean annual temperature and pH on both bacteria and eukaryota. Our approach not only shows 19 
the potential to use biomarker metaproteomics to unveil the relative taxa abundances across soil 20 
organisms but also the need to create mock communities comprising members of all soil taxa. 21 

  22 



3 
 

Introduction 23 

Topsoil proteins catalyze a multitude of biological functions [1,2] that allow microbial communities to 24 
drive essential ecosystem services such as soil fertility, climate change regulation and waste 25 
decomposition [3–5]. DNA-based methods are known to be limited by their reduced capacity to account 26 
for activity and processes, restricting the capacity of metagenomics to efficiently predict ecosystem 27 
functions, and distinguish active from dormant microbial taxa. Metaproteomics is proposed for assessing 28 
functionality of soil microbial communities by identifying the actual catalyzers of soil processes, and 29 
therefore more active microbial taxa [6–9]. However, soil metaproteomics, still in its infancy, is far from 30 
assessing the full potential of this technology to better understand microbial community composition of 31 
the soil, and track the most dominant active microbial populations in soil [10]. Importantly, 32 
metaproteomics is biased by the preferential identification of highly abundant proteins from dominant 33 
populations. Due to the fact that different numbers of proteins are identified from each population in the 34 
metaproteomic data, it seems important to focus on ubiquitous proteins that are present in all organisms, 35 
and evaluate if they can provide a suitable taxonomical indicator. We posit that excluding lesser abundant 36 
proteins from high abundant species by targeting one high abundant protein will provide a better 37 
representation of the actual species distribution. This will allow for the estimation of true relative 38 
abundance abundances of prokaryotes (archaea and bacteria), eukaryotes (animals, fungi, plants, and 39 
protists), and viruses. For this, we screened for highly expressed genes as potential biomarkers in the 40 
proteome of Escherichia coli MC4100 [11] essential to the functioning of the cell and thus necessary to 41 
exist in all life forms. Logically, selecting abundant proteins from a bacterium will bias the results but our 42 
aim was to test the viability of a biomarker approach in metaproteomics rather than finding the most 43 
adequate biomarker for the whole tree of life. Future approaches should compare highly expressed genes 44 
in organisms from all domains, which will get easier once more eukaryotic genomes are sequenced. All 45 
available sequences from the chosen genes ATP synthase F(0) complex (ATPS), elongation factors (EF), 46 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), GroEL, pyruvate dehydrogenase (PyrDH), RNA 47 
polymerase beta chain (RNAP), and translation initiation factor 2 (TIF) were used for protein identification. 48 
For the validation, a mock community of known abundances of one alga, one archaeon, 25 bacteria, and 49 
5 viruses [12] was used. Then, the seven biomarkers were applied to a randomly chosen subset of a 50 
previously published metaproteomic dataset to describe the relative taxa abundances of soil organisms 51 
in forest, grassland, and shrubland samples (each n=10) as well as their correlation to edaphic and 52 
environmental factors. We argue that biomarker metaproteomics can yield a more adequate picture of 53 
the microbial community composition and thereby verify (or not) what has been published before. We 54 
hypothesized that (i) fungal proteins are more abundant in forests, positively correlate to mean annual 55 
temperature and negatively to pH [13] while archaea prefer shrublands [14]. 56 

Materials & Methods 57 

Identifying ubiquitous proteins across the tree of life  58 

The basis for the identification of highly expressed genes as potential biomarker in soil taxa from the tree 59 
of life was the proteome of Escherichia coli MC4100 [11]. Noteworthy, this choice biased towards Bacteria 60 
and the use of proteomes from organisms of different domains may yield a different result. We identified 61 
ATPS, EF, GAPDH, GroEL, PyrDH, RNAP, and TIF as potential biomarkers necessary for important cellular 62 
functions in all soil taxa from the tree of life and downloaded all available SwissProt and TrEMBL 63 
sequences for each of these from Uniprot [15] on 22/12/2021. The raw metaproteomic data for the first 64 
glimpse how well each biomarker represented both richness and composition of the soil community was 65 
obtained from a study used to separately describe the structure and function of archaea [14], bacteria 66 
[16], and fungi [13]. The data can be found on the PRIDE database [17,18] using the identifier 67 
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PXD018448. The validation of this approach was a positive control where we applied potential 68 
biomarkers to a previously published metaproteomic data set of a mock community with known 69 
abundances of algae, archaea, bacteria, and viruses [12]. The data can be found the PRIDE database 70 
[17,18] using the identifier PXD006118. 71 

