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Abstract 68 

Litter decomposition is a key ecosystem function in forests and varies in response to a range of 69 

climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these 70 

factors is challenging, especially along large environmental gradients. In particular, knowledge of 71 

the effect of management options, such as tree planting density and species composition, on 72 

nutrient and carbon cycling would be highly valuable in forestry. In this study, we made use of 15 73 

tree diversity experiments spread over eight countries and three continents within the global 74 

TreeDivNet network. We evaluated the effects of overstory composition (tree identity, 75 

species/mixture composition and species richness), plantation conditions (density and age), and 76 

climate (temperature and precipitation) on early- to mid-stage (3 months to 1 year) 77 

decomposition of two standardized litters: high-quality green tea and low-quality rooibos tea. 78 

Across continents, we found that early-stage decomposition of the low-quality rooibos tea was 79 

influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young 80 

gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age 81 

of the experiment. Tree species richness did not influence decomposition and explained almost 82 

no variation in our multi-continent dataset. Hence, in the young plantations of our study, 83 

overstory composition effects on early decomposition were mainly driven by tree species identity 84 

on decomposer communities and forest microclimates. After 12 months of incubation, mass loss 85 

of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality 86 

rooibos tea litter decomposition showed stronger relationships with overstory composition and 87 

stand age. Our findings highlight that decomposition dynamics are not only affected by climate 88 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4200083

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 
  
 

but also by management options, via litter quality of the identity of trees planted but also by 89 

overstory composition and structure.  90 

Keywords: biodiversity, biogeochemical cycle, carbon turnover, decomposition, forest, mass 91 

loss, Tea Bag Initiative, tree communities, tree species richness, TreeDivNet   92 
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1. Introduction 93 

Leaf litter decomposition is a central function in forest ecosystems that significantly affects global 94 

terrestrial carbon and nutrient cycling (Hättenschwiler, 2005; Gessner et al., 2010; Handa et al., 95 

2014; Bradford et al., 2016). Litter decomposition rate mainly depends on the net effect of litter 96 

quality, (micro)climatic conditions, soil properties and the composition of the decomposer 97 

community (Coûteaux et al., 1995). Accordingly, the decomposition process is very sensitive to a 98 

changing climate while simultaneously forming an important feedback to the global carbon 99 

budget, resulting in potential mitigation or amplification of climate change (Aerts, 1997; Davidson 100 

and Janssens, 2006; García-Palacios et al., 2016). Several studies have already targeted the 101 

impact of macroclimate on litter decomposition dynamics across large spatial scales (Djukic et al., 102 

2018) and along gradients of global change drivers such as atmospheric nitrogen (N) deposition 103 

(Kwon et al., 2021). However, the impact on litter decompoistion of forest silvicultural 104 

management decisions such as overstory tree species composition and planting density, relative 105 

to litter quality and climate, has rarely been explored on a multi-continental scale (Joly et al., 106 

2017). 107 

Anthropogenic influences on tree composition and diversity in forest ecosystems include direct 108 

effects of silvicultural management decisions (planting and thinning) as well as indirect effects of 109 

environmental changes. Although it is obvious that the surrounding tree community considerably 110 

affects decomposition, its specific role in decomposition processes at broader scales is still poorly 111 

understood (Scherer-Lorenzen et al., 2007; Prescott and Vesterdal, 2013). Furthermore, our 112 

knowledge of the impact of silvicultural management decisions such as planting density or 113 

thinning regimes on decomposition remains incomplete (Lado-monserrat et al., 2015; Bueis et 114 
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al., 2018). A better understanding of tree community and silvicultural management decisions on 115 

forest nutrient and carbon cycles would allow us to design mixed forest plantations that are not 116 

only more resilient to climate change (Messier et al., 2022) but also better at mitigating climate 117 

change (Silva Pedro et al., 2015).  118 

Multiple factors related to overstory tree composition influence litter decomposition (Joly et al., 119 

2017). First and foremost, tree identity strongly affects decomposition by influencing litterfall 120 

mass (Prescott, 2002), litter quality (Cornwell et al., 2008; Vivanco and Austin, 2008; Zuo et al., 121 

2018; Hoeber et al., 2020), microclimate (Gottschall et al., 2019), and even soil properties (Reich 122 

et al., 2005; Desie et al., 2019) and decomposer communities (Hobbie et al., 2006; Zhang et al., 123 

2020; Peng et al., 2022). Given the large biogeographic area encompassed by this study, we 124 

define species identity according to the two major lineages of trees, i.e. angiosperm species or 125 

gymnosperm species, assuming that they impact microclimate, water availability and nutrient 126 

cycling in different ways (Augusto et al., 2015) and harbor different decomposer communities 127 

which dominate different stages of decomposition (Zhang et al., 2020). Typically, gymnosperm 128 

species have higher LAI and rainwater interception resulting in drier soil surfaces (Aranda et al., 129 

2012) and tend to acidify soils due to their low litter quality more than angiosperm species (Finzi 130 

et al., 1998; De Schrijver et al., 2012).   131 

Second, the species composition of the tree community can influence decomposition through 132 

complementary nutrient use (Tilman et al., 2014; Lin et al., 2021) and rhizosphere processes 133 

(Binkley and Giardina, 1998; Wardle et al., 2004). To date, evidence for the influence of tree 134 

species diversity on decomposition remains ambiguous, with studies reporting inconsistent 135 
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(Naeem et al., 1994; Wardle and Nicholson, 1996), mere additive (Scherer-Lorenzen et al., 2007), 136 

synergistic (Handa et al., 2014; Maxwell et al., 2020; Strukelj et al., 2021), and antagonistic effects 137 

(Blair et al., 1990; Wardle et al., 1997; Seidelmann et al., 2016; Joly et al., 2017). These context-138 

dependent results are probably a consequence of the multitude of pathways through which tree 139 

species identity, composition, and diversity could affect decomposition (Jewell et al., 2017), 140 

which are simultaneously affected by stand characteristics, management, and climate (Lin et al., 141 

2021). For example, planting density, another important management decision besides tree 142 

species selection, could change decomposition by affecting the forest microclimate, soil nutrient-143 

availability, and the total quantity of litter that is produced (Bueis et al., 2018). Furthermore, the 144 

driving factors of decomposition can change with a) litter type (Bradford et al., 2016) as high-145 

quality litter is more controlled by abiotic (edaphic and climatic) factors whereas low-quality litter 146 

with more structurally complex C substrates is more affected by biotic (overstory) factors (Fanin 147 

et al., 2020); b) the age of the stand: as the opening of the forest canopy due to stem exclusion 148 

at late successional stages can reduce humidity and thus slow down litter decomposition 149 

