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Abstract 

The Soil and Water Assessment Tool (SWAT) is one of the most widely used and 

well-tested eco-hydrological models. However, parameter calibration, sensitivity analysis and 

uncertainty analysis remain among the most challenging tasks. Existing SWAT parameter 

calibration, sensitivity analysis, and uncertainty analysis tools are either commercial products 

or free tools with limited options. This study demonstrates an interactive graphical user 

interface tool in the R environment for SWAT parameter calibration, sensitivity and 

uncertainty analyses, and visualization, called R-SWAT. Different R functions/packages for 

parameter calibration, sensitivity analysis, and uncertainty analysis have been incorporated 

into R-SWAT. Third-party packages can be integrated into R-SWAT with minimum effort. The 

application of R-SWAT for a test case study demonstrates its functionalities. In general, R-

SWAT (1) is a potential platform for developing and testing new sensitivity or optimization 

packages, and (2) promotes the understanding of hydrological processes with open-source 

SWAT and R. 

Keywords: graphical user interface, model calibration, parameter sensitivity, uncertainty 

analysis, R, SWAT model  
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Software availability 

● Name of software: R-SWAT (version v1.0.0) 

● Developer and contact address: Tam V. Nguyen (tam.nguyen@ufz.de), Department of 

Hydrogeology, Helmholtz Centre for Environmental Research ‐ UFZ, 04318 Leipzig, 

Germany. 

● Year available: 2021  

● Programming language: R 

● Availability and cost: the source code, including links to tutorial videos and 

discussion group, is freely available at https://github.com/tamnva/R-SWAT.  

  

https://github.com/tamnva/R-SWAT
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1. Introduction 

Hydrological model are a simplified representation of real-world physical processes 

(e.g., evapotranspiration, surface and subsurface flows, soil biogeochemical processes among 

others). Hydrological models assist scientists and engineers in managing water resources. In 

the last few decades, various models simulating different physical processes and levels of 

spatial detail have been developed, ranging from lumped conceptual models to physically-

based distributed models. Some examples of these models are the Génie Rural à 4 paramètres 

Journalier (GRJ4, Perrin et al., 2003), the Soil and Water Assessment Tool (SWAT, Arnold 

et al., 1998; Arnold, Kiniry, et al., 2012), the HYdrological Predictions for the Environment 

model (HYPE, Lindström et al., 2010), the mesoscale Hydrologic Model (mHM, Samaniego 

et al., 2010), and HydroGeoSphere (HGS, Therrien et al., 2010). Hydrological models often 

have to be calibrated using a set of effective parameters (Skaggs et al., 2012) to make sure 

that the models can represent the process of interest.  

SWAT is one of the most widely used hydrological models, and it is the most used 

water quality model (Fu et al., 2019). SWAT has been applied to evaluate the impact of land 

use management practices on water, sediments, and nutrient yields at the catchment scale 

(Arnold et al., 1998; Arnold, Kiniry, et al., 2012). SWAT has been tested at various 

catchments worldwide (Arnold, Moriasi, et al., 2012). The number of published studies 

related to SWAT has increased drastically, with more than 5000 papers to date 

(https://www.card.iastate.edu/swat_articles/, accessed 10 March 2022). Besides the technical 

merit of the conceptual model of SWAT, five main reasons explain the success of SWAT: (1) 

technical support via different platforms, (2) accessibility to model input data at the global 

scale, (3) user-friendly GIS-based graphical user interface (GUI) for model processing (e.g., 

ArcSWAT and QSWAT), (4) free, open-source code with different community tools for input 

data preparation and post-processing (a list of these tools can be found at 

https://swat.tamu.edu/, accessed 10 March 2022), and (5) a well-connected worldwide user 

community.  

One of the challenges when working with SWAT is to perform parameter calibration, 

sensitivity analysis, and uncertainty analysis. This is due to not only the complex SWAT 

model structure but also the high technical effort required to modify the parameter values in 

SWAT. There could be up to thousands of SWAT parameters located in different files (in 

ASCII format) (Neitsch et al., 2011). To help SWAT users perform parameter calibration, 

sensitivity analysis, and uncertainty analysis, SWAT-CUP (Abbaspour, 2015) was 

introduced. However, SWAT-CUP is a commercial software, and its free version is available 

for SWAT users with some restrictions, e.g., on the maximum number of simulations and on 

the parallel simulation options. The source code of SWAT-CUP is not available, so users 

cannot adapt the tool to their specific needs. For example, they cannot use objective functions 

or extract model outputs that are not defined in SWAT-CUP. In addition to SWAT-CUP, 

ArcSWAT and SWATEditor (https://swat.tamu.edu/software/, accessed 10 March 2022) also 

offer options for running SWAT with a given list of modified parameter values. However, 

they do not contain any technique for automatic parameter calibration, sensitivity analysis, 

and uncertainty analysis. In contrast, several free or open-source tools have been developed 

for either automatic or manual calibration, parameter sensitivity, and uncertainty analysis 

with SWAT+ (Bieger et al., 2017) which is a completely restructured version of SWAT. Two 

examples of these tools are the SWAT+ toolbox (Chawanda, 2021) and the Integrated 

Parameter Estimation and Uncertainty Analysis Tool Plus (IPEAT+, Yen et al., 2019). 