Applying ubiquitous proteins to understand the contribution of taxa from all domains of life across 72 
environmental gradients 73 

The biomarkers were then applied to a randomly chosen subset of a previously published metaproteomic 74 
data set used to separately describe of archaea [14], bacteria [16], and fungi [13] in three ecosystems: 75 
forests, grasslands, and shrublands (each n=10). We unveiled community composition with the aim to 76 
investigate their relation to edaphic and environmental factors that included mean annual temperature 77 
(MAT), aridity index (AI), plant cover (PC), fine texture (FT), pH, electric conductivity (EC), soil phosphorus 78 
(SP), and soil carbon (SC). 79 

Metaproteomic search parameters and taxonomic identification 80 

The raw files were searched with Proteome Discoverer (Thermo Fisher Scientific, v2.5.0.400) using 81 
SEQUEST HT and Percolator against the Uniprot database (as described above). The following search 82 
parameters were selected: enzyme: trypsin, precursor mass tolerance:  10 ppm, fragment mass tolerance:  83 
0.05 Da, dynamic modification: oxidation / +15.995 Da (M) and static modification: carbamidomethyl / 84 
+57.021 Da (C). Only peptides with a false discovery rate (FDR) <1% calculated by Percolator were 85 
considered as identified. The strict search parameters may have caused the loss of identified protein 86 
groups as it was reported before [19]. The FDR concept was established for pure culture proteomics [20] 87 
using a defined threshold of 1% [21]. However, searches against large databases can decrease the number 88 
of identified protein groups due to FDR-overestimation [22], which can cause the loss of valuable protein 89 
identifications [23]. It becomes more and more common that higher FDRs up to 10% are used [24–27], 90 
particularly in soil metaproteomics [16,19]. Identified proteins were grouped by applying the strict 91 
parsimony principle, in which protein hits were reported. Since taxonomic precision depends on the 92 
grouping strategy [28], a comparison of our approach that quantifies protein groups based on unique and 93 
shared/razor peptides with the quantification using all peptides or only unique peptides as well as using 94 
unique and shared/razor peptides without parsimony grouping yielded similar results between all 95 
methods except when all peptides were used (Supplementary figure S1). Protein abundances were 96 
calculated using the minora feature detector implemented in Proteome Discoverer. The open-source 97 
software Prophane [29] was used to assign protein groups to their phylogenetic origin by diamond 98 
BLASTp. In the resulting files, only the biomarkers were selected in each sample. Visualization was 99 
performed in R. 100 

Results 101 

Validation of protein biomarkers  102 

The EF-metaproteome was validated by a positive control using a mock community of known relative 103 
abundances from one archaeon, one alga, 5 bacteriophages, and 25 bacteria, which mixed in different 104 
amounts reflecting equal cell number, equal proteins number, and an uneven composition [12]. We used 105 
the metaproteomic raw data from this experiment to validate how accurately the biomarker 106 
metaproteomes cover abundances of soil taxa from different domains. On domain level, viral sequences 107 
were only found with GroEL as biomarker while both bacteria and eukaryota were identified in all 108 
biomarkers (Figure 1). On phylum level, a high number of false positive hits was found throughout all 109 
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domains, for example Euryarchaeota instead of Thaumarchaeota, which is why we decided to identify the 110 
community composition on domain level. Except ATPS and GAPDH, most biomarkers showed a high 111 
degree of accuracy to determine the relative abundances of archaea, bacteria, and eukaryota (Figure 2). 112 

Applying biomarkers to estimate the relative abundance of soil taxa from different domains in soil samples 113 
across biomes 114 