(Trogisch et al., 2016); and c) the decomposition process itself (Berg & McClaugherty, 2020) 150 

where there is a shift in control from biotic to abiotic factors with ongoing litter decay (García-151 

Palacios et al., 2016). Hence, it remains a challenge to control for multiple factors of influence in 152 

observational studies, particularly due to confounding factors like tree composition and climate 153 

affecting decomposition. Consequently, the relative contribution of these factors and their 154 

context-dependencies are even less studied. 155 

The combination of different tree diversity experiments across biomes (TreeDivNet, Verheyen et 156 

al., 2016; Djukic et al., 2018; Paquette et al., 2018) provides a unique opportunity to investigate 157 
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effects of tree species identity, composition and diversity on litter decomposition, and their 158 

relative importance to climate related variables. This coordinated multi-site experiment across 159 

different continents (Fraser et al., 2013) has made use of the standardized Tea Bag method 160 

(Keuskamp et al., 2013) to evaluate decomposition processes without having litter quality 161 

confounded with biome and local environment, or with diversity in litter composition (of the 162 

litterbag), or with overstory diversity effects (Lin et al., 2021). We incubated standardized litter 163 

bags for three and 12 months under 29 focal tree species, encompassing both high-quality 164 

angiosperm litter and low-quality gymnosperm litter, occurring in 90 different compositions 165 

(monocultures and different combinations of angiosperm and gymnosperm species) with tree 166 

species richness ranging from one to 24 species (most experiments have a species richness 167 

gradient between one and four species) grown on 15 different experimental sites (Figure S1). We 168 

used green tea and rooibos tea which are representative for fast (high-quality) and slow (low-169 

quality) decomposing leaf litter (Didion et al., 2016). Our main objective was to evaluate how the 170 

multiple factors related to the overstory composition (tree identity, species/mixture composition, 171 

and species richness), plantation conditions (age and planting density) and local climate 172 

(temperature and precipitation) affect mass loss of high and low-quality litter at two different 173 

stages of decay (after 3 and 12 months) (Figure 1). We hypothesized the following: 174 

1) Overstory tree species composition impacts decomposition directly via litter quality with 175 

angiosperm and/or more diverse communities promoting faster decomposition rates, and 176 

indirectly via the type of micro-environment found on the forest floor with gymnosperm 177 

overstories with their dense canopies –r educing water availability at the forest floor through 178 

higher rainwater interception –  thus impeding decomposition. 179 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4200083

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



 
  
 

2) The effect of overstory composition on decomposition becomes stronger with time (i.e., the 180 

age of the stand) as differences among microbial communities and microclimate have had 181 

more time to accumulate.  182 

3) Planting density impacts decomposition through changes in the micro-climate, with higher 183 

densities leading to less favorable conditions for decomposition due to higher rainwater 184 

interception. 185 

 186 

Figure 1: Conceptual model showing the possible factors affecting litter decomposition in the tree diversity 187 
experiments. Angio = angiosperms, Gymno = gymnosperms, Mix = mixture of angiosperm and gymnosperm species; 188 
T = temperature; P = precipitation.  189 
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2. Materials and Methods 190 

2.1 Study sites  191 

The experiment was carried out at 15 sites belonging to the global Tree Diversity Network 192 

(TreeDivNet network, http://www.treedivnet.ugent.be/) (Verheyen et al., 2016; Paquette et al., 193 

2018) (Table 1, Figure S1), designed to test tree diversity effects on ecosystem functions 194 

worldwide. The studied sites are distributed over boreal, temperate, Mediterranean, and 195 

subtropical biomes. Planting densities of the experiments range between 0.25 and 6.25 trees.m-196 

2. At the time of the litterbag experiment (2016), the forests were still rather young with tree age 197 

ranging between 1 and 12 years. Local climate data for the year 2016 (extracted from 198 

TerraClimate (Abatzoglou et al., 2018)) varied from 6.9°C to 19.4°C for MAT (12.5°C to 24.1°C for 199 

the summer of 2016) and MAP 591 mm to 1903 mm (28 mm to 615 mm for summer) (Table 1). 200 
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Table 1. Basic characteristics of the experimental sites and number of tea bags used in this study. 201 

No. Country 
Name of 
Experiment Site 

Location  Climate Local weather during experiment 

SR gradient e 

Tree 
planting 
year 

Tree 
density 
(tree m-2) 

No. 
bags 
3M 

No. 
bags 
12M Latitude Longitude MATa MAPb 

MPT c 
3M 

MPT 
12M 

CPP d 
3M 

CPP  
12M 

A Belgium FORBIO Gedinne 49.99 4.98 10.40 670 15.45 
10.81 322.20 897.30 1, 2, 4 2010 0.44 62 52 

B Belgium FORBIO Hechtel-Eksel 51.16 5.31 8.60 1030 16.99 11.43 278.20 631.80 1, 2, 4 2012 0.44 69 69 

C Belgium FORBIO Zedelgem 51.15 3.12 10.10 708 16.73 11.90 265.00 688.30 1, 2, 4 2009 0.44 71 71 

D Canada IDENT Auclair 48.23 -69.10 2.30 1015 12.52 4.88 615.90 1400.90 1, 2, 6 2010 6.25 126 NA g 

E Canada IDENT Montreal 45.86 -73.93 6.20 976 20.78 8.64 236.90 1166.40 1, 2, 4 2009 4.00 120 120 

F China BEF-China Xingangshan 29.12 117.91 17.10 1777 24.10 19.41 534.60 1903.30 1, 8, 24 2009 0.60 94 101 

G Germany BIOTREE Kaltenborn 50.78 10.22 7.80 650 15.83 10.22 266.00 885.90 1, 2, 4 2004 0.25/0.44 48 47 

H Germany 
ECOLINK- 
Salix Rostock 

54.06 12.08 8.50 590 
17.92 10.17 194.20 810.20 1, 2 2014 1.56 36 NA g 

I Germany Kreinitz Zeithain 51.23 13.15 8.40 575 18.04 11.24 212.60 607.30 1, 3, 6 2005 1.25 68 72 

J Germany MyDiv 
Bad 
Lauchstädt 

51.39 11.88 9.00 492 
19.32 11.17 164.70 538.40 1, 2, 4 2015 1.00 72 71 

K France ORPHEE Pierroton 44.74 -0.80 12.75 876 17.55 14.63 136.00 705.30 1, 2, 3 2008 0.25 141 141 

