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Abstract

Information on grassland land-use intensity (LUI) is crucial for understand-

ing trends and dynamics in biodiversity, ecosystem functioning, earth system

science and environmental monitoring. LUI is a major driver for numerous

environmental processes and indicators, such as primary production, nitro-

gen deposition and resilience to climate extremes. However, large extent,

high resolution data on grassland LUI is rare. New satellite generations,

such as Copernicus Sentinel-2, enable a spatially comprehensive detection of

the mainly subtle changes induced by land-use intensification by their fine

spatial and temporal resolution. We developed a methodology quantifying

key parameters of grassland LUI such as grazing intensity, mowing frequency
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and fertiliser application across Germany using Convolutional Neural Net-

works (CNN) on Sentinel-2 satellite data with 20 m x 20 m spatial resolution.

Subsequently, these land-use components were used to calculate a continu-

ous LUI index. Predictions of LUI and its components were validated using

comprehensive in situ grassland management data. A feature contribution

analysis using Shapley values substantiates the applicability of the method-

ology by revealing a high relevance of springtime satellite observations and

spectral bands related to vegetation health and structure. We achieved an

overall classification accuracy of up to 66% for grazing intensity, 68% for

mowing, 85% for fertilisation and an r2 of 0.82 for subsequently depicting

LUI. We evaluated the methodology’s robustness with a spatial 3-fold cross-

validation by training and predicting on geographically distinctly separated

regions. Spatial transferability was assessed by delineating the models’ area

of applicability. The presented methodology enables a high resolution, large

extent mapping of land-use intensity of grasslands.

Keywords: Mowing, Grazing, Fertilisation, Convolutional Neural Networks,

Random Forest, Classification, Deep Learning, optical satellite data

1. Introduction1

Grasslands cover about one third of the global land surface and are the2

most cultivated biome on Earth (IPCC, 2019). They provide numerous3

ecosystem services, such as carbon sequestration and food production (FAO,4

2009), and have a high importance for conservation as they are often species5

rich (Gibson, D. J., 2009; Wilson et al., 2012). Biodiversity, ecosystem ser-6
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vices and functions in grasslands are strongly affected by the management7

regime (IPBES, 2019), i.e. grazing, fertilisation, timing and frequency of8

mowing events (Blüthgen et al., 2012), and its quantitative variation (FAO,9

2009; Gibson, D. J., 2009; IPCC, 2019). The optimisation of farming ef-10

ficiency towards yield maximisation usually leads to an increase in these11

treatments (hereafter referred to as land-use intensity components) and thus12

land-use intensity (LUI), which may have numerous negative implications13

for the environment, such as biodiversity loss (Kruess and Tscharntke, 2002;14

Wesche et al., 2012; Tsiafouli et al., 2015), water pollution (FAO, 2009),15

land degradation (IPBES, 2019; IPCC, 2019) and increased carbon emis-16

sions (Jones and Donnelly, 2004; Post and Kwon, 2000; Conant et al., 2001).17

Monitoring LUI on a large spatial extent is thus crucial for Earth system sci-18

ence and environmental monitoring to support decision making and reporting19

of climate-relevant processes.20

Combining several LUI components into a single quantifiable measure is21

not a trivial issue as these components are often not independent (Blüthgen22

et al., 2012). For example, meadows are commonly fertilised at higher levels23

than pastures. However, Blüthgen et al. (2012) proposed a LUI index com-24

bining fertiliser amount, mowing frequency and grazing intensity irrespective25

of the complex interactions between these components. Such a simple combi-26

nation allows to analyse land-use effects across landscapes in different years27

without requiring additional (mixed) land-use types accounting for spatio-28

temporal grassland management variations, while a more mechanistic under-29

standing can be gained by analysing the underlying components (Blüthgen30

et al., 2012).31
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Remote sensing methods may be able to assess LUI in grasslands, as mow-32

ing, grazing and fertilisation all affect vegetation structure, composition and33

vitality, albeit to different degrees and over varying time scales (de Bello et al.,34

2011; Bernhardt-Römermann et al., 2011; Socher et al., 2013). Mowing and35

grazing remove vegetation and thus influence its structure and vitality in the36

short-term (Dusseux et al., 2014), and species composition in the long-term,37

e.g. by inhibiting the growth of species not adapted and facilitate those (pre-38

