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Abstract

According to Sustainable Development Goals (SDGs), societies should have access to affordable, reliable, and sustainable energy.
Liberalized electricity markets have been established to provide affordable electricity for end-users through advertising competi-
tion. Although these new markets are designed to serve competition, there are recorded incidents where participants abused their
market power and disrupted the competition through collusion. Unfortunately, modern autonomous pricing algorithms may further
assist myopic players to discover collusive strategies with a minimum amount of sensitive information. Therefore, in this study,
we investigate the impact of emerging learning algorithms on the bidding strategies of Power Generating Companies (GenCos) and
compare their performance against game-theoretic expectations. A novel deep Q-network (DQN) model is developed, by which
GenCos determine the bidding strategies to maximize average long-term payoffs in a day-ahead market. The presented DQN model
assumes that GenCos have no information regarding the rivals’ true generation costs and profits. To the best of the authors’ knowl-
edge, this is the first study that thoroughly investigates players’ behavior utilizing a modern DQN model and compares its results
with equilibria of the non-cooperative single-stage and infinitely-repeated games in the context of electricity markets. The outcomes
articulate that GenCos equipped with advanced learning models may be able to collude unintentionally while trying to ameliorate
long-term profits. Moreover, GenCos that employ the presented DQN model could discover and sustain more profitable (e.g., col-
lusive) strategies vis-à-vis a conventional Q-learning method. Collusive strategies can lead to exorbitant electric bills for end-users,
which is one of the influential factors in energy poverty. Thus, policymakers and market designers should be vigilant regarding the
combined effect of information disclosure and autonomous pricing, as new models exploit information more effectively.
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1. Introduction

The 7th United Nations’ Sustainable Development Goal
(SDG7) invites societies to provide affordable, reliable, and sus-
tainable energy for everyone. While access to clean and reli-
able energy is a major concern in many developing countries
[1], the developed world has been focused on energy afford-
ability [2]. Due to the unfavorable economics of electricity
storage technologies and the constant need for balancing op-
erating resources and loads in real-time, the electricity indus-
try expanded as vertically integrated monopolies in the past,
which subsequently increased the operating costs [3, 4]. The
high electricity price is one of the influential factors causing
energy poverty in societies [5]. To ensure electricity affordabil-
ity, governments have pursued liberalization (i.e., deregulation)
that aims to maximize social welfare through promoting com-
petition among self-interested participants [6]. Although mar-
ket designers expect to witness full competition, it is demon-
strated that some electricity markets act more like oligopolies
for the following reasons [7]:
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• Limited number of generators as a result of high capital
investment.

• Network congestion that prevents generators from dis-
patching power to inaccessible consumers.

• Transmission losses that hinder producers in serving re-
mote consumers.

Oligopolistic markets may incubate collusion that harms
open competition among participants. While explicit collusion
in electricity markets is prohibited, tacit collusion may still exist
in the absence of formal contracts [8]. Heim and Götz [9] study
the rising price of reserve power in the German market. The au-
thors conclude that the seemingly collusive behavior is due to
the repetitive auctions with the pay-as-bid pricing mechanism.
Similarly, many studies believe that participants engage in col-
lusive behavior in the electricity markets of the UK [10, 11],
Spain [12], and California [13]. To achieve a perfectly com-
petitive market, collusion (of any kind) should be eliminated,
but it is not a straightforward task for regulators to detect tacit
collusion [14, 15].

To make matters worse, antitrust agencies are worried that
the autonomous pricing algorithms, often used by suppliers,
may learn to collude unintentionally [16, 17]. Since the ad-
vent of Deep Reinforcement Learning (DRL), algorithmic pric-
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ing has attracted more attention [18]. Nowadays, these algo-
rithms are common in many markets; for instance, according to
Chen et al. [19], 500 vendors out of 1,641 on Amazon Market-
place benefited from automated pricing algorithms. An effica-
cious pricing algorithm can provide the power producers in the
market an unfair cutting edge to increase the electricity price
and damage consumers financially; therefore, it is worth evalu-
ating the impact of algorithmic pricing under the current market
structure.

In this study, we aim to create a state-of-the-art learning
model based on Deep Neural Networks (DNN) that assists
generic players, to raise and sustain their incomes without using
confidential information related to employed technologies (e.g.,
the unit generation cost) while also taking transmission network
constraints into account. The outcomes are then investigated
to assess the possibility of players unintentionally engaging in
collusive behavior. For this purpose, the results of the offered
learning model are compared with game-theoretic expectations
[20] and an extended version of the conventional Q-learning al-
gorithm [21, 22] in a setting with collusive equilibria. Although
DNN models are applied to a wide variety of problems, to the
best of the authors’ knowledge, this manuscript is the first to an-
alyze the capacity of the aforementioned models in sustaining
collusive behavior in liberalized electricity markets based on a
complex case with multiple Nash and collusive equilibria.

The remainder of the manuscript is organized as follows: In
Section 2, we present the literature focusing on various mod-
eling techniques and their applications in liberalized electric-
ity markets. Section 3 defines the problem and introduces two
learning algorithms for players. The hyper-parameters of the
proposed algorithms are also adjusted in this section. In Section
4, the developed learning algorithms are applied to a case study
with collusive strategies. The outcomes are contrasted with
equilibria of the non-cooperative single-stage and infinitely-
repeated games to understand the impact of advanced learning
algorithms on strategic decision-making. Section 5 discusses
the practical challenges that can hinder the application of these
techniques in real-world markets. Finally, Section 6 concludes.

2. Literature review

2.1. Optimization models

From the literature, one can name two overarching market
modeling trends: optimization (including equilibrium) and sim-
ulation. Optimization models, which are employed extensively
in formulating the strategic behavior of profit-driven power
Generating Companies (GenCos), often require knowledge
about rivals’ confidential information and the market clearing
mechanism [23, 24]. Aliabadi et al. [20] formulate collusion
among participants as a bi-level model and provide sufficiency
conditions for its existence using the folk theorem. The authors
also propose a heuristic algorithm to compute a collusive state
given that all Nash equilibria are known. Ebadi Torkayesh [25]
proposes two new formulations based on the developed bi-level
model in Aliabadi et al. [20]. For bi-level models, in particular,
the lower level should be free of any binary variables, since

it is replaced with the Karush Kuhn-Tucker (KKT) optimal-
ity conditions [26]. As such, solving the resulting optimiza-
tion model could present distorted outcomes, as it would lack
variables that capture real-world behaviors including shut-down
and start-up [27]. Finally, as mentioned earlier, the determinis-
tic optimization models demand strict assumptions such as the
perfect knowledge of the market’s and competitors’ operating
parameters, which can render the results of optimization mod-
els unreliable. [28].