L Italy IDENT Macomer 40.24 8.70 13.80 866 22.33 15.74 28.80 867.00 1, 2, 6 2014 4.00 108 108 

M Sweden 
ECOLINK- 
Salix Uppsala 

60.44 18.08 5.60 470 
13.79 7.93 241.80 591.30 1,2 2014 1.56 26 31 

N UK 
Climate-
match Kent 

53.40 -0.30 9.30 763 
15.88 11.41 116.40 681.2 1, 4 2011 0.25 62 NA g 

O USA IDENT Cloquet 46.68 -92.52 2.60 717 16.48 6.99 545.90 1113.50 1, 2, 6 2010 6.25 123 118 

 202 
a MAT = mean annual temperature in °C from Djukic et al. (2018); b MAP = mean annual precipitation in mm from Djukic et al. (2018); c MPT = Mean 203 
Period Temperature in °C with Period referring to the experimental incubation period; d CPP = Cumulative Period Precipitation in mm; 3M = 3 204 
months of incubation; 12M = 12 months of incubation;  e SR gradient = species richness gradient; f No. of bags = number of installed tea bags, g NA 205 
= 12M not included in the experiment.206 
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2.2 Decomposition experiment 207 

We used two varieties of Lipton tea bags as our standard litter: fast decomposing green tea and 208 

slowly decomposing rooibos tea (Keuskamp et al., 2013). Before field installation, the bags were 209 

dried at 70°C for 48 h, and the initial mass was recorded. During the summer of 2016, tea bags 210 

of each tea type were installed in the topsoil (0-5 cm below the surface) underneath different 211 

focal tree species (comprising a total of 29 different tree species) in plots with different tree 212 

species compositions along a gradient of different species richness (including 1, 2, 3, 4, 6, 8, and 213 

24 species, depending on the site). In total, 2227 bags were incubated and recovered after 3 214 

months (1226 bags) and after 12 months (1001 bags) of incubation (Figure 1, Table 1). In mixtures, 215 

tea bags were placed under specific focal trees at the base of the stem. The list of tree species is 216 

provided in Table S1 (Supporting information). Total weight of the tea bags was recorded by 217 

weighing the filled tea bags with the string and label, and an averaged weight for the empty bags 218 

with string and label (0.248 g) was subtracted from this value to estimate the amount of tea 219 

before incubation. After the incubation period, tea bags were carefully collected, dried at 70°C 220 

for 48h, and the remaining weight of the tea was recorded, assuming the bag itself did not lose 221 

any mass. For a more detailed description of the method, please refer to Djukic et al. (2018) 222 

where more information on the methodology is provided.  223 

2.3 Data analysis 224 

Decomposition was modeled as a function of various drivers using linear mixed models including 225 

site and plot as random intercepts (plot nested in site) using the package lme4 (Bates et al., 2015). 226 

Fixed effects were: the identity of the focal tree (i.e., the tree under which the litterbag was 227 
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installed); whether it was an angiosperm or gymnosperm; mixture composition of the plot in 228 

which the litterbag was installed (pure angiosperms, pure gymnosperms, or mixture of 229 

angiosperms and gymnosperms); tree species richness of the plot; planting age of the experiment; 230 

planting density; mean period temperature (MPT) and cumulative period precipitation (CPP) 231 

during the experimental period. As not all tea bags were incubated for exactly three months 232 

(mean=103 days, SD=21) or twelve months (mean=364 days, SD=26), we included length of the 233 

incubation period in the statistical analysis to account for this variation. All models were executed 234 

on centered variables. The different levels of the fixed effects (e.g., tree identity varying within 235 

plot and site vs climate and plantation conditions only varying between sites) were accounted for 236 

by the hierarchical structures of the linear mixed effects models (Zuur et al., 2009). The response 237 

variables of the mixed models were litter mass loss per litter type (green and rooibos). Because 238 

the impact of tree identity (here defined as the difference between angiosperm and gymnosperm 239 

overstories) can change over time due to differences in early growing rates (Zhang et al., 2022), 240 

the interaction between focal tree identity and planting age was included in the models. Likewise, 241 

the interaction between MPT and CPP was included in all models. Type I anova tests were 242 

executed on all models (Table 2). Alternative models including aridity indices or excluding BEF-243 

China (with the outlying species richness level 24) are provided in the appendix (Table S4). The 244 

normality and homogeneity of residuals of models were checked by plotting the fitted values 245 

versus the standardized residuals, and by graphically evaluating the histograms of the 246 

standardized residuals. The partial effects of these regressions were plotted separately for each 247 

variable (Figures 3-6) accounting for the other variables in the models using the effects package 248 

(Fox et al., 2022).  249 
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Variance partitioning analysis was executed using the partR2 package (Stoffel et al., 2021). 250 

Variables were grouped to reduce complexity: temperature (T) and precipitation (P) are ‘climate’; 251 

identity of the target tree and type of mixture of the surrounding trees are ‘tree composition’, 252 

and age and density are ‘plantation conditions’. We determined both the unique effects of single 253 

predictors and the effects shared by each pair of predictors. The proportion of variance explained 254 

by the fixed effects and the random effects was calculated by comparing the marginal and 255 

conditional R² of the mixed model (sensu Nakagawa and Schielzeth, 2013) calculated using 256 

r.squaredGLMM using the MuMln package (Barton, 2022). All statistical analyses were 257 

performed using R version 4.0.5 (R Core Team, 2018).   258 
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3 Results  259 

3.1 Litter quality and climate effects on mass loss over time  260 

Across experimental sites and biomes, green tea decomposed significantly faster (65% ± 9% after 261 

3 months and 72% ± 10% after 12 months, mean ± SE) compared to rooibos tea (20% ± 12% after 262 

3 months and 35% ± 12% after 12 months, mean ± SE) (Figure S3-S5). The increase in mass loss 263 

rate between 3 and 12 months was higher for rooibos tea, as indicated by the significant 264 

interaction effect between time and litter type (Figure S2, Table S2). Sites were located over a 265 

large climatic gradient, with mean temperature during the experiment ranging from 4.8°C at 266 

Auclair, Canada, to 19.4°C at Xingangshan, China, and mean annual precipitation from 591 mm 267 

at Bad Lauchstädt, Germany, to 1903 mm at Xingangshan, China (Table 1). Highest mass loss was 268 

found in Xingangshan and lowest in Montreal, Rostock and Auclair (Figure S3 and S4). Generally, 269 

mass loss increased from boreal < Mediterranean < temperate < warm temperate humid biomes 270 