)adapted to this management (Chapin III et al., 2000; Socher et al., 2013;39

Bouchet et al., 2017). Livestock manure and fertilisation provide nutrients,40

hence influencing vegetation structure and vitality in the short term, while41

determining the competitive interactions among plant species in the long-42

term (de Bello et al., 2011; Bernhardt-Römermann et al., 2011; Gibson, D.43

J., 2009). Land-use has thus a pronounced effect on grassland reflectance44

properties that varies with its intensity. Analysis of these reflectance char-45

acteristics enables the identification of the underlying vegetation structure,46

composition and vitality (Jacquemoud et al., 2009; Ramoelo et al., 2015;47

Sakowska et al., 2016) and consequently supports the assessment of grass-48

land management with remote sensing methods. However, the relationships49

between vegetation and reflected light are complex (Jacquemoud et al., 2009;50

Doktor et al., 2014). These relationships are commonly inferred by analysing51

spectral bands or vegetation indices (VI), such as the Normalized Difference52

Vegetation Index (NDVI), and their temporal changes, hereafter called time53

series analysis. Further, classification approaches using clustering algorithms54

or machine learning on mono- or multi-temporal satellite observations are55

increasingly used in recent studies.56
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Studies detecting grassland management practices with remote sensing57

methods mainly focus on one of the above mentioned LUI components (Rein-58

ermann et al., 2020), while only a few studies infer LUI by depicting multiple59

components (Gómez Giménez et al., 2017; Stumpf et al., 2020). The detec-60

tion of mowing events is commonly performed by VI time series analysis61

(Estel et al., 2018; Kolecka et al., 2018; Griffiths et al., 2020) or by analysing62

changes in time series of Earth observation data products like the leaf area63

index (LAI) derived from radiative transfer model inversion (Dusseux et al.,64

2014; Asam et al., 2015), and only a few studies use a classification approach,65

e.g. of Synthetic Aperture Radar backscatter (SAR; Siegmund et al., 2016;66

Taravat et al., 2019). Grazing intensity was recently mapped by using VI67

change detection (Blanco et al., 2009; Li et al., 2016) or regression tech-68

niques linking VI and above-ground biomass as a proxy for grazing intensity69

(Ma et al., 2019). Studies identifying fertiliser applications or estimating70

plant nutrient status in grasslands with remote sensing techniques are rare71

and commonly use hyperspectral data (Pellissier et al., 2015; Sibanda et al.,72

2015). However, Hollberg and Schellberg (2017) demonstrated the feasibility73

to distinguish different fertiliser treatments in grasslands by using vegetation74

indices based on simulated RapidEye data. Research on nutrient status or75

supply in cropland also commonly uses hyperspectral data (Cilia et al., 2014;76

Xia et al., 2016).77

The majority of past studies observing grassland management from space78

used coarse spatial resolution sensors such as NASA Advanced Very High79

Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectro-80

radiometer (MODIS), or coarse temporal resolution sensors such as Landsat81
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(Reinermann et al., 2020). Contrarily, grassland management activities are82

often conducted within small areas of fragmented landscapes and their spec-83

tral footprint diminishes quickly, especially after mowing events, due to the84

rapid regrowth of perennials in summer (Griffiths et al., 2020; Stumpf et al.,85

2020). Additionally, information about the farmer’s grassland management86

on the level of individual fields or farms is commonly not available, but neces-87

sary for policy makers (Griffiths et al., 2020) and research would greatly ben-88

efit from spatially explicit land management information (Franke et al., 2012;89

Reinermann et al., 2020). To cope with these issues, recent studies worked90

with new satellite generations, such as Copernicus Sentinel-2 or RapidEye,91

which enable the detection of the mainly subtle changes induced by land-use92

intensification by their fine spatial and temporal resolution (Gómez Giménez93

et al., 2017; Griffiths et al., 2020; Reinermann et al., 2020). However, the94

majority of studies often focussed on homogeneous grasslands or on local95

scales (Franke et al., 2012; Lopes et al., 2017; Taravat et al., 2019), mainly96

due to the lack or quality of calibration and validation data (Ali et al., 2016;97

Kuemmerle et al., 2013). The spatial and temporal heterogeneity of culti-98

vated grasslands remains a key issue: management practices often change99

over time or are conducted only in subsets of the parcels, e.g. piece-wise100

mowing or grazing, calling for spatially and temporally explicit, high quality,101

ground truth data (Estel et al., 2018; Reinermann et al., 2020). The lack of102

these datasets for training and validation severely hampers the development103

of accurate remote sensing products. Validation is thus often done without104

in situ validation data, e.g. by visual interpretation of time series (Gómez105

Giménez et al., 2017; Kolecka et al., 2018; Griffiths et al., 2020) or spatially106
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non-explicit by comparing statistical features or the density or frequency107

distribution of predictions with regional management statistics (Estel et al.,108