2.2. Simulation models
As an alternative to optimization (and equilibrium), simu-

lation models can be utilized when underlying problems are
intractable through analytical methods [29]. Typically, re-
searchers rely on agent-based simulation models in decentral-
ized electricity markets, since it provides sufficient flexibility to
investigate the impact of learning on GenCos’ strategic behav-
ior [30]. At the forefront of imitating human-like intelligence
are model-free Reinforcement Learning (RL) algorithms [31]:
agents learn the optimal set of actions (i.e., optimal policy) with
respect to each state, solely by interacting with the environment.

Previous studies have utilized RL to analyze competition in
electricity markets. Staudt et al. [32] studied the number of
suppliers needed to secure competition in a local electricity
market and investigate the impact of tacit collusion through
signaling. The authors infer that peak capacity has to be pro-
vided by multiple suppliers in order to guarantee competitive
prices. Emami et al. [33] propose a simulation-based method to
assess possible coalitions in a wholesale electricity market, in
which GenCos can negotiate among themselves. Poplavskaya
et al. [34, 35] employ agent-based simulation models with RL-
equipped agents to investigate actors’ behavior in a common
standalone balancing energy market, which is scheduled to be
put into practice in 2022. Namalomba et al. [36] model the
double-sided auction with elastic demand in a centralized elec-
tricity market using a bi-level model and Q-learning algorithm
and compare outcomes with Nash equilibrium. The authors
conclude that energy transaction prices can be reduced with
the participation of flexible consumers. Jia et al. [37] propose
a continuous action RL algorithm to help GenCos in making
more profitable decisions in environments with limited access
to market information.

In an oligopolistic electricity market, Aliabadi et al. [21]
show that agents with a time-dependent Q-learning algorithm
can converge to either Nash equilibria or strategies with the
same profit gains under most parameters combinations. On
the other hand, Klein [38] show that RL-equipped agents
can find collusive equilibria in a simple duopoly setting.
Calvano et al. [16] examine an oligopoly market and demon-
strate that increasing the number of agents can weaken the per-
formance of RL and decrease the profit gain. In this study, we
are interested to know whether a cutting-edge learning algo-
rithm can attain collusion in more sophisticated environments.

In spite of their success in various fields – including oper-
ations research, decision, and control theories – RL methods
(e.g., Q-learning) suffer from two major drawbacks: a lack of
theoretical proof to assure convergence to optimality [38], and
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the curse of dimensionality [39]. As the state space expands, the
required memory to store transitions grows exponentially with
it. To circumvent the dimensionality curse, Roth-Erev learning
[40] has been developed, which is a streamlined version of RL
when a limited number of pure strategies are played by agents.
However, Roth-Erev-equipped agents are unable to learn con-
sistent behaviors in complex games, such as the sequential bar-
gaining game [41].

2.3. Deep Neural Networks models
A more recent trend to address the dimensionality challenge

is to estimate the optimal action-selection policy using DNN.
Artificial Neural Networks (ANNs) have been used in various
fields [42, 43] since the 1950s; nevertheless, the combination
of ANNs and RL algorithms together with the ever-increasing
computational power and the availability of big data attracted
researchers’ attention in the field of Artificial Intelligence (AI)
[44]. The Deep Q-Network (DQN) models train a DNN struc-
ture using supervised learning and RL. Due to versatility, DQN
models are employed in many applications, ranging from the
agents’ decision-making in classic console games to the more
sophisticated board game Go [18, 45].

In 2019, a DQN model was developed for the first time to
optimize GenCos’ bidding strategies in liberalized electricity
markets [27]. The same group extended their model in 2020 and
compared their results with the conventional Q-learning and bi-
level models [24]. In both studies, the authors conclude that
their DQN models outperform conventional Q-learning mod-
els; however, they did not examine agents’ behavior using the
proposed DQN model in the presence of collusion. In 2020,
Liang et al. [46] proposed a Deep Deterministic Policy Gradi-
ent (DDPG) algorithm based on the actor-critic framework and
showed that two GenCos exploiting the proposed DDPG algo-
rithm converge to the Nash equilibrium of a complete informa-
tion game. Through simulation, they also exhibit that GoCos
can increase the market cleared price when the discount factor
is sufficiently close to one; however, the divergence from the
Nash equilibria might not be a valid measure to signal tacit col-
lusion. For instance, the authors inferred that GenCos equipped
with a Q-learning algorithm converge to collusion by playing a
suboptimal strategy, while GenCos with DDPG converge to the
Nash equilibrium. This counter-intuitive result cannot be gener-
alized using the folk theorem, as shown by Aliabadi et al. [21].
Therefore, in this study, we thoroughly investigate the impact of
strategic bidding behavior on the GenCos’ payoff profiles and
compare outcomes with multiple analytically calculated solu-
tions (i.e., discount factor = 0 and 1).

Recently, Razmi et al. [15] employ supervised learning al-
gorithms to detect collusion in day-ahead markets. This al-
gorithm can be used by independent system operators in mar-
kets with limited dynamism. Likewise, Pan et al. [47] and
Velloso and Van Hentenryck [48] tackle technical challenges
and suggest DNN models, by which the regulator can estimate a
near-optimal solution to a large-scale optimal power flow prob-
lem in a reasonable time. Guo et al. [28] propose a data-driven
recognition system for a bidding objective function using deep
inverse reinforcement learning and verify their results using

DQN. The results demonstrate that an advanced algorithm can
extract sensitive information about participants based on their
bidding behavior.

Renewable GenCos and innovative concepts have endeav-
ored to employ DRL according to their conditions. For in-
stance, in 2021, Lehna et al. [49] developed a DRL algorithm
for wind park operators, by which the producers can increase
the total net profit on the intraday electricity market. The
proposed model outperforms several baselines in the continu-
ous German intraday market with one-minute temporal resolu-
tion. As mentioned by Scholz et al. [50] and Nolting et al. [51],
solving energy system models and electricity market models
with such a high temporal resolution via optimization is com-
putationally costly; nonetheless, its importance is increasing
due to the growing shares of intermittent renewable energy
sources. As shown by Owolabi et al. [52] in the US market,
a high level of variable renewable energy can lower electric-
ity prices, while affecting the price volatility non-linearly. Fi-
nally, Löschenbrand [53] model the competition between vir-
tual power plants using deep learning.

To expose the gap in the literature, Figure 1 compares most-
related studies to the current paper with respect to multiple cri-
teria. As illustrated, most studies are at the intersection of two
or three criteria, while there are only two studies at the center.