(Figure S5). Mass loss was, however, not significantly influenced by MPT or CPP, irrespective of 271 

tea type (Table 2).  272 

Table 2. ANOVA output of linear mixed models testing the effect of tree species composition, planting, and climate 273 
related variables on mass loss of green and rooibos tea after 3 months and 12 months, respectively. The interaction 274 
between age and focal tree identity (angiosperm or gymnosperm) and between mean period temperature (MPT) 275 
and cumulative period precipitation (CPP) were included in all models. Site and plot were included as random factors 276 
with plot nested in site. Models were executed on centered variables. 277 
 278 

  Mass loss green tea after 3 months   Mass loss rooibos tea after 3 months 

Fixed effect 
Sum 
Sq 

Mean 
Sq 

Num 
DF 

Den 
DF 

F 
value P  

Sum 
Sq 

Mean 
Sq 

Num 
DF 

Den DF 
F value P 

Incubation period length 0.024 0.024 1 503.29 7.83 0.005  0.003 0.003 1 487.30 0.97 0.32 

Focal tree identity 0.002 0.002 1 174.13 0.93 0.33  0.019 0.019 1 78.21 4.87 0.03 

Age 0.000 0.000 1 9.30 0.02 0.88  0.008 0.008 1 9.30 2.05 0.18 

Tree composition  0.000 0.000 2 187.72 0.10 0.89  0.004 0.002 2 94.07 0.60 0.54 

Species richness 0.001 0.001 1 84.57 0.43 0.50  0.001 0.001 1 45.32 0.27 0.59 

Planting density 0.000 0.000 1 8.93 0.10 0.75  0.001 0.001 1 9.04 0.25 0.62 

MPT 0.000 0.000 1 9.12 0.14 0.71  0.001 0.001 1 9.23 0.45 0.51 

CPP 0.000 0.000 1 9.14 0.20 0.65  0.001 0.001 1 9.20 0.30 0.59 

Focal tree identity: Age 0.020 0.020 1 205.25 6.50 0.01  0.079 0.079 1 126.59 19.63 <0.001 

MPT: CPP 0.001 0.001 1 9.01 0.46 0.51  0.002 0.002 1 9.10 0.66 0.43 
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  Mass loss green tea after 12 months   Mass loss rooibos tea after 12 months 

Fixed effect 
Sum 
Sq 

Mean 
Sq 

Num 
DF 

Den 
DF 

F 
value P  

Sum 
Sq 

Mean 
Sq 

Num 
DF 

Den DF 
F value P 

Incubation period 0.037 0.037 1 213.86 7.12 0.008  0.170 0.170 1 139.54 26.85 <0.001 

Focal tree identity 0.000 0.000 1 155.04 0.05 0.81  0.008 0.008 1 130.22 1.42 0.23 

Age 0.003 0.003 1 6.50 0.66 0.44  0.024 0.024 1 6.05 3.81 0.09 

Tree composition  0.011 0.005 2 168.62 1.06 0.34  0.045 0.022 2 146.08 3.61 0.02 

Species richness 0.017 0.017 1 40.57 3.27 0.07  0.002 0.002 1 108.45 0.34 0.55 

Planting density 0.001 0.001 1 6.26 0.29 0.60  0.009 0.009 1 5.78 1.54 0.26 

MPT 0.061 0.061 1 6.08 11.71 0.01  0.002 0.002 1 5.68 0.31 0.59 

CPP 0.013 0.013 1 6.31 2.56 0.15  0.000 0.000 1 6.02 0.14 0.71 

Focal tree identity: Age 0.000 0.000 1 163.90 0.02 0.87  0.008 0.008 1 134.38 1.38 0.24 

MPT: CPP 0.007 0.007 1 6.83 1.48 0.26  0.006 0.006 1 6.76 1.00 0.35 

 279 

3.2 Tree identity, composition, and diversity effects   280 

 281 
Figure 2. Mass loss (%)  as a function of focal tree identity (left), surrounding tree functional composition (middle) 282 
and tree species richness (right) for the two litter types. Relations were tested using linear mixed models (Table 2) 283 
accounting for other overstory related variables, climate, plantation conditions, plot and site. Significant relations 284 
are indicated by a full line whereas non-significant (NS) relations are indicated by a dotted line. The shaded parts 285 
indicate the standard error interval. Observations are indicated for litter types, green tea (green) and rooibos tea 286 
(red) and per incubation periods, 3 month (top) and 12 months (bottom).  287 

Mass loss of rooibos tea after 3 months of incubation was significantly higher under gymnosperm 288 

compared to angiosperm overstories (Figure 2). The functional group of the focal tree under 289 
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which tea bags were placed did not influence mass loss after 12 months of incubation (Figure 2) 290 

(Figure S2). After 12 months of incubation, tree composition significantly affected mass loss of 291 

rooibos tea with gymnosperm overstories resulting in lower mass loss compared to mixed 292 

overstories (Figure 2). This is after accounting for tree identity, where gymnosperm focal trees 293 

promote mass loss (although not significant P=0.23) (Figure 2, Table 2). Species richness did not 294 

significantly impact mass loss, irrespective of substrate type or stage of decay (Figure 2). The 295 

marginally significant increase of green tea mass loss with species richness after 12 months is 296 

based on the highest species richness level of BEF-China (Table S4). 297 

3.3 Plantation conditions effects  298 

Planting density did not impact mass loss. Mass loss of rooibos tea after 12 months decreased 299 

marginally significantly (P=0.09) with the age of the experiment whereas decomposition of green 300 

tea was not affected by age or planting density (Figure 3). We did, however, find a significant 301 

interaction effect of age and focal tree species identity on mass loss after 3 months incubation 302 

(P=0.01 for green tea and P<0.001 for rooibos tea): for gymnosperm focal trees we observed 303 

more negative relationships between mass loss and stand age (Figure 4).  304 
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 305 
Figure 3. Mass loss (%) as a function of planting density (left) and age (right) for two litter types after 3 months (top) 306 
and 12 months (bottom) of incubation. Relationship were tested using linear mixed models (Table 2) accounting for 307 
overstory effects, local climate, and random effects. There were no significant relationships (α<0.05) between the 308 
variables shown in these figures. Observations are given for litter types: green tea (green) and rooibos tea (red). 309 
 310 