Developing such tools for SWAT is necessary, considering the wide use of SWAT.  

https://www.card.iastate.edu/swat_articles/
https://swat.tamu.edu/
https://swat.tamu.edu/software/
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In recent years, R (R Core Team, 2019) has emerged as a potential platform for 

developing open-source packages for hydrological research (Slater et al., 2019). Various R 

packages exist for parameter calibration, sensitivity analysis, uncertainty analysis (e.g., 

Husmann et al., 2017; Iooss et al., 2021; Zambrano-Bigiarini & Rojas, 2020), and 

parallelization (e.g., Microsoft Corporation & Weston, 2020; R Core Team, 2019). In the 

field of hydrological science, the R community is growing and now includes numerous 

packages for hydrological research (https://cran.r-project.org/web/views/Hydrology.html, 

accessed 10 March 2022). In addition, different packages for visualization and creating GUI 

are available in R, such as ggplot2 (Wickham, 2011), plotly (Chang et al., 2021), and shiny 

packages (Chang et al., 2021), which facilitate visual evaluation of model outputs. The main 

advantage of R is that all packages are open-source and free for the community. Therefore, it 

would be beneficial to have a tool that connects SWAT with R.  

Several R packages or scripts were developed for SWAT. The SWATplusR package 

(Schürz, 2019) was introduced for performing SWAT and SWAT+ simulations with provided 

parameters and returning model outputs. SWATplusR is well-documented with a workflow 

and illustrative examples (e.g., model calibration, parameter sensitivity analysis, and 

uncertainty analysis). Guillaume and Andrews (2012) developed R scripts for SWAT 

parameter uncertainty analysis with the dream (DiffeRential Evolution Adaptive Metropolis) 

package (Hartig et al., 2019). The SWATmodel package was created for running different 

SWAT versions (SWAT2005, SWAT2009; and SWAT2012) on different operating systems 

and processor platforms with given parameter values (Fuka et al., 2014). One of the 

advantages of these tools is that they are open-source, so users can further modify the source 

code for certain purposes. However, this requires a certain R knowledge level as well as 

knowledge of the provided source code. Therefore, having a GUI in addition to the open-

source code and various ready-to-use techniques for parameter calibration, sensitivity 

analysis uncertainty analysis, and visualization of the model outputs would benefit SWAT 

users of different levels (beginners and experienced R users). This will promote hydrological 

research using SWAT and R, reduce the technical barrier between SWAT and R, thus 

promoting hydrological research using SWAT and R. 

This paper introduces a new free and open-source R-based tool (called R-SWAT) with 

an interactive graphical user interface for SWAT parameter calibration, sensitivity analysis, 

uncertainty analysis, and visualization of the SWAT outputs. The proposed tool can be 

adapted to other models, e.g., SWAT+ (Bieger et al., 2017), HYPE (Lindström et al., 2010), 

or mHM (Samaniego et al., 2010). Here, SWAT was chosen as an example rather than the 

only possible hydrological model to couple with R.   

https://cran.r-project.org/web/views/Hydrology.html
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2. Structure and functionalities of R-SWAT 

To use R-SWAT, all SWAT input files in the TxtInOut folder must be created 

beforehand by external programs (e.g., ArcSWAT or QSWAT). R-SWAT provides functions 

for 1) updating SWAT input files, 2) parameter sensitivity analysis, 3) calibration and 

uncertainty analysis, 4) parallelization, 5) model output extraction and model performance 

evaluation, and 6) visualization of the model results (Figure 1). Details of these functions are 

described in the subsequent sections. 

 

 

Figure 1. Overview of the structure and functionalities of R-SWAT. 