3. Methodology

3.1. Market clearing mechanism
In this paper, the strategic bidding problem of GenCos on

a day-ahead market is considered, taking network constraints
into account. A typical electric grid is made of interconnected
nodes (i.e., regions), which function independently. In each
node, the produced power by GenCos is consumed by demand
centers, and the excess power flows to the connected nodes
through transmission lines. Due to physical limitations, trans-
mission lines are unable to dispatch electricity above a certain
threshold. A power network is called “congested” when a thor-
oughly loaded transmission line reaches its maximum capacity
and cannot accommodate further dispatch. The Independent
System Operator (ISO) manages network congestion by penal-
izing electricity consumption at congested nodes using the Lo-
cational Marginal Pricing1 (LMP) scheme [64].

To manage the day-ahead market, the ISO conducts a series
of auctions every day, in which GenCos submit their bid prices
(bt

i ∈ Bi) and feasible production capacities (PL
i and PH

i ) for
each hour of the next day (t ∈ {1, . . . , 24}). Bi is the set of all
feasible bid values for GenCo-i. It is common in many mar-
kets that ISO sets an upper limit for the submitted bid prices
(i.e., bt

i ≤ bmax
i ) to prevent unreasonable electricity prices [65].

Subsequently, the ISO solves an optimal power flow problem
concerning submitted bids such that social welfare is maxi-
mized at each hour. In this manuscript, the Direct Current Op-
timal Power Flow (DCOPF) problem [66] is adopted as it is

1The LMP scheme (i.e., nodal pricing) is practiced in the US electricity
markets while Europe uses slightly different zonal pricing. [63]
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Figure 1: Reviewed studies categorized into five groups. Most studies are at the intersection of multiple criteria; however, there are only two studies at the center:
the current study and [46]. Bold numbers represent recent studies (i.e., 2020 and afterward).

employed extensively in power systems operation (e.g., Power
World, GridView, MAPS, and Promod) [67] and is a linear pro-
gramming model. The optimal solution of the DCOPF problem
at hour t determines the electricity price (λt

i) and voltage an-
gle (θti) at each node, and GenCos’ production level (Pt

i). The
DCOPF formulation is provided in Appendix A.

After clearing the market by the ISO, GenCos can calculate
their payoffs at each specific hour as rt

i = Pt
i(λ

t
i − ci), where

the electricity generation cost of GenCo-i is captured by ci. It
is quite realistic to assume GenCos conceal their payoffs from
rivals as it may reveal confidential information regarding their
business [28].

3.2. Assumptions and limitations

In this manuscript, we introduce an unexplored issue with
major impacts on future market designs and policies. To es-
tablish a theoretical base for our discussions, the equilibria
solutions (e.g., the Nash equilibria) are calculated. Comput-
ing game-theoretic expectations comes at a cost: The pro-
posed setup for this study considers a simplified day-ahead mar-
ket; however, real-world electricity markets are complex and
include features like intraday trading, auxiliary services, and
block bids [68, 69]. Unfortunately, finding analytical solutions
for such complex problems is hopeless [58]. Therefore, we rely
on assumptions that might be undesirable from practitioners’
points of view.

Similar to [21, 22], the following assumptions are considered
in the presented model:

• The ISO considers the network structure and clears the
day-ahead market using the DCOPF problem.

• Generic GenCos are taken into account; thus, GenCos
can utilize various technologies (e.g., biogas power plants,
wind turbines).

• The demand is assumed to be inelastic to obtain theoretical
solutions for the collusive strategies. In this manuscript,
theoretical solutions are compared with the simulation re-
sults.

• To ease modeling, small players (i.e., GenCos and demand
centers) in each node are aggregated; therefore, aggre-
gated GenCos are assumed to be influential players, which
means they can affect rivals’ strategic behavior. This as-
sumption is not disruptive because of the oligopolistic na-
ture of electricity markets [7, 70]. For instance, only ten
companies own over half of the total power production
capacity in Turkey2. Furthermore, more complex net-
works with multiple GenCos at each node can still be
transformed to an equivalent network with a single GenCo
per node using dummy nodes and unbounded transmission

2Check the list of companies at https://www.enerjiatlasi.com/firma/;
accessed on 07 March 2022.
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lines. Figure 2 depicts the transformation of the second
node with two GenCos in Network-A to an equivalent net-
work (i.e., Network-B) with a single GenCo per node.

3.3. Collusive strategy
As mentioned earlier, a feature of any oligopolistic market

is the likelihood of participants engaging in collusion. Collu-
sive strategies can lead to exorbitant electric bills for end-users
by damaging consumer surplus in favor of producer surplus,
thereby causing energy poverty in societies [5].

Table 1 displays a simplified case, wherein GenCos’ pay-
offs (rt

1, r
t
2) are displayed in Euro (e) with respect to various

bid values. The numbers in Table 1 are excerpted from the
first case study in Aliabadi et al. [20]. According to Table 1,
(bt

1 = e20/MWh, bt
2 = e30/MWh) is the Nash equilibrium of

the single-stage game (i.e., t ∈ {1}), as no GenCos can get a bet-
ter payoff by deviating from the Nash strategy given the other
player keeps bidding the same price; nonetheless, there is an-
other strategy (bt

1 = e30/MWh, bt
2 = e40/MWh), the so-called

collusive strategy, in which both GenCos can obtain higher pay-
offs. Reviewing the underlying network [20, Figure 1] reveals
that GenCo-1 and GenCo-2 have market power, and GenCo-
5 can only provide electricity to the domestic load at the fifth
node. Also, neither of these two GenCos can fulfill the demand
thoroughly without the other GenCo.

Although the collusive strategy serves both GenCos, it is
considered unstable in a single-stage game since GenCo-2 can
benefit far more by deviating the collusive strategy, i.e., (bt

1 =

e30/MWh, bt
2 = e20/MWh). What prevents GenCo-2 from

doing so is the response of GenCo-1 in the forthcoming hours,
which can move the game to the Nash equilibrium and dam-
age the long-term profit of both GenCos in infinitely repeated
games (i.e., t ∈ {1, . . . ,∞}): GenCo-2’s deviation from the col-
lusive strategy (by offering e20/MWh) forces GenCo-1 to play
e20 per MWh instead ofe30/MWh. In the next hour, GenCo-2
has to offer e30/MWh. Therefore, both GenCos fail by playing
a less profitable strategy for the reminder of the time horizon.
In the context of game theory, this strategy is called the grim-
trigger strategy [71].