The different biomarkers yielded different soil community compositions in forests, grasslands and 115 
shrublands (Figure 3). Only EF was capable of identifying archaeal protein groups at a relative abundance 116 
of 0.72% in forests, 0.65% in grasslands, and 0.71% in shrublands while none of the other biomarkers 117 
showed any (Figure 4a). In addition, EF showed the expected decrease of eukaryota from forests (25.56%) 118 
to grasslands (16.77%) and shrublands (18.37%) while bacteria were most abundant in shrublands 119 
(64.37%) followed by grasslands (63.7%) and forests (55.97%). On average, 18% of the measured proteins 120 
could not be identified as archaeal, bacterial, or eukaryotic. Similar to the composition, the sequences in 121 
the EF-database showed a dominance of bacteria followed by eukaryotes and archaea (Figure 4b). These 122 
trends in relative abundances using EF-metaproteomics yielded differential significant Spearman 123 
correlation (P < 0.05) to edaphic and environmental parameters (Figure 4c). Archaea showed no 124 
correlation to both bacteria and eukaryota and any of the selected parameters while bacteria and 125 
eukaryota were negatively correlated, resulting in an inverse correlation to pH and mean annual 126 
temperature. 127 

Number of sequences in the databases and identified proteins 128 

The number of sequences ranged from 22,855 for ATPS to 408,998 for EF, which resulted in respectively 129 
the lowest and the highest protein richness from both mock and soil communities (Table 1). However, a 130 
drop down to 10% in richness of the mock community was found for the soil samples for many biomarkers. 131 

Discussion 132 

The aim of this study was to find a biomarker that could equally describe proteins across soil organisms 133 
from prokaryotes (archaea and bacteria), eukaryotes (animals, fungi, plants, and protists), and viruses. 134 
Unfortunately, this approach per se is not feasible for viruses as they do not share single genes and 135 
markers can only target specific viral groups, i.e. T7-like podoviruses with the DNA polymerase [30]. This 136 
was confirmed by the lack of viral proteins in both mock and soil communities regardless the biomarker. 137 
Therefore, viral abundances relative to other soil taxa have to be estimated with different approaches. 138 
Otherwise, the identification on domain level was reasonably accurate for archaea, bacteria, and 139 
eukaryotes for all used biomarkers except ATPS and GAPDH. However, on phylum level many false positive 140 
hits were identified. Particularly eukaryotes showed a multitude of different hits even though only the 141 
alga Chlamydomonas reinhardtii was present in the mock community. This might be caused by the focus 142 
of research on multicellular eukaryotes and their parasites as almost all eukaryotic genomes are from 143 
animals, fungi, or land plants [31] but they only represent 23% of environmental 18S DNA sequences [32]. 144 
Noteworthy, the mock community contained only one archaeon (Nitrososphaera viennensis) and the 145 
above-mentioned alga together with 25 bacteria, which makes the validity of the verification for archaea 146 
and eukaryotes questionable but it is also the only mock community for which proteomic data is available. 147 
In order to properly verify the quantitation of proteins across soil taxa, the measurement of mock 148 
communities with more non-bacterial strains is necessary in the future. Regardless, for now we 149 
hypothesize that the sequences of these ubiquitous biomarkers can only be differentiated on domain level 150 
but further sequence-based investigations are needed for verification. We then applied the biomarkers 151 
to describe the community composition of soil samples previously used to describe archaea [14], bacteria 152 