2018; Stumpf et al., 2020).109

Here, we aim to infer LUI quantifying the components mowing frequency,110

grazing intensity and fertilisation with machine learning methods to appropri-111

ately account for the complex, e.g. non-linear, relationships between remotely112

sensed observations and LUI components on the ground. While used for clas-113

sification of management type or general use intensity, only a low number114

of studies use machine learning for mowing detection (Halabuk et al., 2015;115

Taravat et al., 2019), and we found no studies using machine learning for the116

detection of grassland fertilisation or grazing intensity. We train and vali-117

date the models using a spatially explicit grassland management dataset of118

the DFG (Deutsche Forschungsgemeinschaft - German Research Foundation)119

Biodiversity Exploratories program (Fischer et al., 2010). The functional re-120

lationships between the intensity measures on the ground and satellite obser-121

vations are evaluated with Shapley additive explanations (SHAP; Lundberg122

and Lee, 2017; Lundberg et al., 2020) summarising explanations of individ-123

ual predictions to gain information about the global model structure and124

to robustly extract variable importances within the underlying model. We125

evaluated the methodology’s robustness with a spatial 3-fold cross-validation126

by training and predicting on geographically distinctly separated regions.127

Spatial transferability was assessed by delineating the methodology’s area of128

applicability considering the feature space given by the training data and the129

models’ variable importances (Meyer and Pebesma, 2021). Finally, we aim130

to apply the method to the national scale by mapping LUI of all grasslands131
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in Germany. In summary, we address the following research questions:132

(1) Can mowing frequency, grazing intensity and fertilisation be quantified133

using CNN by identifying and relating respective spectral and temporal134

patterns in Sentinel-2 reflectance time series?135

(2) Can we translate the LUI index proposed by Blüthgen et al. (2012)136

into a remote sensing based framework?137

(3) Are the LUI component models, trained and validated using three ob-138

servatories representative for grasslands in Germany, transferable to all139

grasslands in Germany?140

2. Data141

2.1. Study area142

This study focuses on grassland areas in Germany. Their distribution is143

shown in Figure 1 according to the digital landscape model (DLM) of the of-144

ficial topographic-cartographic information system (ATKIS; Bundesamt für145

Kartographie und Geodäsie, 2015) providing information about topographic146

objects within Germany in vector format. Contrary to croplands, grasslands147

in Germany are usually scattered small-sized areas. Accumulations of grass-148

lands are found in a) northern Germany in vicinity of the North Sea, b) in149

fluvial valleys, such as the Elbe Valley, c) in topographically high levels, such150

as the Central German Uplands and d) at the Alpine Foothills in southern151

Germany.152

Field data were available from three observatories of the DFG Biodiversity153

Exploratories (Fischer et al., 2010): Schorfheide (SCH) is located in the154
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North-East, Hainich (HAI) in the center and Schwäbische Alb (ALB) in155

the South-West of Germany (Figure 1). Germany’s climate is dominated156

by humid westerly winds and the influence of the oceanic climate decreases157

from western and coastal areas towards the eastern parts (Köppen, 1918;158

Stanners and Bourdeau, 1995). The increasing altitude from North to South159

modifies these general climate patterns, resulting in considerably different160

climate conditions (Doktor, 2008). Thus, the three observatories represent161

the climatic gradient of Germany (Köppen, 1918; Stanners and Bourdeau,162

1995). Further, these observatories represent most of variation in land-use163

typical for grasslands in Germany, including hardly managed up to intensively164

used areas (Fischer et al., 2010).165

We chose four regions (Figure 1) for demonstration, outside of the DFG166

Biodiversity Exploratories due to data privacy agreements not allowing for167

the disclosure of exact locations, with an extent of 10 km x 10 km and a high168

number of grassland pixels for visual and statistical interpretation: Region169

(a) is located in northern Germany, in the district Dithmarschen of federal170

state Schleswig-Holstein composed of mostly fertile tidal marshes and a sandy171

Geest, (b) covers the northern part of the nature reserve Ohre-Drömling and172

the surrounding landscape in the federal state Saxony-Anhalt composed of173

bogs, marshes and farmland, (c) covers parts of the transition areas of the174

biosphere reserve Rhön in the federal state Thuringia diverse in land-use and175

morphology and (d) is located in southern Germany in the district Oberallgäu176

of the federal state Bavaria where large agricultural parts are used for dairy177

farming.178

179
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Figure 1: Location of study areas in Germany. Calibration and validation plots from the