Based on the UK’s competition market authority report [72],
algorithmic pricing may help to improve the stability of collu-
sion by allowing cartel members to identify deviations from the
negotiated bid prices more rapidly.

Table 1: Payoff profile of GenCo-1 and GenCo-2. The arrows display the trans-
formation of offers in subsequent hours when GenCo-2 deviates from the col-
lusive strategy. Source: adopted from [20, Table 4].

B1\B2 e20/MWh e30/MWh e40/MWh e50/MWh

e20/MWh (857,0) (3428, 785) (6000, 0) (6000, 0)
e30/MWh (416, 2500) (3428, 785) (6000, 1571) (6000, 0)
e40/MWh (0, 6000) (0, 6000) (0, 6000) (5000, 0)
e50/MWh (0, 6000) (0, 6000) (0, 6000) (0, 7500)

In this manuscript, we adopt terminology and definitions
similar to that which is available in Aliabadi et al. [20] for the
Strong Collusive Equilibrium (SCE) and the most collusive

state (i.e., SCE*). To summarize, a tuple of bid prices is SCE, if
the corresponding payoffs for all GenCos are higher than those
under all Nash equilibria (rS CE

i > rN
i ). Also, we call a tuple of

bid prices SCE* when the minimum payoff is greater than or
equal to the minimum payoff for all GenCos in all other SCEs.

Although modeling collusion through optimization and game
theory is mathematically elegant, it often requires strict as-
sumptions such as perfect knowledge; however, as practitioners
confirm, GenCos have imperfect knowledge about rivals’ pay-
offs in the real world [28]. To address this problem, researchers
rely on the simulation of learning agents, a process we also em-
ploy in this study.

3.4. Learning

In this manuscript, two learning mechanisms are discussed
in detail. The first section is devoted to a simple Q-learning
method with time-dependent parameters, which has been em-
ployed in Aliabadi et al. [21]. GenCos that benefit from this
Q-learning model exploit their past experiences alone. The
next section discusses the proposed DQN method. Although
GenCos have no information regarding the dispatched power
and the generation cost of rivals, the submitted bids to the ISO
are assumed to be common knowledge in the proposed DQN
model. The outcomes of the mentioned learning methods will
be contrasted.

We choose to employ a DQN model over a DDPG model
[55] as the DDPG models are especially advantageous when
dealing with the continuous action domain; nonetheless, the ac-
tion space of this study is discrete in nature (i.e., the submitted
bid prices have one-cent resolution).

3.4.1. Q-learning with decay
For each hour, agents submit their bid prices to the ISO in

order to satisfy the demand. The ISO determines the winning
bids and LMPs, taking the transmission network structure into
account. For this algorithm, GenCos calculate the profit corre-
sponding to the submitted bid prices, assuming that they have
no information regarding the submitted bids by rivals. Conse-
quently, the optimal action of GenCos can vary based on rivals’
responses.

To capture the dynamics of such markets, players should as-
sociate uneven significance to the information, based on accu-
mulated knowledge. Thereby, the following time-dependent pa-
rameters are introduced:

• Recency rate (αt
i) determines the importance of the recent

outcomes for ith GenCo at iteration t. The value of αt
i is

expected to decline as GenCo-i collects information.

• Exploration parameter (ϵ ti) adjusts the exploration rate ver-
sus exploitation. As GenCo-i becomes mature, it tends
to rely more on collected information than searching for
undiscovered solutions.

GenCo-i chooses a bid price randomly with the probability
ϵ ti, whereas the best-known bid, b∗i = arg max

bi j∈Bi

{Qt
i j}, with the

probability 1 − ϵ ti. In the literature, this mechanism is called
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Figure 2: Transforming Network-A with multiple GenCos in the second node to Network-B with a single GenCo per node.

the ϵ-greedy action selection rule [73]. Contrary to generic RL
algorithms, ϵ ti decreases linearly over time to a value near zero,

i.e., ϵ ti = max{0.001, 8t(ϵ0i −1)
maxt

+ϵ0i }, as GenCo-i explores the state-
action space sufficiently.

Furthermore, at each iteration, t ∈ {1, . . . ,maxt}, GenCo-
i updates the Q-value (Qt

i j) corresponding to each bid price
(bi j ∈ Bi) based on modified αt

i and the realized payoff (ri j)
as described in Eq. (1).

αt
i = α

0
i − (0.9t/maxt)α0

i

Qt
i j = (1 − αt

i)Q
t−1
i j + α

t
iri j (1)

3.4.2. Deep Q-Networks approach
In this section, the detail of the proposed DQN model is de-

scribed, by which GenCos enhance their understandings of the
environment and optimize their actions accordingly. The criti-
cal elements of the proposed model are as follows:

• Environment: The platform whereby ISO clears the mar-
ket and determines agents’ rewards.

• Agents: Myopic GenCos that desire to increase their long-
term rewards through learning.

• State: vector st
i encapsulates the state of the system for

GenCo-i at time t. In our setting, st
i consists of the submit-

ted bid prices by all GenCos at time t in addition to private
information related to GenCo-i, such as ci and Pt

i.

• Action: The response of GenCo-i to improve its reward,
based on an observed state (i.e., bt

i ∈ Bi).

• Reward: the obtained payoff of GenCo-i, rt
i , based on

assigned power and cleared price after submitting a bid
price.

The overall workflow of the proposed DQN model is de-
picted in Figure 3. Agents submit random bids at the beginning
of the time horizon and store results until the number of records
in their replay memory (Mi) exceeds a minimum level. Then,
GenCo-i chooses a batch of experiences from memory using
the Last-In, First-Out (LIFO) scheme3. The LIFO scheme is
used to prioritize and capture recent interactions among play-
ers. The selected experiences {st

i, b
t
i, r

t
i , s

t+1
i } are normalized and

fed into a feed-forward multi-layer neural network to predict
the expected reward for the submitted bid price bt

i using Eq.(2),
which is a modified version of the Bellman equation by [74].