2.1. Updating SWAT parameters 

The number of SWAT parameters could be up to a thousand or more depending on 

the modeling area and the model setup. This is because SWAT can be implemented as a 

distributed model with parameters that are defined at different spatial levels (e.g., 

hydrological response unit - HRU, subbasin, and basin). To modify SWAT parameter values, 

knowledge of the input file and model structure is required. SWAT inputs are in the ASCII 

file format with various file extensions (e.g., “.hru”, “.sub”, and “.bsn”), representing 

different spatial modelling units and/or processes. Each file includes different parameters 

located in different lines with different number formats. In addition, new input files and new 

parameters can be introduced as SWAT is constantly being developed for specific purposes 

(e.g., Nguyen et al., 2020; Nguyen & Dietrich, 2018). Therefore, this study developed a 

general approach that allows modification of any parameter defined via the text file 

“swatParam.txt” (please see the supporting material R-SWAT.pdf). This facilitates the use of 

R-SWAT with any given SWAT version without reading/modifying the R-SWAT source code. 

R-SWAT modifies multiple parameters in a single file and saves the file only once 

instead of in sequence (e.g., rewriting the same input file multiple times, modifying only one 

parameter each time) to reduce the writing time. Similar to SWAT-CUP (Abbaspour, 2014), 
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R-SWAT uses three methods, relative change (Equation 1), absolute change (Equation 2), and 

replace (Equation 3) for modifying SWAT parameters (Figure 2):  

𝑝𝑛𝑒𝑤 = 𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ⋅ (1 + 𝑥)       (1) 

𝑝𝑛𝑒𝑤 = 𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑥        (2) 

𝑝𝑛𝑒𝑤 = 𝑥         (3) 

where 𝑝𝑛𝑒𝑤 is the modified parameter value, 𝑝𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original parameter value created 

during the model setup, and x is the modified factor/value.  

 

Figure 2. R-SWAT user interface for selecting parameters for sensitivity analysis or 

calibration (menu item “2. Parameter sampling”). Numbers in the left and right panels 

indicate the order of these tasks (unless a message states that a specific task needs to be done 

before).  

2.2. Parameter sensitivity analysis 

 The current R-SWAT version uses the sensitivity R package (Iooss et al., 2021), which 

provides different functions for factor screening, and global sensitivity analysis with 

robustness analysis. Users need to type R functions from the sensitivity package in the user 

input box of R-SWAT (Figure 2). To couple R-SWAT with the sensitivity package, we use 

keywords to pass functions and variables from R-SWAT to functions of the sensitivity 

package (user input box, Figure 2). For example, (1) SWAT is the function that takes 

parameter values as inputs (all user settings from the R-SWAT interface were also passed to 

the SWAT function) and returns objective function values, (2) minCol and (3) maxCol are the 

vectors of minimum, and maximum ranges of the selected parameters respectively, and (4) 

nParam is the number of selected parameters (Figure 2). This option allows R-SWAT to use 

different functions of the sensitivity packages. Examples of the available sensitivity 
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approaches in the sensitivity package are given in Table 1, while a complete list is given by 

Iooss et al. (2021). Integrating new sensitivity packages into R-SWAT only requires changing 

a single line in the R-SWAT code (as documented in the supporting material R-SWAT.pdf). 

Given the large number of parameters and the model runtime of SWAT, computationally 

cheaper methods, such as multiple start perturbation methods including the Morris (1991) and 

DELSA methods (Rakovec et al., 2014), are often preferred (Nossent et al., 2011). However, 

a much larger range of methods could be envisaged to examine the sensitivities of SWAT. 

For instance, previous studies have showed that the application of computationally expensive 

methods, such as the Sobol’ (1993) method, can also be feasible, depending on the purpose of 

sensitivity analysis (Nossent et al., 2011; Sarrazin et al., 2016). The choice of the sensitivity 

analysis approach is beyond the scope of this study. We refer to Pianosi et al. (2016) for a 

review of the different available methods and their computational cost.  

Table 1. Examples of available sensitivity functions in R-SWAT. Examples of input codes 

for the user-defined setting box (Figure 2) can be found in the supporting material (R-

SWAT.pdf). 

Sensitivity approach Function/package Reference 

Morris’s “OAT” elementary effects screening 

method 

morris/sensitivity Campolongo et al. (2007); Morris 

(1991); Pujol (2009) 

Derivative-based Global Sensitivity Measures delsa/sensitivity Rakovec et al. (2014) 

Variance-based sensitivity indices (Sobol’ 

indices) for independent inputs 

sobol/sensitivity, 

fast99/sensitivity 

Sobol’ (1993);  

Saltelli et al. (1999) 

Multivariate linear regression R-SWAT Abbaspour (2014) 

In addition, the global sensitivity analysis method using multivariate linear regression 

with parameters generated from uniform Latin Hypercube Sampling (e.g., Sequential 

Uncertainty FItting algorithm - SUFI-2, Abbaspour et al., 2004) was also added to R-SWAT. 