 311 
Figure 4. Mass loss (%) as a function of age (centered variable) for green tea (left) and rooibos tea (right) for overstory 312 
functional group (pale circles: angiosperms and dark triangles: gymnosperms). Relationships were tested using linear 313 
mixed models (Table 2) accounting for overstory, climate and random effects. The significance level of the interaction 314 
is indicated in top left corners.  315 
 316 

3.4 Variance partitioning 317 

Litter type explained most of the variation (80%) in mass loss after three months in our study 318 

with minimal contributions of climate (temperature and precipitation combined, 0.9%) and 319 

plantation conditions (age and density combined, 0.1%). Overstory composition (identity or 320 

composition of the mixture) did not explain any variation (~0 %). After 12 months of incubation, 321 
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the proportion of variation explained by climate variables increased (to 2 %). When analyzed for 322 

tea type separately, random effects (site and plot) explained most of the variation in green tea 323 

mass loss (58 %) after 3 months, with very limited variance explained by climate (1 %), plantation 324 

conditions (0.4 %), overstory species composition (identity and composition combined, 0.1%) and 325 

species richness (0.1 %). Variance in rooibos mass loss after 3 months was explained by climate 326 

(3 %), plantation conditions (3 %) and species composition (0.3%), whereas species richness 327 

explained almost no variation (~0 %). After 12 months of incubation, climate explained more of 328 

the variance in green tea mass loss (23 %). For rooibos tea, mass loss after 12 months was 329 

increasingly explained by species composition and by incubation period length and its interaction 330 

with plantation conditions (14%) (Figure 5).  331 

 332 

Figure 5. Percentage of variation explained by site, litter type, climate (MAT+MAP), tree composition (Focal tree 333 

identity + mixture composition), species richness (SR), plantation conditions (age + density), and the shared effects 334 

between incubation period, climate, and plantation conditions for the total mass loss (left), green tea mass loss 335 

(middle) and rooibos tea mass loss (right) for incubation periods (top: 3 months, bottom: 12 months).  336 
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4 Discussion  337 

The impact of forest silvicultural management practices, such as the selection of a certain species 338 

composition and planting density, on biogeochemical processes and their potential co-benefits 339 

for carbon sequestration is still not well understood. Our study of the mass loss of two 340 

standardized litter types in planted juvenile forests across biomes aimed to examine the effects 341 

of overstory composition (tree identity, mixture composition and diversity), plantation conditions 342 

(density and age) relative to climate (temperature and precipitation) on the litter decomposition 343 

process over time. 344 

4.1 Litter quality and climate effects on mass loss over time 345 

As generally acknowledged (Coûteaux et al., 1995; Aerts, 1997), litter decomposition is largely 346 

influenced by litter quality and climate. We observed two times faster decomposition of high-347 

quality green tea compared to low-quality rooibos tea along the investigated gradients of tree 348 

diversity located in three continents (Figure S3). The higher water-soluble fraction and higher 349 

nutrient content in green tea compared to rooibos results in faster mass loss due to leaching and 350 

decomposer activity during early stages of decomposition (Berg and McClaugherty, 2008; Ristok 351 

et al., 2017; Fanin et al., 2020). Hence, our results (80% of variance explained by tea type in our 352 

study; Figure 5) further illustrates the importance of litter quality for decomposition at a multi-353 

continental scale (Djukic et al., 2018; Kwon et al., 2021). After litter quality, climate was the most 354 

important driver of mass loss in our study, explaining 0.9 % of variation after 3-months and 2 % 355 

after 12-months (Figure 5). Accordingly, biome significantly affected decomposition dynamics 356 

with mass loss increasing from boreal < Mediterranean < temperate < warm, temperature humid 357 

biomes (Figure S5, Table S3), as already illustrated by Djukic et al. (2018), corresponding to the 358 
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anticipated increase in mass loss with temperature (Bradford et al., 2016), as long as moisture 359 

does not become limiting (Petraglia et al., 2019). It is important to note that the impact of 360 

temperature on mass loss depends greatly on soil moisture conditions (Petraglia et al., 2019), but 361 

we did not consider this factor specifically in our study. Moreover, differences in microclimate 362 

(e.g., through shading and interception) and local differences in the environment (e.g., micro-363 

relief, litter traits on the forest floor) all play an important role in decomposition (Joly et al., 2017), 364 

yet they are often neglected when evaluating broader climatic gradients. 365 

4.2 Tree identity, composition, and diversity effects 366 

In our study, we found significant overstory tree identity effects on mass loss of low-quality litter 367 

during early stages of decomposition (after 3 months of incubation - conducted in the growing 368 

season): rooibos tea decomposed faster under gymnosperm compared to angiosperm 369 

overstories (Table 2, Figure 2). Most studies report opposite trends: for instance, Chomel et al. 370 

(2015) observed slower decomposition of cellulose in a spruce plantation than in a poplar 371 

plantation; Joly et al. (2017) reported a negative correlation between litter decomposition and 372 

the relative basal area of evergreen trees; and recent findings of Fanin et al. (2020) showed that 373 

rooibos tea decomposed slower under coniferous species than under broadleaved species. These 374 

studies were executed in mature forest stands, whereas our study was carried out in young 375 

plantations (maximum 12 years old) where microbial and invertebrate communities had less time 376 

to adapt to the prevailing tree species (and its litter input) and also microclimatic conditions still 377 

change considerably in the first years after planting (Zhang et al., 2022). The higher mass loss of 378 

low-quality litter after three months of incubation, when placed under young gymnosperm 379 

canopies in our study could be related to higher shading provided by gymnosperm species due 380 
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to their dense canopies. This could have improved moisture retention (Petraglia et al., 2019) or 381 

provided a more buffered temperature regime (Zhang et al., 2022), both of which promote mass 382 

loss. This mechanistic explanation is thus in contrast to our expectation that denser canopies may 383 

reduce soil moisture due to higher rainfall interception than in the more open canopies of the 384 

angiosperm species (cf Hypothesis 1). These identity effects became subtler with progressing 385 

decomposition. We assume that this reflects the decreasing impact of climate on decomposition 386 

processes as the proportion of lignin increases with time (Berg, 2000), explaining the lack of 387 

effects after 12 months of incubation. Additionally, we cannot exclude the effect of differences 388 

in the decomposer communities between angiosperm and gymnosperm overstories, which could 389 

affect decomposition differentially through decomposition stages. 390 

We did not find a significant effect of tree species richness on the decomposition of standardized 391 

substrates (Table 2, Figure 3). This is in line with other studies that identified a predominant role 392 

of identity over diversity in belowground ecosystem functioning (Schwarz et al., 2015; Dawud et 393 

al., 2016, 2017; Joly et al., 2017; Zhou et al., 2020). We did, however, find a significant effect of 394 

tree composition on mass loss of low-quality rooibos tea after 12 months: more diverse 395 

neighborhoods (e.g., mixtures of angiosperm and gymnosperm species) promote the 396 

decomposition of low-quality litter after accounting for the positive impact of the focal species 397 

being a gymnosperm, which is in line with our hypothesis 1. Taken together, these results suggest 398 

that tree species diversity and specifically mixtures of angiosperms and gymnosperms can have 399 

positive effects on the decomposition of low-quality litter, as mentioned in previous research 400 