DFG Biodiversity Exploratories are marked with circles. We are not allowed to publish

exact parcel positions due to privacy policies. Exact positions of the four demonstration

regions chosen for visual and statistical interpretation are given as red boxes. Background

colors show simplified land cover information. State borders are shown as black lines (©

GeoBasis-DE / Bundesamt für Kartographie und Geodäsie, 2017).
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2.2. Land-use intensity measures180

The spatially explicit grassland management data of the DFG Biodiver-181

sity Exploratories (Fischer et al., 2010) include information about livestock,182

fertilisation and mowing events (Vogt et al., 2020) in three regions across183

Germany (see Figure 1) from 2006 to 2018. Here, we only used records from184

2017 and 2018 due to the availability of respective satellite data. Each of the185

three observatories contains 50 plots (Ostrowski et al., 2020). All plots have186

a size of 50 m x 50 m and are situated in a grassland area with a median size187

of 10 ha (minimum 0.49 ha, maximum 148 ha). The total size of represented188

grassland area is around 26 km2 (see Table 1). Environmental monitoring189

units are situated within each plot. Several manipulative experiments not190

related to this study, such as fertilisation, disturbance and climate change ex-191

periments, were carried out within 27 of these plots, nine in each observatory192

(Fischer et al., 2010).193

Livestock information is given as livestock units per plot for four graz-194

ing periods per year. Livestock units are a conversion of livestock numbers195

depending on species and age (Table 2; Fischer et al., 2010) and were multi-196

plied with the grazing duration (number of days of the four grazing periods),197

summed up and divided by the length of the year (days) and the grazing198

area (ha) to get a normalised value of grazing intensity (livestock units per199

day and ha). Mowing information is given in up to five mowing dates per200

plot. Fertilisation information include type and amount of fertiliser, as well201

as dates and total number of fertilisation events per plot, excluding dung202

depositions by livestock during grazing.203
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Table 1: Summary of descriptive statistics on grassland management data of Biodiversity

Exploratories for 2017 and 2018. Statistics were generated using 50 plots per observatory

(ALB: Schwäbische Alb, HAI: Hainich and SCH: Schorfheide) and year. Each plot is

situated in a grassland, the sum (
∑

s), first quartile (Q1), median (Q2) and third quartile

(Q3) of the size of these grassland areas in the respective region were given in ha. Grazing

intensities (GI) were summarised by the expected value (E[GI ]) and variance (V [GI ]) of

their beta distribution in the interval [0, cG], with cG representing the maximum value

of grazing intensity in the respective area. Mowing (M) and fertilisation (F) counts were

given by the λ of their Poisson distribution (λM and λF , respectively).

Size (ha)

Region Year
∑∑∑

s Q1 Q2 Q3 E[GI] V [GI] cG λM λF

ALB 2017 311 2.4 5.5 8.0 0.20 0.08 1.82 1.36 1.12

2018 311 2.4 5.5 8.0 0.22 0.10 1.71 1.42 0.96

HAI 2017 1138 6.0 11.1 19.8 0.24 0.10 3.76 0.90 0.64

2018 1127 6.0 11.1 19.6 0.22 0.12 3.35 0.68 0.70

SCH 2017 1180 10.2 16.0 32.0 0.47 0.31 2.46 0.88 0.10

2018 1175 9.7 15.3 32.0 0.46 0.28 2.20 0.84 0.04

Overall 2017 2629 5.3 10.0 18.6 0.33 0.24 3.76 1.05 0.62

2018 2614 5.3 9.8 17.6 0.32 0.24 3.35 0.98 0.57
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Table 2: Definition of livestock units based on species and age as given in the land man-

agement data of the DFG Biodiversity Exploratories (slightly different from those given

in Fischer et al., 2010).

Species
Age Livestock

(in years) units

Sheep, Goat
< 1 0.05

≧ 1 0.10

Cattle

< 0.5 0.30

0.5 − 2 0.60

> 2 1.00

Horse
< 3 0.70

≧ 3 1.00

Pony 0.70
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2.3. Satellite data204