Qt+1
i (st

i, b
t
i | w⃗i) = (1 − αt

i) Qt
i(st

i, b
t
i | w⃗i)+

αt
i (rt

i + γE[maxbt+1
i
{Qt

i(st+1
i , b

t+1
i | w⃗i)}] (2)

αt
i = α

0
i e−0.1(|si∈Mi:si=st

i |−1) (3)

In Eq.(2), the discount factor (γ ∈ (0, 1)) presents GenCos’
perceived significance of future rewards compared to immedi-
ate payoff. According to Eq.(2), the expected future reward,
E[maxbt+1

i
{Qt

i(st+1
i , b

t+1
i |w⃗i)}], is calculated since st+1

i is estab-
lished based on the collective actions of all GenCos (bt

i, ∀i ∈ I),
and not a GenCo solely. As is evident, the Markov property

3Our approach is different from Ye et al. [27], which uses the first-in, first-
out scheme
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does not hold, considering the action space of each GenCo at
the beginning of the simulation, i.e., p(st+1

i |s
t
i, b

t
i) ̸= p(st+1

i |s
1
i ,

b1
i , s

2
i , b

2
i , . . . , s

t
i, b

t
i); however, this property may hold if all Gen-

Cos act optimally and choose the best bid, b∗i , corresponding to
a given state at time t. Thus, the Markov property asymptoti-
cally holds true if the learning process converges.

Eq.(3) reduces the αt
i value from an initial level of α0

i based
on the number of recorded identical st

i entries in Mi. Hence,
when state st

i appears more frequently, Qt
i(st

i, b
t
i |w⃗i) converges

to a fixed function, i.e., Q∗i (st
i, b

t
i |w⃗i), as the solution space is be-

ing explored sufficiently [61]. To improve the network stability
during the learning process, the weight vector (w⃗i) of the tar-
get network is synchronized periodically (i.e., every 2500 iter-
ations). In theory, this technique assists smoother convergence
by preventing instantaneous oscillations while accelerating the
process by not training the target network separately [18].

The Rectified Linear Unit (ReLU) function is adopted as the
activation function of hidden layers in both target and predic-
tion networks. In contrast, a regression layer is added to the
output layer. In order to train the network, the loss function is
minimized using the widely-used Adam [75] algorithm.

Algorithm 1 displays the method by which GenCo-i eval-
uates bids before submitting. At first, GenCo-i determines
whether to offer a random bid price with the probability of ϵ ti or
to otherwise exploit collected knowledge and submit the best-
known bid price. ϵ ti is computed similar to the Q-learning with
decay algorithm.

Algorithm 1 Submitting a bid at time t by GenCo-i

1: r ←U(0, 1)
2: if r ≤ ϵ ti then
3: if bt−k

i = . . . = bt−1
i then

4: bt
i ← bt−1

i
5: else
6: bt

i ← choose a bid randomly from Bi

7: end if
8: else
9: b∗i ← arg max

bt
i∈Bi

{Qt
i(st

i, b
t
i |w⃗i) + µt

i}

10: end if

To improve stability, lines 3-7 in Algorithm 1 do not allow
GenCo-i to exercise its right for choosing a random bid if k
previous bids are unchanged for some reason. The logic behind
this strategy is that excessive exploration may induce disarray
by undermining the coordination between agents when GenCos
have already acquired enough knowledge [76].

When GenCo-i decides to submit the best-known bid, it feeds
the current state, st

i, into the prediction network and chooses
the bid that maximizes the reward according to the equation in
line 9. In line 9, µt

i discourages altering GenCo’s best-known
bid if the Q-values of other options are just slightly better, i.e.,
b∗i ≈ bt−1

i . The µt
i parameter also penalizes smaller bid prices

than bt−1
i to prevent a price war between GenCos.

To implement the proposed DQN model, the ConvNetSharp
library [77] has been utilized in EMSimulator [78]. Moreover,
EMSimulator employs the Microsoft Solver Foundation [79]

library to clear the wholesale electricity market at each hour,
through which the simulation process is accelerated by gener-
ating the DCOPF model on the fly. We assume that ISO uses
a lookup table for the optimal solutions of previously solved
problems. Doing so helps speed up the simulation even further
at the expense of eliminating possible alternate optimal solu-
tions.

3.4.3. Adjusting hyper-parameters
In this section, hyper-parameters are adjusted for both mod-

ified Q-learning and the proposed DQN model. A high-
resolution simulation is conducted for 100,000 iterations to find
the optimal ϵ0i and α0

i values for the modified Q-learning algo-
rithm. Each pair of settings is replicated 20 times to minimize
the effect of random factors. A contour plot of the average total
payoffs for the last 100 iterations is depicted in Figure 4 (a). As
marked on the plot, the modified Q-learning algorithm performs
considerably better when ϵ0i = 0.9 and α0

i = 0.1. For the sake
of fairness, we adopt these values for both DQN and the mod-
ified Q-learning since both algorithms follow the same recipe
to decide when to explore new strategies or exploit collected
information.

The developed DQN model has also multiple training-related
hyper-parameters. Adam is usually considered as a fairly robust
training algorithm to the choice of hyper-parameters; however,
the learning rate may need to be adjusted according to the prob-
lem at hand [80]. As such, we run the DQN model for 20,000
iterations for various learning rates and plot the total loss func-
tion in Figure 4 (b). A learning rate of 0.01 provides a lower
total loss at the end of the simulation. Accordingly, the follow-
ing values are selected for hyper-parameters: a batch size of 32,
a learning rate of 0.01, β1 = 0.99, β2 = 0.999, γ = 0.7, and
weight decay of L2 regularization of 0.015. The applied values
for the exponential decay rates (i.e., β1 and β2) are shown em-
pirically to be good choices in a wide variety of problems [81].
The γ and L2 values are adopted from Ye et al. [24] to avoid
huge weights.

4. Numerical experiments

4.1. Case study

Figure 5 illustrates a case study with seven nodes (i.e., re-
gions) and four active agents, in which strong collusive strate-
gies exist in 13 states. The presented case study is the extended
version of the real Pennsylvania-New-Jersey-Maryland (PJM)
five node power system, which is widely used in economic pa-
pers [82, 83, 22, 84] due to its simplicity. Finding a case study
with analytical solutions was challenging, as we increased the
complexity by having more nodes. Thus, we developed a script,
which adjusts structure-related parameters to ensure the exis-
tence of SCEs according to Aliabadi et al. [20], given the set of
bid prices. The availability of analytical solutions (e.g., Nash
equilibria and SCEs) can assist us in examining the behavior
of learning GenCos based on a game-theoretic framework. The
complete list of all equilibria is presented in Appendix B.
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Figure 3: Schematic diagram of DQN model for GenCo-i. Input layers are painted in orange and output layers in green.
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The maximum generation capacity of GenCos (PH
i ) and load

at demand centers (Di) are written in MWh within the boundary
of each node. Also, the maximum permissible flow between
the source and destination nodes (Fi j) are mentioned next to
the transmission lines. The dedicated set of bid prices for each
GenCo, Bi, and the unit cost of generating electricity, ci are
shown at the top-right corner. We devise bid prices such that
no two GenCos have the same offer. Doing so will decrease the
possibility of alternative optimal solutions per se.