(Gartner and Cardon, 2004; Handa et al., 2014; Joly et al., 2017): (1) the presence of tree species 401 

with high-quality litter (which are more likely to be present in mixtures) promotes the breakdown 402 
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of low quality litter via nutrient transfer, improved water retention or other positive interactions 403 

with recalcitrant litter (Porre et al., 2020), and (2) more diverse substrates support a larger 404 

decomposer community, which is more likely to process low-quality litter (Vogel et al., 2013). A 405 

probable mechanism is that specific decomposers break down specific litter components, such 406 

as lignin or phenolics (Ristok et al., 2017), and the diversity of these different decomposer groups 407 

increases the overall decomposition process through niche partitioning. This implies that, beyond 408 

the overarching importance of focal tree identity, the surrounding environment and its diversity 409 

and composition could also affect decomposition (Hättenschwiler, 2005). Such diversity effects 410 

are often context dependent and cannot be generalized across continents and over different 411 

species compositions (Scherer-Lorenzen et al., 2007); this may explain the subtle differences 412 

found in our study, which could become more pronounced with time (Li et al., 2019; Xu et al., 413 

2020). 414 

4.3 Plantation conditions effects on mass loss 415 

We did not find any effect of planting density on mass loss, irrespective of tea type, during early 416 

stages of forest development, leading to the rejection of hypothesis 3. This suggests that the 417 

density at which young trees were planted did not affect nutrient availability or the forest 418 

microclimate to the extent that it affected decomposition. In other studies of mature forests, 419 

variables such as canopy density and packing had some explanatory power for decomposition 420 

(Jucker et al., 2015; Trogisch et al., 2016), similarly we expect density effects in our experiments 421 

may strengthen as the experiments age. Furthermore, we found that mass loss of low-quality 422 

litter after 12 months marginally decreases with stand age (P=0.09), whereas we found no effect 423 

of stand age on green tea decomposition. We did, however, find a significant interaction effect 424 
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between age and tree identity during early-decomposition for both rooibos and green tea: the 425 

impact of stand age on litter decomposition was more negative under gymnosperm overstories. 426 

Hence, we reject hypothesis 2, that tree species identity effects become more pronounced with 427 

the age of the stand, as we observed a reversal of the impact tree identity. The possible beneficial 428 

microclimate effect of young gymnosperm stands promoting decomposition (by providing a more 429 

buffered temperature regime (Zhang et al., 2022) or higher soil moisture due to shading 430 

(Petraglia et al., 2019)) compared to angiosperm stands is likely to disappear with stand age. In 431 

addition, the soil biochemical composition is likely to change over time under gymnosperm 432 

species, negatively affecting acidity status, nutrient availability, and microbial communities 433 

(Coûteaux et al., 1995). This illustrates that plantation age can alter identity effects and that 434 

caution is needed when generalizing our findings to mature stands where belowground 435 

functioning, canopy closure and microclimate may be very different (Trogisch et al., 2016; Joly et 436 

al., 2017; Zhang et al., 2022). In addition, the interaction effect between tree identity and stand 437 

age was not observed for the 12-month incubation period (Table 2). This suggests that early 438 

stages of litter decomposition may be better suited to understanding the relative importance of 439 

overstory-related decomposition drivers compared to mid-stages of decomposition; as 440 

decomposition progresses (and thus relative higher lignin content and less mass remains) 441 

overstory effects become subtler. This corresponds with García-Palacios et al. (2016) who also 442 

illustrated a shift in control from biotic (overstory) to abiotic (edaphic and climatic) factors with 443 

ongoing litter decay.  444 

4.4 Limitations and scope for further research 445 
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This study was carried out in young plantations (maximum 12 years old) across boreal, temperate, 446 

Mediterranean, and subtropical biomes. As a consequence, some tree community effects on 447 

decomposition processes may emerge in the future as ecosystem functioning may become more 448 

strongly controlled by biotic factors during later stand development (Jucker et al., 2020; Xu et al., 449 

2020). For example, decomposer community (Eisenhauer et al., 2012) and soil chemistry (Dhiedt 450 

et al., 2022), microclimatic conditions (Mayer et al., 2017), and litter production (in absolute 451 

quantities) change over time, and such differences can vary among biomes. Moreover, no 452 

information on edaphic properties could be included in our research, despite its explanatory 453 

importance for context-dependent effects on litter decomposition (Fanin et al., 2020; Desie et 454 

al., 2021). Previous research has indicated that the local environment (including edaphic 455 

properties, microrelief and microclimate (Seidelmann et al., 2016; Joly et al., 2017)), the quantity 456 

and quality of the litter (Briones, 2014), the composition of the local soil community 457 

(Hättenschwiler, 2005; Briones, 2014), as well as the interactions between litter quality and 458 

decomposing environment (Veen et al. 2018) all affect decomposition. Such interactions are very 459 

complex, and future large-scale studies should take into account the ambient soil conditions, 460 

litter quality, and microclimate (Makkonen et al., 2012). Nevertheless, our study using 461 

standardized litters across a multi-continent set of tree diversity experiments provides a first 462 

indication of the relative importance of the surrounding tree community and its diversity, relative 463 

to macroclimate.   464 

5. Conclusions 465 

Our findings highlight the important role of local conditions shaped by the forest overstory 466 

composition and stand structure as determinants of litter decomposition dynamics in young 467 
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plantations. Overstory diversity had no clear effect on mass loss, irrespective of tree type, 468 

whereas tree species identity (and composition) affected decomposition of low-quality litter 469 

directly via overstory litter quality and quantity and indirectly via changes in the micro-470 

environment. Moreover, these direct and indirect effects of tree species composition on litter 471 

loss were dependent on the age of the stand. In these young stands, both planting density and 472 

overstory composition had little effect on litter decomposition compared to litter quality and 473 

macroclimate, suggesting limited consequences of management decisions related to planting 474 

density or species choice at early stages of stand development. To further disentangle these 475 

effects, it will be important for future studies to include a direct quantification of the micro-476 

environmental conditions at the site of decomposition. Further, we suggest not only relying on 477 

standard substrates for such studies, which can only test the role of the environmental and 478 

edaphic controls of decomposition, but combining them with the decomposition of plot-specific 479 

litters that would capture the influence of tree diversity and species composition through their 480 

effects on litter quality and quantity.  481 
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7. Supporting Information 793 