We used the complete Copernicus Sentinel-2 A and B data acquisitions205

for Germany (67 tiles) of 2017 and 2018 with 20 m x 20 m resolution as pre-206

dictor variables. Although Sentinel-2 data with 10 m x 10 m resolution are207

potentially beneficial for the assessment of management on small grassland208

parcels, we used the 20 m x 20 m product including more spectral bands. We209

expected a high relevance of short-wave infrared (SWIR) bands 11 and 12 for210

the assessment of grassland management since these bands relate to numer-211

ous vegetation properties affected by management practices (Jacquemoud212

et al., 2009; Jacques et al., 2014; Jenal et al., 2021). Data were downloaded213

as top-of-atmosphere Level 1C products from the Copernicus Open Access214

Hub at scihub.copernicus.eu. Subsequently, Level 1C products were atmo-215

spherically, terrain and cirrus corrected with the software Sen2Cor (version216

2.8.0; Mueller-Wilm et al., 2019), resulting in bottom-of-atmosphere Level217

2A products. Scene classification information, retrieved from the Sen2Cor218

process and available for each pixel of the respective satellite image, was used219

to discard all observations not taken under clear sky conditions (Lange et al.,220

2017). Observations, consisting of measurements in nine spectral bands (with221

radiometric resolution according to the ESA Sentinel-2 User Guide, see sen-222

tinel.esa.int), were stored in a data cube, containing 145.572 chunks with 100223

x 100 pixels each, to speed up further calculations.224

Satellite observation dates differ among regions. Predictions with ma-225

chine learning algorithms require data with predictors respective to the pre-226

dictors of the training dataset. Thus, we aligned the data by averaging227

observations within 16 composite periods according to Table 3, resulting in228
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the same, not equidistant, time steps for each time series.229

Composite periods were chosen according to their expected importance230

with respect to grassland management and number of valid observations.231

During wintertime, low sun angles, potential snow cover and weather effects232

limit the number of valid observations. However, we did not completely233

discard wintertime observations as plant species composition differences may234

be visible, thus a large period of one to two months was chosen. Satellite235

observations within the vegetation period were expected to be highly relevant236

for the assessment of management practices as most management activities237

occur in this period. However, cloud cover hampers satellite observations238

frequently during spring and autumn in Germany. Thus, composite periods239

within spring and autumn were chosen with a length of one month. We chose240

a period of two weeks during summer as we expect a high number of valid241

satellite observations. Empirical experiments revealed an increasing number242

of data gaps when reducing the period length more. An overview about243

the number of clear-sky observations per composite period is given in the244

Supplementary Material (Table S.1).245

Subsequently, missing values were replaced by interpolating the composite246

time series per pixel linearly. In 2017, more than 95% of composite time247

series contain less than 7 interpolated values, while one third contain three248

and one third contain less than 3 interpolated values (see Supplementary249

Material, Figure S.1). Data availability increased with the start of Sentinel-250

2B in Spring 2017. Consequently, the number of interpolated composite251

periods decreased in 2018, with 99% of composite time series containing less252

than 4 interpolated values, one third containing one and 36% containing no253
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interpolated values.254

Table 3: Definition of composite periods: list of averaged satellite scenes per composite

period.

Period Name Satellite scenes

1 Jan/Feb all of January and February

2 Mar all of March

3 Apr all of April

4,6,8,10,12 Month1 first half of months May

to September, respectively

5,7,9,11,13 Month2 second half of months May

to September, respectively

14 Oct all of October

15 Nov all of November

16 Dec all of December

3. Methods255

The procedure for LUI derivation was implemented in the statistical soft-256

ware R (version 3.6.2; R Core Team, 2020) and divided into six main parts:257

First, data were acquired and pre-processed as described in Section 2. Sec-258

ond, land management data were classified, combined with respective satel-259

lite data and sampled to generate training and validation datasets. Third,260

machine learning methods were used to model LUI components based on261

which a LUI index was computed. Fourth, results and underlying functional262

relationships were evaluated. Fifth, the models’ areas of applicability were263
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delineated. Finally, we applied the models to satellite data covering all grass-264

lands in Germany.265

3.1. Land management data classification266

The continuous value of grazing intensity and the ordinal nature of mow-267

ing and fertilisation event number would allow for a regression approach.268

Since mowing frequency and fertilisation are count data, a discrete regres-269

sion or ordinal classification approach would have been required to deal with270

these data. Although studies doing discrete regression or ordinal classifica-271

tion with neural networks exist (Cheng et al., 2008; Cao et al., 2020), common272

frameworks (keras, tensorflow) do, to our knowledge, not include the required273

algorithms. Thus, implementing such algorithms would require extensive pro-274

gramming efforts and the approach was hence dismissed for the current study.275

Further, high variability within management information hampers regression276

approaches. Although information on grazing intensity is given per field and277

certain time periods, livestock is not evenly distributed throughout the fields278