Furthermore, R-SWAT provides an option for running SWAT with parameter sets generated 

by other sensitivity analysis tools (by changing the option in the drop-down box, Figure 2). 

Then, R-SWAT returns the objective function values or the simulated values of the selected 

variables (Section 2.5) for further analysis. This allows R-SWAT to be coupled with other 

sensitivity analysis toolboxes that were written either in R or in other programming 

languages, e.g., the Sensitivity Analysis For Everybody (SAFE, Pianosi et al., 2015).  

2.3. Parameter calibration or optimization 

Parameter calibration is a process of adjusting model parameter values within their 

plausible ranges to minimize the differences between simulated and observed values. There 

exist various methods for parameter calibration (Arsenault et al., 2014), and many of them 

have been implemented as R packages (Husmann et al., 2017; Mullen, 2014; Zambrano-

Bigiarini & Rojas, 2020). R-SWAT uses the hydroPSO (Zambrano-Bigiarini & Rojas, 2020), 

optimization (Husmann et al., 2017), and nloptr (Ypma et al., 2020) packages, which were 

designed for the optimization of complex loss functions. Some examples of the 

calibration/optimization approach with R-SWAT are in Table 2. Integrating new optimization 

packages into R-SWAT only requires changing a single line in the R-SWAT code (as 

documented in the supporting material R-SWAT.pdf)  
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Table 2. Some of available calibration/optimization approaches in R-SWAT. A complete list 

of optimization functions that can be used in R-SWAT is included in the nloptr package. Some 

examples of the input codes (Figure 2) can be found in the supporting material (R-SWAT.pdf). 

Calibration/optimization approach  Function/package Reference 

Particle Swarm Optimisation (PSO) hydroPSO/hydroPSO Zambrano-Bigiarini & Rojas 

(2020) 

Simulated Annealing (SA) optim_sa/optimization Husmann et al. (2017) 

Bound Optimization by Quadratic 

Approximation (BOBYQA) 

bobyqa/nloptr Powell (2009) 

Sequential Uncertainty Fitting (SUFI-2) R-SWAT Abbaspour et al. (2004) 

Dynamically Dimensioned Search algorithm 

(DDS) 

R-SWAT Tolson & Shoemaker (2007) 

Generalized Likelihood Uncertainty 

Estimation (GLUE) 

R-SWAT Beven & Binley (1992) 

In addition, a similar approach to SUFI-2 (Abbaspour et al., 2004) and the 

Dynamically Dimensioned Search algorithm (DDS, Tolson & Shoemaker, 2007) was 

included (Table 2). SUFI-2 is often used for SWAT calibration and uncertainty analysis 

(Abbaspour et al., 2017; Arnold, Moriasi, et al., 2012). The DDS approach has been proven 

to be more efficient than others (Arsenault et al., 2014). A detailed description of the SUFI-2 

and DDS approaches was presented elsewhere (Abbaspour, 2014; Tolson & Shoemaker, 

2007) and different optimization approaches have also been covered in other publications 

(Arsenault et al., 2014; Khoi & Thom, 2015; Wu & Chen, 2015). Users could run SWAT 

with specific parameter sets (e.g., for manual calibration, local sensitivity analysis, or re-run 

the model with the optimal parameter set) from an external file (please see the supporting 

material R-SWAT.pdf).  

2.4. Parallelization 

 R-SWAT executes SWAT in parallel to make use of available multi-core processors to 

save the user time (Figure 3). Parallel execution of SWAT is applied for the whole SWAT 

model instead of HRU- or subbasin-level processing (e.g., Zhang et al., 2021) because the 

latter option would require modification of the SWAT source code (this is not the scope of 

this study). If all parameter sets are known at the beginning (e.g., the Latin Hypercube 

Sampling (LHS) approach for parameter sensitivity and calibration), the number of models 

run on each core is determined by the number of parameter sets divided by the number of 

cores (e.g., SWAT-CUP, Abbaspour, 2014). If the number of model runs is not a multiplier 

of the number of cores, the remaining number of model runs is assigned to the last core. In 

case the parameter sets are generated in sequence (e.g., in the DDS optimization approach), 

the next parameter set is only generated if the model run is completed and evaluated with the 

previous parameter set and different parallelization options are proposed (Figure 4) as 

described below:  
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Figure 3. R-SWAT interface for model output extraction and parallel execution.  

Figure 4. An example of different parallel options when the parameter sets are generated in 

sequence (e.g., with the DDS approach). These options need to be defined using the drop-

down and user-defined setting boxes in Figure 2. A detailed description of the case study and 

the objective function used in this example is given in Section 3.  