 794 

795 
Figure S1. Geographical distribution of the site locations. Experimental sites are indicated with a letter 796 

code. 797 

 798 
Figure S2. Mass loss (%) as a function of incubation period for the two litter types. Mean and SE are 799 
indicated for the 3-month and 12-month periods by the black horizontal errorbar. 800 

 801 
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 802 

Figure S3. Top: Mass loss (mean and SE) after 3 months of incubation for each site per tea type: green tea 803 

is indicated in light green and rooibos tea is indicated in dark red. Bottom: mean period temperature (MPT) 804 

(orange wide bars) and cumulative period precipitation (CPP) (blue narrow bars) for the 3 month 805 

incubation period per site. 806 

 807 

Figure S4. Top: Mass loss (mean and SE) after 12 months of incubation for each site per tea type: green 808 

tea is indicated in light green and rooibos tea is indicated in dark red. Bottom: mean period temperature 809 

(MPT) (orange wide bars) and cumulative period precipitation (CPP) (blue narrow bars) for the 12 month 810 

incubation period per site. 811 
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 812 

Figure S5. Mass loss (mean and se) after 3 months (left) and 12 months (right) of incubation for each 813 

biome and per tea type: green tea is indicated in light green and rooibos tea is indicated in dark red. 814 

Results of a multiple comparison test are indicated in the top and bottom of the graph: different letters 815 

indicate significant differences (α<0.05) between biomes. 816 

 817 
Table S1. Tree species of the experiment with their abbreviation and group (Ang = angiosperm; Gym = 818 
gymnosperm). Focal tree species are indicated in bold. 819 
 820 

Tree species Abbreviation Group Tree species Abbreviation  Group 
Acer davidii ACDA Ang Abies balsamea ABBA  Gym 
Acer monspessulanum ACMO Ang Larix decidua  LADE  Gym 
Acer platanoides  ACPL Ang Larix x marschlinsii LAEU  Gym 
Acer rubrum ACRU Ang Larix kaempferi LAKA  Gym 
Acer saccharum ACSA Ang Larix laricina LALA  Gym 
Acer pseudoplatanus ACPS Ang Picea abies PIAB  Gym 
Aesculus hippocastanum AEHI Ang Picea glauca PIGL  Gym 
Arbutus unedo ARUN Ang Pinus halepensis PIHA  Gym 
Betula alleghaniensis BEAL Ang Picea omorika PIOM  Gym 
Betula papyrifera  BEPA Ang Pinus pinaster PIPI  Gym 
Betula pendula  BEPE Ang Pinus pinea PIPINEA  Gym 
Carpinus betulus CABE Ang Pinus resinosa PIRE  Gym 
Castanopsis carlesii CACA Ang Picea rubens PIRU  Gym 
Castanopsis eyrei CAEY Ang Pinus strobus PIST  Gym 
Castanea henryi CAHE Ang Pinus sylvestris PISY  Gym 
Castanea sativa CASA Ang Pseudotsuga menziesii PSME  Gym 
Castanopsis sclerophylla CASC Ang Thuja occidentalis THOC  Gym 
Choerospondias axillaris CHAX Ang     
Cinnamomum camphora CICA Ang     
Cyclobalanopsis glauca CYGL Ang     
Cyclobalanopsis myrsinaefolia CYMY Ang     
Daphniphyllum oldhamii DAOL Ang     
Diospyros glaucifolia DIGL Ang     
Fagus sylvatica FASY Ang     
Fraxinus excelsior FREX Ang     
Fraxinus ornus FROR Ang     
Koelreuteria bipinnata KOBI Ang     
Liquidambar formosana LIFO Ang     
Lithocarpus glaber LIGL Ang     
Melia azedarach MEAZ Ang     
Nyssa sinensis NYSI Ang     
Olea europaea OLEU Ang     
Phillyrea angustifolia PHAN Ang     
Pistacia lentiscus PILE Ang     

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4200083

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



45 
 

Prunus avium PRAV Ang     
Quercus acutissima QUAC Ang     
Quercus fabri QUFA Ang     
Quercus ilex QUIL Ang     
Quercus petraea QUPE Ang     
Quercus pubescens QUPU Ang     
Quercus robur  QURO Ang     
Quercus rubra QURU Ang     
Quercus serrata QUSE Ang     
Quercus suber QUSU Ang     
Rhus chinensis RHCH Ang     
Sapindus mukorossi SAMU Ang     
Schima superba SCSU Ang     
Sorbus aucuparia SOAU Ang     
Quercus rubra QURU Ang     
Tilia cordata TICO Ang     
Tilia platyphyllos TIPL Ang     
Triadica cochinchinensis TRCO Ang     
Triadica sebifera TRSE Ang     
Salix dasyclados (cv 'Loden') SADA Ang     
Salix schwerinii x viminalis (cv 
'Tora') 

SASV Ang     

S. schwerinii x viminalis + S. 
dasyclados 

SADASASV Ang     

 821 
 822 

 823 

Figure S7: Mass loss (mean and SE) after 3 months (top) and 12 months (bottom) per focal tree species 824 

for green tea (left) and rooibos tea (right). Angiosperm species are indicated with light circles and 825 

gymnosperm species with dark triangles. Abbreviations per tree species name are found in Table S1. 826 

Table S2: ANOVA output of linear mixed models testing the effect of incubation period, litter type and 827 
the interaction. Site and plot were included as random factors. 828 

 Sum Sq Mean Sq NumDF DenDF F value P 

Incubation period  4.81 4.81 1 2034.5 818.06 < 0.001 

Litter type 35.69 35.69 1 1983.6 6070.40 < 0.001 

Incubation period : Litter type 0.77 0.77 1 1985.3 131.04 < 0.001 

 829 

Table S3: ANOVA output of linear mixed models testing the effect of incubation period, litter type, 830 
biome and their interactions. Site and plot were included as random factors. 831 