4.2. Results

The simulation is conducted ten times over 100,000 itera-
tions on a computer with 16 GB memory and an Intel Core
i7-10510U processor. The program dedicates a thread with its
exclusive memory space to each GenCo; hence, four logical
cores out of eight are utilized thoroughly in this case study.

The initial recency (α0
i ) and initial exploration rates (ϵ0i ) of all

GenCos are set to 0.1 and 0.9, respectively. The prediction net-
work is trained using the Adam algorithm as mentioned earlier.
Figure 6 (a) shows the total loss (

∑
iLi(w⃗i)) of the action-value

function for 20,000 iterations and five replications. The pale
lines represent different replications, and their average is drawn
with a darker line.

Figure 6 (b) demonstrates payoff values of all GenCos as an
instance when GenCos converge to an SCE (#12 in Table B.4).
GenCo-2 and GenCo-6 gradually increase their payoffs while
GenCo-1 and GenCo-5 struggle to hold their position in the
market. These trends are due to the characteristics of payoffs
under the Nash equilibria and SCEs. GenCo-6’s payoffs are
high under the Nash equilibria and SCEs, as well as GenCo-2
under SCEs; hence, when GenCo-2 and GenCo-6 exploit the
best-known strategy more often, they can earn higher profits.
GenCo-1 and GenCo-5, by contrast, have lower incomes un-
der the Nash equilibria and most SCEs, which mandate bid-
ding strategically to achieve the best possible outcome. Fi-
nally, all parties settle on an SCE strategy, (bS CE

1 = 51, bS CE
2 =

47, bS CE
5 = 43, bS CE

6 = 34), at around 87K, facilitated by Algo-
rithm 1.

As depicted in Table 2, the converged tuple of bids using the
proposed DQN outperforms the Nash equilibria and Q-learning
with decay, in terms of payoffs. In fact, the t-test affirms that the
two methods result in different total payoffs with the p-value of
0.002 considering a 95% confidence interval.

The bold rows mean convergence to an SCE occurs, as de-
fined in Aliabadi et al. [20]. However, GenCo-i’s average pay-
off (E[rDQN

i ]) is not greater than the corresponding payoff in the
SCE*. The proposed DQN algorithm was able to find an SCE in
70% of replications and the SCE* in 30% of occurrences. On
average, DQN-equipped GenCos could earn e1466 per hour
versus e1018 for Q-learning with decay. If all GenCos agree to
act according to the SCE*, they could acquire e1654 per hour.
This means that DQN-equipped GenCos could obtain 77.45%
of the acquirable profit on average by diverging from the Nash
equilibrium, with a total payoff of e820, to the SCE*.

As shown in Figure 7, all GenCos increased their aver-
age payoffs by using the DQN learning algorithm; however,

Table 2: Converged bid and payoff for each GenCo under two learning mecha-
nisms

DQN Q-learning with decay
# b∗1/r

∗
1 b∗2/r

∗
2 b∗5/r

∗
5 b∗6/r

∗
6 b∗1/r

∗
1 b∗2/r

∗
2 b∗5/r

∗
5 b∗6/r

∗
6

1 51/279 47/513 43/195 34/552 46/182 32/324 33/96 34/0
2 51/279 47/513 43/195 39/667 41/147 32/324 33/27 29/437
3 51/217 42/594 53/207 49/897 41/430 37/328 48/0 34/552
4 46/234 42/418 38/120 29/437 36/328 32/270 38/0 29/437
5 51/279 47/513 43/195 39/667 36/387 37/0 33/160 34/43.2
6 51/279 47/513 43/195 29/437 41/430 37/328 43/0 34/552
7 46/234 42/418 38/120 29/437 36/112 32/324 33/96 34/552
8 51/279 47/513 43/195 39/667 36/112 32/324 33/96 34/552
9 31/367 32/116 33/0 29/437 36/112 32/324 33/96 34/552
10 51/217 42/594 43/117 34/552 41/147 32/324 43/117 34/552
E[r∗i ] 266 471 154 575 239 287 69 423

GenCo-2 and GenCo-5 rise their payoffs significantly (i.e.,
p − value < 0.05 ). The payoff of the fifth GenCo is partic-
ularly important since GenCo-5 is the player with minimum
market power (see Table B.4). The red dashed lines represent
the expected payoff when SCE* is played by all GenCos. As
demonstrated, the number of hits on the red line (i.e., experi-
ments with SCE* payoff) is increased meaningfully when DQN
is exploited.

4.3. Sensitivity analysis on information availability
In the previous section, we have reported the results of the

proposed DQN model when the submitted bid prices (bt
i) are

common knowledge; however, information disclosure varies
extensively among countries. Therefore, in this section, we in-
vestigate GenCos’ behavior when only λt

i is available imme-
diately (i.e., DQN with LMP - DQNwL). To adopt this new
change, we modify the state variable of the DQN model by re-
placing bt

i with λt
i (i.e., st

i = {ci, bt
i, P

t
i, λ⃗

t
−i}).

The sample of outcomes exhibits that the probability of the
game moving toward the Nash equilibria is 30% when Gen-
Cos are uncertain about rivals’ bid prices; conversely, GenCos
could not find SCEs in ten replications. Moreover, Figure 8 il-
lustrates that the payoffs of GenCo-2, GenCo-5, and GenCo-6
are decreased significantly when the bid prices are hidden. The
difference between payoffs can indicate the expected value of
information for each GenCo.

The readers should note that the convergence to SCEs is not
guaranteed since a simulation method is employed. All in all,
we have a few salient observations:

1. The average payoff using DQN is higher than a time-
dependent Q-learning method when bid prices are known.

2. Participants often receive payoffs larger than the Nash
equilibria of the single-stage game, which might be caused
by a price war and competition among players.

3. The proposed setting unveils the possibility of players un-
intentionally engaging in collusion in an oligopoly market.

4. The sensitivity analysis connotes the significance of
knowledge about bid prices in establishing collusion.

5. Discussions

It is well-known in the literature that transparent markets fa-
cilitate maintaining tacit collusion via coordination of GenCos’

9



N2 ∼

PH
2 :35 D2:10

N1 ∼

PH
1 :42 D1:17

N3

D3: 8

N4

D4: 6

N5∼

PH
5 :40 D5:13

N7

D7: 12

N6∼

PH
6 : 40

B1: {21, 26, 31, 36, 41, 46, 51} c1: e20/MWh

B2: {22, 27, 32, 37, 42, 47, 52} c2: e20/MWh

B5: {33, 38, 43, 48, 53} c5: e30/MWh

B5: {14,19,24,29,34,39,44,49,54} c6: e10/MWh

15

21

5 11

5
14

16

23

Figure 5: The case study with seven nodes and collusive strategies. The third node is considered as the base node.