and the distribution varies over time. Fertilisation can be carried out with279

mineral or organic fertilisers. Quantifying the amount of mineral fertiliser280

is fairly straight forward, whereas liquid manure contains a varying amount281

of ingredients, such as nitrate, and thus documentation by farmers is ham-282

pered. Livestock can be an additional fertiliser source. Further, the effect283

of fertilisation on the vegetation differs depending on soil, climate and water284

availability (Gibson, D. J., 2009). An aggregation to classes mitigates this285

variability and results in more robust classification models. Based on these286

observations we conclude that the use of regression approaches is technically287

feasible but limited for practical reasons in the present study. Consequently,288
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we reduced the problem’s complexity by aggregating our target variables into289

classes and aimed for a classification approach instead of a regression. Thus,290

grazing intensity was used to derive four grazing intensity classes according291

to Table 4. Mowing count was respectively aggregated into six (zero to five292

mowing events) and fertilisation information into two classes (fertilised and293

not fertilised). An overview about the resulting data class distribution is294

given in Table 5.295

Table 4: Definition of grazing classes (G) by grazing intensity (GI) given in livestock units

per ha and day.

G GI

0 0

1 0 < GI ≦ 0.33

2 0.33 < GI ≦ 0.88

3 GI > 0.88

3.2. Data sampling296

Land management data and respective Sentinel-2 composite time series of297

2017 and 2018 were combined using the satellite pixels covering the full plot298

size, namely the pixel with center position nearest to the respective center299

of each Biodiversity Exploratories plot and the eight adjacent pixels. Data300

combination was done separately for the years 2017 and 2018, resulting in301

two respective datasets. Data from 2017 and 2018 were treated separately302

as weather may influence plant phenology (e.g. the timing of green-up and303

senescence), the timing of management practices and thus the temporal evo-304

lution of the remote sensing signal differently between years. Time series305
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Table 5: Grassland management class distribution overview for data of 2017 and 2018

showing the number of plots assigned to a certain management class, namely the four

grazing classes (G), six mowing count classes (M) and two fertilisation classes (F).

2017 2018

Class ALB HAI SCH Overall ALB HAI SCH Overall

G 0 22 11 18 51 21 13 15 49

1 17 27 8 52 17 27 10 49

2 9 8 15 32 9 7 18 34

3 2 4 9 15 3 3 7 13

M 0 18 17 17 52 15 22 22 59

1 8 22 22 52 12 22 14 48

2 14 10 11 35 11 6 14 31

3 9 1 0 10 11 0 0 11

4 0 0 0 0 1 0 0 1

5 1 0 0 1 0 0 0 0

F 0 25 27 45 97 26 26 48 100

1 25 23 5 53 24 24 2 50
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examples are shown in Figure 2 with respective management activities, ex-306

hibiting e.g. rapid decreases in NDVI after mowing events and a higher307

variability within the NDVI time series while grazed.308

Plots within these datasets were divided into training and validation plots309

with conditioned latin hypercube sampling using the R-package clhs (Roudier310

et al., 2020) to preserve the high variance of grassland usage information.311

Thus, all pixels of a plot were used only for training or for validation, respec-312

tively, to preserve the intra-plot variance of satellite observations and to en-313

sure independence of training and validation sets. We tested different training314

and validation set allocations (30%/70%, 50%/50% and 70%/30% training315

and validation set size, respectively). Although we found reasonable results316

for all allocations, higher training set sizes mainly resulted in higher accu-317

racies. Consequently, 70% of the plots were used for training (nplots = 105,318

npixels = 945) and 30% for validation (nplots = 45, npixels = 405). Predictors,319

namely the 144 combinations of Sentinel-2 bands (nbands = 9) and composite320

periods (nperiods = 16), were scaled to µ = 0 and σ = 1 to normalise the321

weight of each variable before training the machine learning models.322

323

3.3. Classification methods324

Deep learning became increasingly important in various applications over325

the last decade due to their ability to model complex behaviors. In remote326

sensing, especially convolutional neural networks (CNN) and recurrent neural327

networks, and their special form long short-term memory networks (LSTM),328

are of use for image analysis and classification (Ienco et al., 2017; Kussul329
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Figure 2: Normalised difference vegetation index (NDVI) time series of 2018 of center

pixels in six plots (a-f) within the Biodiversity Exploratories. Pastures (b, d, f) are and
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et al., 2017; Rußwurm and Körner, 2017). Here, we used a CNN to predict330

three LUI components according to the classes defined in section 2.2. Note331

that we trained the algorithm pixel-wise instead of the common image-wise332

application to get pixel-wise predictions. The convolution itself is thus per-333