 Sum Sq Mean Sq NumDF DenDF F value P 

Incubation period  4.63 4.63 1 2020.38 798.27 < 0.001 
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Litter type 28.14 28.14 1 1983.61 4851.00 < 0.001 

Biome 0.33 0.11 3 207.92 19.13 < 0.001 

Incubation period: Litter type 0.72 0.72 1 1983.17 125.11 < 0.001 

Incubation period: Biome 0.17 0.05 3 1988.65 10.03 < 0.001 

 832 
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Table S4. P-values for fixed effects in alternative models (including cumulative precipitation and aridity indices GI (= precipitation / 2 * temperature) and AI (= 833 

precipitation / potential evotranspiration) for the incubation period and/or excluding BEF-China) accounting for the random effects site and plot (plot nested in 834 

site) executed on centered variables. The models included in the main manuscript are highlighted in respectively green and red.  835 

 836 

3M 

Mass loss  ~ Incubation Identity Age Identity*Age Composition SR Density MPT CPP  
GREEN 0.005 0.32 0.86 0.01 0.86 0.50 0.13 0.35 0.29  
RED  0.30 0.02 0.16 <0.001 0.52 0.59 0.06 0.80 0.20  
           Mass loss ~  Incubation Identity Age Identity*Age Composition SR Density MPT CPP  MPT*CPP 
GREEN 0.005 0.33 0.88 0.01 0.89 0.50 0.75 0.71 0.65 0.51 
RED  0.32 0.03 0.18 <0.001 0.54 0.59 0.62 0.51 0.59 0.43 
           Mass loss ~ Incubation Identity Age Identity*Age Composition SR Density MPT GI = P / 2*T  
GREEN 0.005 0.32 0.93 0.01 0.89 0.49 0.16 0.28 0.39  
RED  0.32 0.02 0.21 <0.001 0.51 0.57 0.09 0.90 0.35  
           Mass loss ~  Incubation Identity Age Identity*Age Composition SR Density  GI = P / 2*T  
GREEN 0.007 0.33 0.98 0.01 0.88 0.42 0.26  0.76  
RED 0.32 0.02 0.19 <0.001 0.51 0.55 0.07  0.27  
           Mass loss ~ Incubation Identity Age Identity*Age Composition SR Density MPT AI = P / PET  
GREEN 0.005 0.33 0.95 0.01 0.90 0.49 0.15 0.30 0.34  
RED  0.31 0.02 0.18 <0.001 0.52 0.58 0.06 0.98 0.22  
           Mass loss ~ Incubation Identity Age Identity*Age Composition SR Density  AI = P / PET  
GREEN 0.006 0.33 0.95 0.01 0.89 0.43 0.18  0.53  
RED  0.30 0.02 0.16 <0.001 0.52 0.58 0.05  0.16  

            

12M 

Mass loss  ~ Incubation Identity Age Identity*Age Composition SR Density MPT CPP  
GREEN  0.01 0.79 0.78 0.92 0.36 0.06 0.71 0.01 0.34  
RED <0.001 0.22 0.02 0.26 0.02 0.62 0.03 0.49 0.48  
           Mass loss ~ Incubation Identity Age Identity*Age Composition SR Density MPT CPP  MPT*CPP 
GREEN 0.008 0.81 0.44 0.26 0.34 0.07 0.60 0.01 0.15 0.26 
GREEN (without BEF-China) 0.09 0.83 0.77 0.81 0.34 0.71 0.37 0.05 0.08 0.49 
RED  <0.001 0.23 0.09 0.24 0.02 0.55 0.26 0.59 0.71 0.35 
           Mass loss ~ Incubation Identity Age  Composition SR Density MPT GI = P / 2*T  
GREEN 0.01 0.79 0.76 0.92 0.36 0.06 0.91 0.01 0.39  
RED <0.001 0.22 0.03 0.26 0.02 0.63 0.05 0.15 0.52  
           Mass loss ~ Incubation Identity Age  Composition SR Density  GI = P / 2*T  
GREEN 0.03 0.84 0.91 0.80 0.33 0.04 0.26  0.65  
GREEN (without BEF-China) 0.09 0.80 0.57 0.84 0.36 0.74 0.21  0.02  
RED <0.001 0.21 0.04 0.22 0.03 0.87 0.05  0.80  
           Mass loss ~ Incubation Identity Age  Composition SR Density MPT AI = P / PET  
GREEN 0.01 0.79 0.89 0.91 0.36 0.06 0.61 0.01 0.43  
RED <0.001 0.22 0.02 0.26 0.02 0.60 0.02 0.17 0.38  
           Mass loss ~ Incubation Identity Age  Composition SR Density  AI = P / PET  
GREEN 0.03 0.80 0.91 0.80 0.33 0.04 0.26  0.65  
GREEN (without BEF-China) 0.18 0.80 0.88 0.79 0.36 0.74 0.57  0.02  
RED <0.001 0.21 0.02 0.22 0.03 0.79 0.01  0.42  
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Table S6: Results of variance partitioning combining all tea types. 838 

R2 term estimate for  
3 months 

estimate for  
12 months 

Full 0.934461 0.858468 

Fixed effects  0.836022 0.80911 

Random effects 0.098439 0.049358 

Climate (MPT + CPP) 0.009737 0.022611 

Plantation conditions (planting density + stand age) 0.001462 0.001005 

Species composition (Tree identity + tree composition) 0.00015 0 

Species richness 0.000319 0.000528 

Tea type 0.806591 0.703487 

Incubation period 0.000423 0.012451 

Higher order interactions 0.01734 0.069027 

Variance not explained 0.065539 0.141532 

 839 
Table S7: Results of variance partitioning per tea type and per incubation period 840 

R2 term Green  
3 months 

Green  
12 months 

Rooibos  
3 months 

Rooibos  
12 months 

Full 0.698917 0.496436 0.673709 0.64771 

Fixed effects 0.115483 0.363739 0.120832 0.332876 

Random effects 0.583433 0.132697 0.552877 0.314834 

Climate  0.010978 0.233291 0.037085 0.008118 

Plantation conditions 0.004356 0.010577 0.035503 0.024143 

Species composition 0.001116 0.004516 0.003746 0.012015 

Species richness 0.001404 0.002817 0.000948 0.000916 

Incubation period 0.007021 0.023169 0.001311 0.081743 

Higher order interactions 0.090608 0.089369 0.042239 0.205941 

Variance not explained 0.301083 0.503564 0.326291 0.35229 

 841 
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