Parallel option 1: DDS is run in parallel on each core independently. In other words, there is 

no communication of the intermediate results among cores. After all iterations (e.g., 10 

iterations as in Figure 4) are completed, the best parameter set is the one that gives the best 

objective function value among all cores. 

Parallel option 2: R-SWAT evaluates the objective function and finds the best parameter set 

among all cores after each iteration. This parameter set is assigned as an initial parameter set 

for all cores in the next run; then, the DDS approach is used (independently for each core) to 

generate the next parameter set. Thus, after all iterations, the best parameter set is the one that 

gives the best objective function value. 
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The efficiency of these different parallel options could vary on a case-by-case basis and this 

needs to be investigated in future studies.  

2.5. Output extraction, model performance evaluation, and uncertainty analysis 

R-SWAT is flexible in terms of extracting model outputs after each model run for 

model performance evaluation. Users can extract model outputs from different SWAT output 

files (Figure 3) and evaluate the model performance using standard objective functions such 

as the Nash-Sutcliffe efficiency (NSE, Nash & Sutcliffe, 1970), the Kling-Gupta efficiency 

(KGE, Gupta et al., 2009), absolute bias (aBIAS), the root mean square error (RMSE, 

Moriasi et al., 2007) and coefficient of determination (R2, Krause et al., 2005). In addition, 

there are options allowing users to define any model outputs and objective functions 

(userReadSwatOutput and userObjFunction). A specific R script file (with examples) is 

provided for users (as specified in the supporting material R-SWAT.pdf). Users can modify 

the script without having to read the entire code of R-SWAT. Therefore, evaluating the model 

performance at different spatial (HRU to basin) and temporal (e.g., daily to yearly) scales is 

possible. In case the SWAT model is modified and new output files are created, this option 

can be used to extract model outputs from the new files.  

To evaluate the model prediction uncertainty, R-SWAT uses the SUFI-2 concept for 

all parameter calibration/optimization approaches except the GLUE approach (Table 2). The 

objective of SUFI-2 (Abbaspour et al., 2004) is not to search for an optimal parameter set but 

instead to cover as much observed data as possible within the 95 percent prediction 

uncertainty (95PPU) band, with the 95PPU band being as small as possible. The 95PPU band 

(at 2.5 and 97.5 percentiles of the simulated results at every time step) is calculated based on 

a given behavioral threshold value of the objective function defined by users. The 95PPU is 

evaluated using the r-factor (the average thickness of the 95PPU band divided by the 

standard deviation of the measured data) and the p-factor (the percentage of measured data 

bracketed by the 95PPU band) (Abbaspour et al., 2004). With the GLUE approach, the 

simulated results are sorted according to their likelihood values, and the 95PPU band is 

calculated with the sorted values (Beven & Binley, 1992).  

2.6. Visualization, interactive user interface, and technical support 

 We use visualization R packages, such as ggplot2 (Wickham, 2011) and plotly (Chang 

et al., 2021) to facilitate the visual evaluation of model outputs. The model outputs can be 

evaluated at different spatial (e.g., HRU, subbasin, or basin) and temporal (daily, monthly, or 

yearly) scales. This allows SWAT modelers to examine the model results, potentially 

assisting in detecting spatial and temporal issues as well as helping to understand model 

behaviors. 

Users interact with R-SWAT via an interactive GUI created with the shiny package as 

shown in Figures 2-3 and in the supporting material (R-SWAT.pdf). The user manual was 

included in the tool; users can click on the “Help” tooltip at each input item to see which 

input should be provided. To become familiar with R-SWAT, tutorial videos and a discussion 

group were created, where users could directly interact with others and developers.   
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3. Illustrative examples 

 In this section, we demonstrate specific functions of R-SWAT (e.g., parameter 

sensitivity and parameter calibration with specific approaches). Running R-SWAT with other 

approaches are highlighted in the user manual (https://github.com/tamnva/R-SWAT/wiki/R-

SWAT-User-Manual, accessed 25 March 2022). 

3.1. Study area and data 

 The study area (12°0'18.22"N, 107°41'16.51"E) is the Dak Nong river basin (Figure 

5), located in the central highland region of Vietnam. The elevation of the study area ranges 

from 558 to 1344 m above the mean sea level. Forest (FRSE) and agricultural land (AGRL, 

mainly coffee and commodity crops (Meyfroidt et al., 2013)) are the two dominant types of 

land use, accounting for 56.6 and 43.3% of the study area, respectively. The main soil type is 

Rhodic Ferrasols with a red to dusky red B horizon. The local climate is characterized by a 

tropical monsoon climate with distinct rainy (April/May to October) and dry seasons (Ngo-

Thanh et al., 2018). As a result, the study area’s flow regime has high seasonality, with 84% 

of the annual streamflow occurring in the rainy season.  