formed on temporal and spectral instead of spatial patterns. The CNN was334

implemented by using the R package keras (Falbel et al., 2020). The struc-335

ture of the constructed network is shown in Figure 3. It was trained in 50336

epochs with the RMSProp optimiser.337

We compared the CNN approach to the state-of-the-art method Random-338

Forest (RF; Breiman, 2001). RF is often used in remote sensing studies and339

especially in land cover classification (Rodriguez-Galiano et al., 2012; Preidl340

et al., 2020). Here, we used the R-package randomForest (Liaw and Wiener,341

2002) to train a RF model on same dataset as used in the CNN approach. A342

McNemar-test (McNemar, 1947) with Yates correction (Yates, 1934) was per-343

formed to test for significant differences between CNN and RF classifications.344

Additionally, overall accuracy of both methods was compared. Parameters345

of RF were chosen based on suggestions from literature (Svetnik et al., 2003):346

mtry defaults to values in relation to the number of predictors (p), usually347

√
p for classification or p/3 for regression. We chose mtry = p/3 (resulting348

in mtry = 48) based on empirical experiments. The number of trees (ntree)349

usually varies, depending on the number of samples, between 50 and 500.350

Here, we chose ntree = 128 based on empirical experiments.351

Model generation and training was repeated 100 times to account for the352

randomness in the training procedure, evaluate the performance on the data353

and to select the best model for subsequent variable importance assessment,354
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transferability evaluation and Germany-wide application.355

356

3.4. Land-use intensity index357

LUI was inferred applying the index (here: LUIregion) proposed by Blüthgen358

et al. (2012), based on the underlying components grazing class (G), mowing359

count (M) and fertilisation (F ). Pixel values of these components were di-360

vided by their mean study area (regional) value (Gregion, M region and F region).361

Subsequently, the results were summed up to obtain the dimensionless non-362

negative value LUIregion (see Equation 1). LUIregion estimations based on363

LUI component predictions or ground observations are further referred to as364

LUIsatelliteregion or LUIgroundregion , respectively.365

LUIregion =
G

Gregion

+
M

M region

+
F

F region

(1)

3.5. Validation of land-use intensity and its components366

Validation was done for LUI component models as well as for LUI quan-367

tification. LUI component models were validated using the classification’s368

overall accuracy (OA), calculated by dividing the total number of correctly369

classified pixels by the total number of pixels (Congalton, 1991). Further,370

we calculated the precision (user accuracy), recall (producer accuracy) and371

their harmonic mean, namely the F1-score, as measures of classification per-372

formance to account for class imbalances (Tharwat, 2020). These measures373

are calculated for each class. Additionally, we calculated their sample size374

weighted average across all classes as total measure for each model. Vali-375

dation of LUIsatelliteregion , calculated by using the predictions of the CNN and376
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Figure 3: CNN structure: The input was reshaped such that 16 composite periods and nine

bands per Sentinel-2 pixel serve as input for the net, which consists of two convolutional

layers, with 64 and 128 filters of kernel-size three and valid padding, respectively, a batch

normalisation layer in between, a (max-)pooling layer of size two and a subsequent dense

neural network with an input layer consisting of 768 neurons with a rectified linear unit

(ReLU) activation function, a dropout layer with a dropout rate of 0.25 and an output

layer with a softmax activation function and as many neurons as the number of classes in

the target variable.

24



RF model with highest OA for each component, was done for each obser-377

vatory (ALB, HAI and SCH) respectively and for the union of these three378

regions (called “Overall” in the results section). We utilised the provided379

ground management data of LUI components to calculate the ground truth380

LUIgroundregion (see Equation 1). Subsequently, we calculated the squared Pear-381

son correlation coefficient (r2) between LUIsatelliteregion and LUIgroundregion to evaluate382

the relationship between the remote sensing based LUI quantification and383

LUI estimated from ground level observations.384

3.6. Variable importance evaluation385

We performed a variable importance evaluation to assess the relevance of386

spectral bands and composite periods for the prediction of LUI components.387

Supervised machine learning algorithms are presented with example inputs,388

namely our composite time series of spectral bands, and desired outputs, the389

LUI components, to learn general patterns. Analysing these patterns is essen-390

tial to substantiate subsequent predictions by supporting the understanding391

of functional relationships of the process being modelled and by unveiling392

misconceptions or data biases. However, machine learning models are usu-393

ally complex and the underlying patterns lack interpretability. Commonly,394

this problem is addressed by calculating the importance of input variables,395

here the 144 combinations of nine spectral bands and 16 composite periods,396

also referred to as features, for the model output. Global feature importance397

measures are calculated based on the output of the whole feature space, e.g. a398