6 
 

[16], and fungi [13]. Even though almost all biomarkers showed high accuracy to determine domain level 153 
relative abundances in the mock community, there was much higher variation in the soil samples. GroEL, 154 
RNAP, and TIF identified almost no eukaryotic proteins while GAPDH, as it was similar in the mock 155 
community, had a much higher abundance of eukaryotes. From the other three biomarkers, only ATPS 156 
and EF unveiled the expected decrease of eukaryotes from forests to shrublands but of those two, only 157 
EF was able to identify archaea. Combined with the accuracy of identifying the relative abundances in the 158 
mock community, we believe that EF is the best choice among the tested biomarkers to identify domain 159 
level abundances across soil taxa. Indeed, the dominance of bacterial sequences (57.0%) in the EF-160 
database compared to eukaryotes (37.0%) and archaea (5.3%) aligns well with previously reported 161 
metatranscriptomic results [33,34]. Consistent with fungal proteins [13], eukaryotes decreased in 162 
abundance from forests to shrublands, were positively correlated to mean annual temperature and 163 
negatively to pH, again highlighting the focus of genomic research on multicellular eukaryotes like fungi 164 
[31]. Perhaps unicellular eukaryotes like protists have different correlative patterns. Interestingly, our 165 
approach revealed the inverse relationship between bacteria and eukaryotes, probably resulting from 166 
their different niches as it was reported for bacteria and fungi before [19]. The trend of increasing archaeal 167 
protein abundance in shrublands and the correlation to aridity [14] could not be seen in the EF-data. 168 
However, archaeal sequences are present in the EF-database which is why we are confident that this 169 
approach is better to identify true relative abundances compared to using only a subset of organisms as 170 
done before. Possibly, the taxonomic specificity of the archaeal peptides is too low to warrant more 171 
identifications. We therefore hypothesize that the previously reported trends for archaea were artifacts 172 
introduced by the database. In fact, the used database impacted the number of identified proteins. 173 
Generally, more sequences in the database resulted in a higher number of identified proteins, which 174 
makes the comparison of protein richness impossible unless the sequences are aligned to similar numbers 175 
as commonly done in sequencing approaches (rarefaction). However, the richness results also showed the 176 
decrease in protein identification rate in soil compared to the mock community, which means that finding 177 
new and better strategies in the metaproteomic workflow is inevitable for future research.  178 

Taken together, we investigated the potential of using biomarkers in metaproteomics to equally describe 179 
archaea, bacteria, and eukaryotes. Among seven chosen biomarkers, EF showed the highest potential for 180 
accurate quantification but a different choice of biomarkers focusing on archaea or eukaryotes can yield 181 
different results. A higher number of genomes of non-bacterial organisms will not only make the EF-182 
approach better but will also allow for the search of other biomarkers with the potential to unveil relative 183 
abundances from all soil taxa. Importantly, cellular protein concentration has been shown to depend on 184 
experimental conditions causing system-wide proteome allocation, expression regulation, and post-185 
translational adaptations [35], which in turn questions the validity of the biomarker approach if they are 186 
not ubiquitously abundant in all cells across soil taxa. 187 
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Figures & figure legends 334 

Figure 1: Relative abundances on domain and phylum level of a mock community (Mock) comprising one 335 
archaeon, 25 bacteria, one eukaryote, and five viruses in different mixtures (Mock-1 = equal cells, Mock-336 
2 = equal proteins, and Mock-3 = uneven) estimated by biomarker metaproteomics (each n=4). 337 

Figure 2: Accuracy of biomarker metaproteomics to determine the relative abundances of archaea, 338 
bacteria, and eukaryota of a mock community comprising one archaeon, 25 bacteria, one eukaryote, and 339 
five viruses. 340 

Figure 3: Relative abundances of soil microbial communities across three global biomes estimated by 341 
metaproteomics using seven biomarkers (a).  342 

Figure 4: Soil community composition using EF-metaproteomics (a), the composition of sequences in the 343 
EF-database (b) as well as significant (P < 0.05) Spearman correlation of the relative abundances of 344 
archaea, bacteria, and eukaryota using EF-metaproteomics to edaphic and environmental variables (b). 345 
MAT stands for mean annual temperature, AI for aridity index, PC for plant cover, FT for fine texture, EC 346 
for electric conductivity, SC for soil carbon, and SP for soil phosphorus.  347 
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Tables & table legends 348 

Table 1: Number of sequences in the FASTA-files as well as the average number and standard deviation 349 
of identified protein groups across three mock (each n=4) and three soil biome samples (each n=10) for 350 
the seven biomarkers. 351 

Gene (abbreviation) Sequences Mock proteins Soil proteins 
ATP synthase F(0) complex (ATPS) 22,855 101±4 38±6  
Elongation factor (EF) 408,998 901±187 247±49 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 83,257 195±27 22±6 
GroEL 112,733 476±81 312±63 
Pyruvate dehydrogenase (PyrDH) 312,478 301±30 23±6 
RNA polymerase beta chain (RNAP) 266,861 395±66 89±19 
Translation initiation factor 2 (TIF) 135,452 69±8 20±4 
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