 

Figure 5. Location and digital elevation model (DEM) of the study area 

 The digital elevation model (DEM) was obtained from the Shuttle Radar Topography 

Mission (https://dwtkns.com/srtm30m/). Land use/land cover was derived from Landsat 

satellite images (www.usgs.gov) using the maximum likelihood classifier. Results of land use 

classification were qualitatively evaluated using Google Earth images. The soil map was 

taken from the FAO-UNESCO global soil map (http://www.fao.org). Climate data (daily 

precipitation, air temperature, and daily observed streamflow at the catchment outlet) were 

provided by the Viet Nam Meteorological and Hydrological Administration. In this study, 

https://dwtkns.com/srtm30m/
http://www.usgs.gov/
http://www.fao.org/
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daily observed streamflow data at the catchment outlet were used for evaluating the model 

performance, parameter sensitivity analysis, and calibration. 

3.2. Parameter sensitivity analysis 

 Different parameters were selected to perform sensitivity analysis, to demonstrate the 

ability of R-SWAT in modifying different types of SWAT parameters (Table 3). The selected 

parameters are also the most commonly used for streamflow calibration (Arnold, Moriasi, et 

al., 2012). The parameter ranges were taken from literature (Arnold, Kiniry, et al., 2012) and 

our local knowledge of the study area.  

Table 3. List of parameters and their ranges for sensitivity analysis with the Morris approach. 

The extensions “.gw,” “.bsn,” “.hru,” “.mgt,” “.rte,” “.sol,” and “.sub” indicate the file name 

extensions in which the respective parameters are located. “All” indicates changes that are 

applied for all subbasins, land uses, soil types, or slopes, and blank cells indicate that no input 

is needed. A detailed description of these parameters can be found in Arnold et al. (2013). 

Parameters Change Min Max Subbasin Land use Soil Slope 

GW_DELAY.gw replace 0.5 0.99 All All All All 

GW_REVAP.gw replace 0.02 0.2 All All All All 

GWQMN.gw replace 0 2000 All All All All 

RCHRG_DP.gw replace 0 0.2 All All All All 

REVAPMN.gw replace 0 500 All All All All 

SURLAG.bsn replace 0.1 10 

    EPCO.hru replace 0.01 0.4 All All All All 

OV_N.hru replace 0.01 0.5 All All All All 

CN2.mgt relative -0.25 0.25 All All All All 

CH_K2.rte replace 0 10 All 

   CH_N2.rte replace 0.025 0.1 All 

   SOL_AWC.sol relative -0.25 0.25 All All All All 

SOL_K.sol relative -0.25 0.25 All All All All 

CH_N1.sub replace 0.025 0.1 All       

Sensitivity analysis was performed for the period 2000-2007, including two years 

(1998-1999) for warming-up. The NSE for streamflow was used to measure model responses 

to changes in the model parameters for sensitivity analysis. The Morris’s elementary effects 

screening method (Campolongo et al., 2007; Iooss et al., 2021; Morris, 1991) implemented in 

R-SWAT was used for global parameter sensitivity analyses as an example. As an example, 20 

trajectories and 14 parameters were selected and consequently 300 simulations were 

performed for parameter sensitivity analysis. Results from the sensitivity analysis were used 

to select the six most sensitive parameters (CN2.mgt, CH_N1.sub, CH_K2.rte, OV_N.hru, 

CH_N2.rte, and GW_REVAP.gw) for model calibration (Figure 6).  
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Figure 6. Results of parameter sensitivity analysis using the Morris approach (only the six 

most sensitive parameters were labeled). In this approach, higher 𝜇∗ values indicate higher 

sensitivity, while higher σ values indicate higher interactions of the respective parameter with 

others or higher degree of non-linearity in the model response to changes in the values of the 

specific parameter. “CN2” is the Soil Conservation Service Curve Number II value, 

“CH_N1” is the Manning’s “n” value for tributary channels, “CH_K2” is the effective 

hydraulic conductivity, “OV_N” is the Manning’s “n” value for overland flow, “CH_N2” is 

the Manning’s “n” value for the main channel, and “GW_REVAP” is the groundwater 

“revap” coefficient (Arnold et al., 2013). 

3.3. Parameter calibration and uncertainty analysis 

 For the model calibration demonstration, we generated 1000 parameter sets using the 

uniform LHS approach that was implemented in R-SWAT. The NSE for streamflow 

(calculated for the period 2000-2007) was used to evaluate the model performance. 