0 0.5 1 1.5 2
·104

0

10

20

30

40

50

Iterations

To
ta

lL
os

s

(a) Loss reduction through learning

0 0.2 0.4 0.6 0.8 1
·105

0

200

400

600

Iterations

Pa
yo
ff

s
(e

)

GenCo-1
GenCo-2
GenCo-5
GenCo-6

(b) GenCos’ payoff transformation

Figure 6: (a) The light-toned lines represent various replications, and the dark line depicts their average. The total loss decreases as agents minimize the error
using the Adam algorithm. (b) To clearly observe directions, payoffs are smoothed out in the depicted trends. Pale lines represent payoffs with a resolution of 100
iterations. The vertical lines, ranging from the Nash equilibria to SCE* for each GenCo, help the reader to put into perspective the converged payoff.

10



r
QL

1 r
DQN

1 r
QL

2 r
DQN

2 r
QL

5 r
DQN

5
r
QL

6 r
DQN

6

0

200

400

600

800 p-value = 0.559 p-value = 0.004 p-value = 0.007 p-value = 0.088

Pa
yo
ff

s
(e

)

Figure 7: A 95% confidence interval for payoffs under the two learning algo-
rithms. The blue and red dashed lines represent the payoff of the corresponding
GenCo at the Nash equilibrium and SCE*, respectively. Other SCEs are dis-
played with black dash marks in between. A p-value < 0.05 means that the sta-
tistical difference between the average rQL

i and the average rDQN
i for GenCo-i

is significant.

r
DQNwL

1
r
DQN

1 r
DQNwL

2
r
DQN

2 r
DQNwL

5
r
DQN

5 r
DQNwL

6
r
DQN

6

0

200

400

600

800 p-value = 0.040 p-value = 0.000 p-value = N/A p-value = N/A

Pa
yo
ff

s
(e

)

Figure 8: A 95% confidence interval for payoffs under the two information sets:
DQN with LMPs (DQNwL) and DQN with bid prices. The blue and red dashed
lines represent the payoff of the corresponding GenCo at the Nash equilibrium
and SCE*, respectively. Other SCEs are displayed with black dash marks in
between. A p-value < 0.05 means that the statistical difference between the
average rDQNwL

i and the average rDQN
i for GenCo-i is significant. For GenCo-5

and GenCo-6, the p-values are unavailable due to zero standard deviation.

actions in repeated auctions [85, 86, 87, 88]. However, we de-
signed a DQN model in this study, which has no information
regarding the rivals’ utilized technology, LMPs, or dispatched
powers. The developed model discovers and sustains collu-
sive strategies only by knowing the rivals’ offered prices even
though GenCos’ objective is to improve the long-term payoff.

Although the proposed DQN model proves the possibility of
tacit collusion among players in liberalized electricity markets,
it should be noted that submitted bids are assumed as com-
mon knowledge. While GenCos may easily learn rivals’ bid
prices under pay-as-bid pricing, this information usually stays
hidden behind the curtain of market-clearing prices under uni-
form and DCOPF pricing. Hence, for agents to collude using
the proposed algorithm, the bidding curve should be (ideally)
available immediately, which is not the case in many countries
[89]. According to Wolak [90] and Yang et al. [91], information
disclosure varies extensively among countries: some announce
bidding curves instantly, while others release information with
a delay of multiple weeks. When GenCos experience a dis-
closure delay of K hours, one possible approach is to train the
proposed DQN model based on disclosed bid prices and as-
sume the last announced hour as the current hour (see Figure
9). This approach can be reasonable when the network struc-
ture transforms sluggishly [92], and the influential players are
often untouched in multiple years. As such, GenCos may still
converge to a collusive strategy with a time delay. Another ap-
proach is to couple the proposed DQN model with other mod-
els, by which they can associate the bid prices to GenCos based
on LMPs. Brown et al. [93] show that players can still identify
the bid prices of a particular rival from the offered patterns even
when the market de-identifies data.

Released bids︷           ︸︸           ︷ Current time︷         ︸︸         ︷
Time · · · t − K − 1 t–K · · · t
GenCo-1 · · · t′ − 1 t′ · · · bt′+1

1
GenCo-2 · · · t′ − 1 t′ · · · bt′+1

2
...

...
...

...
...

...
GenCo-n · · · t′ − 1 t′ · · · bt′+1

n
Used for training · · · Respond using trained net-

work from t − K.

Figure 9: A possible training structure considering data disclosure delay of K
hours.

There are also supporting arguments concerning the imme-
diate release of bid prices by the ISO [94, 89, 95]. All in all,
the general trend around the globe confirms that markets are
moving toward full transparency, notably with data concerning
historical bidding behaviors [28]. Hence, market designers and
policymakers should consider the joint impact of autonomous
pricing and information disclosure on GenCos’ behavior prior
to crafting market regulations.

To hinder GenCos from strategic bidding in liberalized mar-
kets, the ISO should diversify suppliers and distribute market
power among smaller players [96]. For instance, the Turk-
ish electricity market is becoming more diversified via the Re-
newable Energy Support Scheme (YEKDEM) and affordable
photovoltaic cells [97, 98]. Governments can provide finan-
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cial incentives for prosumers in local electricity markets to par-
ticipate in the day-ahead markets and hedge against collusion
[29]. Microgrids and local electricity markets are also sug-
gested as efficient ways to integrate intermittent renewable en-
ergy sources with electricity markets [99]. However, market
designers should constantly monitor small (local) markets to
ensure healthy competition among players [32]. Finally, suc-
cessful demand response strategies can relax the network con-
gestion and provide a competitive environment, where GenCos
would rather deviate from collusive strategies due to unattrac-
tive payoffs [100, 101, 102].

6. Conclusions and future work

Liberalized electricity markets should overcome empirical
challenges to materialize predicted objectives completely. One
major challenge is to achieve a fully competitive market by
eliminating collusion of any type. Revealing the exercise of
market power by participants is, in itself, a difficult task, and the
use of autonomous pricing algorithms leads to added complex-
ity. In this paper, we aim to investigate the impact of emerging
DQN models on the behavior of players. The outcomes sug-
gest that GenCos may be able to collude unintentionally while
trying to ameliorate long-term profits. Therefore, policymak-
ers and market designers should be vigilant regarding the com-
bined effect of information disclosure and autonomous pricing,
as new models exploit information more effectively.