Simulations with NSE ≥ 0.65 were defined as behavioral, resulting in a total of 52 

simulations. The characteristics of the behavioral parameter sets are presented in Table 4, and 

the simulated streamflow at the catchment outlet is shown in Figure 7. In general, it can be 

said that the model was satisfactorily calibrated using R-SWAT (p-factor = 0.24, r-factor = 

0.17). However, visual inspection (using the interactive plot option in R-SWAT) shows a clear 

mismatch between the simulated and observed streamflow series at shorter time scales and 

differences in flow magnitudes, such as the underestimation of low flows (Figure 7b), the 

overestimation of high flows (Figure 7c), and the presence of high flows in the simulations 

which does not exist in the observed data (Figure 7d). This could be due to uncertainties 

either in the observed data or in the model structure that would need further investigation.  

 

Table 4. Characteristics of behavioral parameter sets.  
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Parameter Change 95% confidence interval Median Best value 

CN2.mgt relative [-0.25, -0.13] -0.21 -0.21 

CH_N1.sub replace [0.07, 0.10] 0.09 0.10 

CH_K2.rte replace [0.33, 9.61] 6.78 6.48 

OV_N.hru replace [0.03, 0.49] 0.29 0.26 

CH_N2.rte replace [0.03, 0.09] 0.06 0.05 

GW_REVAP.gw replace [0.03, 0.19] 0.11 0.12 

 

 

 

Figure 7. Observed and simulated streamflow (m3/s) at the catchment outlet a) during the 

calibration period, b) low-flow, c) high-flow, and d) normal-flow condition (the subfigures 

were produced by R-SWAT). 

3.4. Visualization of simulation results 

 In this study, the results from the best simulation were used to demonstrate the 

visualization functions of R-SWAT. Spatial (2-D) visualization of the model outputs was 

performed at the HRU and subbasin level with SWAT outputs taken from the output.hru and 

output.sub files, respectively (Figure 8). 1-D visualization of the model outputs from 

output.rch and watout.dat files are in the supporting material (R-SWAT.pdf).  
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Figure 8. Spatial visualization of SWAT outputs at (a-c) the HRU level and (d-f) subbasin 

level and at (a, d) daily, (b, e) monthly, and (c, f) yearly time scales for different SWAT 

output variables (e.g., actual evapotranspiration, baseflow, and percolation). The subfigures 

were taken from R-SWAT.  

4. Comparing R-SWAT with SWAT-CUP 

To demonstrate the validity and effectiveness of R-SWAT, we used SWAT-CUP as a 

benchmark since SWAT-CUP was widely used and well-tested. Specifically, we compare 

several functions used in R-SWAT (version 1.0.0) with the corresponding functions used in 

SWAT-CUP (version 5.2.1.1). The following aspects were compared between R-SWAT and 

SWAT-CUP: (1) the required time for updating SWAT input files, (2) the simulated 

streamflow with updated SWAT input files, (3) the results of parameter sensitivity analysis 

with the multivariate linear regression approach, and (4) the calibrated streamflow statistics 

with three different calibration approaches (SUFI-2, PSO, and GLUE). In all simulations 

below, we used the SWAT project setup for the Dak Nong river basin and the model 

performance was evaluated (if required) using the NSE for daily streamflow at the catchment 

outlet during the period 2000-2007.  



 

17 

Our results show that the required time for updating SWAT input files with a new 

parameter set (Table 3) with R-SWAT is 0.10 seconds while that with SWAT-CUP is 0.52 

seconds (all simulations are performed with the same computer and with one core). Less time 

is required with R-SWAT as it rewrites a file with all updated parameter values at once 

(Section 2.1). However, SWAT-CUP rewrites a file multiple times depending on the number 

of updated parameters in that file.  

To compare the calibrated streamflows with updated SWAT input files from R-SWAT 

and SWAT-CUP, we generated one random parameter set with the parameters reported in 

Table 3 and used this parameter set for running both R-SWAT and SWAT-CUP. The 

simulated results (e.g., discharge at the catchment outlet) with the updated input files from R-

SWAT and SWAT-CUP are similar but not identical (correlation R2 = 0.99994, Figure 9). 

This is because R-SWAT and SWAT-CUP use different standards for rounding of a 5, e.g., 

the rounded number of 0.185 with two decimal places in R-SWAT and SWAT-CUP is 0.18 

(https://stat.ethz.ch/R-manual/R-devel/library/base/html/Round.html, accessed 12 June 2022) 

and 0.19, respectively. In addition, when writing input files with the updated parameter 

values, R-SWAT uses the number of decimal places as defined in SWAT while SWAT-CUP 

mostly uses six decimal places). A comparison between the updated files from R-SWAT and 

the original files shows that R-SWAT can correctly update SWAT input files with a given 

parameter set (as demonstrated in the user manual). 