Although the proposed DQN model does not need the solu-
tion to the DCOPF problem for rivals, it still requires knowing
other GenCos’ bidding curves. Consequently, one future re-
search direction might be to employ off-the-shelf models (e.g.,
DDPG) or to design a new algorithm that only relies on pub-
licly available information such as LMPs with monthly delay.
Another research direction could be analyzing the effect of fluc-
tuating demand, via a double-sided auction, on the learning ca-
pacity of GenCos when collusion among participants is possi-
ble.

Appendix A. DCOPF formulation

The DCOPF problem formulation [82, 20, 14] is given as
follows:

minimizePt
i ,θ

t
i

zt =
∑
i∈I

bt
iP

t
i (A.1)

subject to

Pt
i − Dt

i =
∑
i j∈A

yi j

(
θti − θ

t
j

)
∀i ∈ I (A.2)

PL
i ≤ Pt

i ≤ PH
i ∀i ∈ I (A.3)

−π ≤ θti ≤ π ∀i ∈ I (A.4)

|yi j(θti − θ
t
j)|≤ FH

i j ∀i j ∈ A (A.5)

Here, Dt
i is the demand at node i and hour t, A is the set of

available transmission lines, yi j represents the admittance of the
connecting line between a pair of nodes (i.e., i and j), PL

i and

PH
i are the minimum and the maximum generation capacity of

GenCo-i, respectively, and FH
i j specifies the maximum permis-

sible flow in the transmission line connecting node-i to node- j.
For the sake of simplicity, we assume PH

i , P
L
i , and Dt

i to be con-
stant through time in the remainder of this paper.

The objective function in Eq. (A.1) is to minimize the elec-
tricity procurement cost. As stated earlier, Pt

i and θti are decision
variables. Eq. (A.2) balances the flow of electricity by trans-
mitting the extra power of each node into connected nodes. Eq.
(A.3) confines the maximum and minimum permissible capac-
ity of each GenCo. PL

i can be set to a positive value when the
power is already purchased or GenCo-i is selling according to a
support mechanism such as feed-in tariffs. Eq. (A.4) limits the
voltage angle within a finite range. Additionally, the value of θti
at the reference node is set to zero. Finally, Eq. (A.5) controls
the maximum flow through transmission lines. At the optimal
solution, the dual variable corresponding to Eq. (A.2) sets the
unit electricity price at each node (i.e., λt

i).

Appendix B. Equilibria of the Case Study

In this section, the analytical solution of the case study is
presented based on Aliabadi et al. [20]. Table B.3 displays the
tuple of bid prices (in e/MWh) and payoffs in Euro for the
Nash equilibria. Table B.4 exhibits all SCEs with their cor-
responding payoffs. Among 2205 states, the most collusive
state is at (bS CE∗

1 = 51, bS CE∗
2 = 47, bS CE∗

5 = 43, bS CE∗
6 = 39)

with the payoff tuple of (rS CE∗
1 = 279, rS CE∗

2 = 513, rS CE∗
5 =

195, rS CE∗
6 = 667). The two Nash equilibria strategies are at

(bN
1 = 31, bN

2 = 27, bN
5 = {33, 38}, bN

6 = 29) with the same pay-
off tuple (rN

1 = 225.5, rN
2 = 157.5, rN

5 = 0, rN
6 = 437). It is

clear that rS CE∗
i > rN

i , ∀i ∈ I. As shown in the last column, the
fifth GenCo always obtains the minimum payoff due to higher
generation cost (c5 > c1 = c2 > c6).

Table B.3: Nash equilibria in the case study

# (bN
1 , b

N
2 , b

N
5 , b

N
6 ) (rN

1 , r
N
2 , r

N
5 , r

N
6 ) Minimum Payoff

1 (31, 27, 33, 29) (225.5, 157.5, 0, 437) rN
5 = 0

2 (31, 27, 38, 29) (225.5, 157.5, 0, 437) rN
5 = 0

Under the Nash equilibria, transmission lines between nodes
2 − 4 and 5 − 6 become congested. Although GenCo-6 is ca-
pable enough to generate 40 MW per hour (PH

6 = 40 MWh),
the dispatched power from GenCo-6 is capped to 23 MWh due
to the transmission line constraint (FH

5,6 = 23). Congestion in
the network causes the market cleared price of electricity to be
node-dependent. For instance, under the Nash equilibria, the
most expensive electricity is consumed at the fourth node (λN

4 =

e39 per MWh) while the cheapest electricity is available at the
second node (λN

2 = e27 per MWh).
Under the SCE* strategy, GenCos can increase the market

cleared prices of all nodes (λS CE∗
1 = 51 > λN

1 = 31, λS CE∗
2 =

47 > λN
2 = 27, λS CE∗

3 = 55 > λN
3 = 35, λS CE∗

4 = 47 > λN
4 =

39, λS CE∗
5 = 43 > λN

5 = 33, λS CE∗
6 = 39 > λN

6 = 29, and
λS CE∗

7 = 51 > λN
7 = 31). Moreover, the transmission lines
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between nodes 3 − 4 and 4 − 5 become congested under the
SCE* strategy.

Table B.4: Calculated SCEs for the presented case study. The last row repre-
sents the most collusive state (S CE∗)

# (bS CE
1 , bS CE

2 , bS CE
5 , bS CE

6 ) (rS CE
1 , rS CE

2 , rS CE
5 , rS CE

6 ) Minimum Payoff

1 (46, 37, 33, 29) (234, 323, 45, 437) rS CE
5 = 45

2 (46, 42, 33, 29) (234, 418, 45, 437) rS CE
5 = 45

3 (46, 42, 38, 29) (234, 418, 120, 437) rS CE
5 = 120

4 (46, 42, 38, 34) (234, 418, 120, 552) rS CE
5 = 120

5 (51, 42, 33, 29) (279, 418, 45, 437) rS CE
5 = 45

6 (51, 42, 38, 29) (279, 418, 120, 437) rS CE
5 = 120

7 (51, 42, 38, 34) (279, 418, 120, 552) rS CE
5 = 120

8 (51, 47, 33, 29) (279, 513, 45, 437) rS CE
5 = 45

9 (51, 47, 38, 29) (279, 513, 120, 437) rS CE
5 = 120

10 (51, 47, 38, 34) (279, 513, 120, 552) rS CE
5 = 120

11 (51, 47, 43, 29) (279, 513, 195, 437) rS CE
5 = 195

12 (51, 47, 43, 34) (279, 513, 195, 552) rS CE
5 = 195

13* (51, 47, 43, 39) (279, 513, 195, 667) rS CE
5 = 195
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