 

Figure 9. Simulated daily simulated streamflows (Q) at the catchment outlet (during the 

2000-2007 period) with updated SWAT input files from R-SWAT and SWAT-CUP. 

To compare the results of parameter sensitivity analysis by the multivariate linear 

regression used in R-SWAT and SWAT-CUP, we generated 1000 parameter sets within their 

pre-defined ranges (Table 3) with LHS and then run R-SWAT and SWAT-CUP to calculate 

the objective function (NSE for streamflow at the catchment outlet). Results show that the 

parameter sensitivity ranking from R-SWAT and SWAT-CUP are identical (Table 5). There 

are minor differences in the t-stat and p-value (Table 5, numbers in bold), which could be due 

to round-off and precision errors.  

Table 5. Parameter sensitivity ranking with R-SWAT and SWAT-CUP (higher absolute t-stat 

values indicate higher sensitive parameters). Differences are marked in bold. 

Parameter R-SWAT SUFI-2 Sensitivity ranking 
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t_stat p_value t_stat p_value 

CN2.mgt -1.79E+02 2.00E-16 -1.79E+02 0.00E+00 1 

CH_K2.rte 2.02E+01 2.00E-16 2.02E+01 0.00E+00 2 

OV_N.hru 1.16E+01 2.00E-16 1.16E+01 0.00E+00 3 

SOL_K.sol -5.62E+00 2.45E-08 -5.62E+00 2.50E-08 4 

CH_N2.rte 5.36E+00 1.02E-07 5.36E+00 1.02E-07 5 

RCHRG_DP.gw -2.73E+00 6.36E-03 -2.73E+00 6.36E-03 6 

GWQMN.gw -2.66E+00 7.83E-03 -2.66E+00 7.83E-03 7 

GW_REVAP.gw -2.47E+00 1.37E-02 -2.47E+00 1.37E-02 8 

GW_DELAY.gw 2.06E+00 3.94E-02 2.06E+00 3.94E-02 9 

SOL_AWC.sol 1.74E+00 8.23E-02 1.74E+00 8.23E-02 10 

REVAPMN.gw 1.59E+00 1.12E-01 1.59E+00 1.12E-01 11 

CH_N1.sub 1.05E+00 2.94E-01 1.05E+00 2.94E-01 12 

EPCO.hru 7.71E-01 4.41E-01 7.71E-01 4.41E-01 13 

SURLAG.bsn -3.00E-03 9.98E-01 -2.56E-03 9.98E-01 14 

The comparison of the calibrated streamflow statistics (best NSE, r-factor, and p-

factor) with three different approaches (SUFI-2, GLUE, and PSO) from R-SWAT and SWAT-

CUP was conducted by calibrating the SWAT model for streamflow (the parameters 

subjected to calibration were given in Table 3 and their ranges were defined in Table 6). In 

each calibration approach, the number of model runs is 1000 and the behavioral threshold is 

NSE = 0.65. Results from R-SWAT and SWAT-CUP are comparable and acceptable (Table 

6). Minor differences in the results are due to the randomness of the three approaches.  

Table 6. Calibrated streamflow statistics with three different calibration approaches (SUFI-2, 

GLUE, PSO) from R-SWAT and SWAT-CUP. Results of the SUFI-2 approach with R-SWAT 

were taken from the previous simulation (Section 3.3). 

Calibration approach 
R-SWAT SWAT-CUP 

Best NSE r-factor p-factor Best NSE r-factor p-factor 

SUFI-2 0.67 0.17 0.24 0.67 0.16 0.26 

GLUE 0.68 0.17 0.26 0.68 0.16 0.25 

PSO 0.68 0.17 0.28 0.68 0.17 0.36 

 

5. Outlook 

The primary purpose of R-SWAT is to advance hydrological research with SWAT, and 

R. R-SWAT is expected to rely not only on its original developers but also on its community 

for long-term development. Currently, we included some R functions/packages into R-SWAT. 

Incorporating new packages, e.g., for parameter sensitivity and calibration, will be 

straightforward since it only requires adding the package name to the R-SWAT code (see the 

supporting material R-SWAT.pdf). Therefore, R-SWAT is a flexible platform for developing 

and testing new parameter sensitivity and optimization packages with complex hydrological 

models (SWAT). Future efforts to improve R-SWAT could focus on the following aspects: 1) 

enabling statistical analysis of the model results using existing R packages, (2) expanding R-
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SWAT for SWAT+, and (3) creating an R script for running R-SWAT in high-performance 

computing clusters without a graphical user interface. 
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