performance change resulting from modifying a single input variable, whereas399

local feature importance measures base on the variable contributions to a sin-400

gle prediction. Global feature importance measures, e.g. the mean decrease401
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in impurity used in RF, may be inconsistent between different models or bi-402

ased depending on model structure, except for permutation approaches such403

as the mean decrease in performance after permuting the value of the fea-404

ture of interest (Lundberg et al., 2019, 2020). However, the latter are highly405

computationally intensive and may become impractical when explaining pre-406

dictions from large datasets. Lundberg and Lee (2017) proposed the local407

approach Shapley Additive Explanations (SHAP), calculating each variables’408

contribution to a certain prediction. These contribution values are additive409

and the (normalised) sum of their absolute values represents global variable410

importance for a given feature space. SHAP values provide the benefit of411

being consistent with human intuition, thus enabling an accurate analysis412

of the model behavior (Lundberg and Lee, 2017). We used SHAP’s GNU413

R port shapper (Maksymiuk et al., 2020) to calculate each feature’s contri-414

bution and to evaluate the importance of thematically meaningful feature415

subsets, namely satellite bands and composite periods.416

3.7. Transferability evaluation417

Spatial transferability is required when aiming for large scale applications,418

enabling the extrapolation into regions not used for training. The evaluation419

includes i) a spatial 3-fold cross-validation (CV) and ii) the delineation of420

the models’ areas of applicability (AOA) that is defined as the area where421

training based relationships inherent to a model apply with the respective422

estimated CV performance (Meyer and Pebesma, 2021).423

The spatial 3-fold CV was performed by training the CNN models on424

spatial subsets of the composite time series. Spatial subsets were built by425

leaving out all data points of each observatory once. Consequently, each426
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subset contained data points of two observatories only. Models trained on427

each of these subsets were subsequently validated by calculating the OA428

using only data points of the left out observatory (referred to as OA∗), i.e. a429

geographically distinctly separated region, to assess the models’ robustness430

against the lack of certain training areas. Further, we calculated accuracy431

loss from subtracting OA∗ from OA of models where training and validation432

were done with the dataset containing all observatories.433

We delineated the models’ AOA following the procedure proposed by434

Meyer and Pebesma (2021). They define the AOA by first calculating the435

dissimilarity of new data to the feature space of the training data consid-436

ering the models’ feature importances and second, applying a threshold to437

these dissimilarity index (DI) values. The threshold is calculated as the438

outlier-removed maximum DI of the spatially 3-fold cross-validated training439

data. Here, we used the R-Package CAST (Meyer et al., 2021) to delineate440

the AOA, resulting in maps highlighting grassland pixels within and outside441

the CNN models’ AOA. Predictions within a model’s AOA are considered442

reliable. The LUI AOA (AOALUI) was inferred by combining the AOA of443

grazing intensity (AOAG), mowing count (AOAM) and fertilisation (AOAF ).444

We chose a conservative approach such that if a pixel was outside of only one445

LUI component’s AOA, it was labelled as outside AOALUI .446

3.8. Germany-wide extrapolation of land-use intensity and its components447

Germany-wide maps were generated by applying the LUI component448

models to each Sentinel-2 pixel covering a grassland object of the ATKIS-449

DLM. Subsequently, LUIGermany was computed for these areas according to450

Equation 1.451
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4. Results452

4.1. Validation of land-use intensity and its components453

OA vary between observation years, with grazing intensity and mowing454

models showing higher OA for 2018, whereas fertilisation models show a455

slightly higher OA for 2017 compared to 2018 (Figure 4). The highest OA456

of CNN for 2017 and 2018 are 59% and 66% for grazing intensity models,457

62% and 68% for mowing models, and 85% for fertilisation models. OA of458

LUI component models are slightly higher for CNN compared to RF. The459

difference is significant for mowing and fertilisation depiction (McNemar test,460

p < 0.002) and not significant for grazing intensity models. Median OA is461

higher for CNN than for RF models, except for grazing intensity depiction462

of 2018, where maximum OA is achieved with CNN. CNN models show a463

higher variance in OA than RF models.464

465

Class statistics (Table 6) show a balanced distribution of total weighted466

F1-score, precision and recall. Total weighted F1-score is slightly lower than467

OA. However, class imbalances are visible and class-based F1-score, precision468

and recall in general decrease with decreasing sample size, except for grazing469

intensity classes 0 and 1 of 2018. Grazing intensity class 2 of 2017 and mowing470

class 2 of 2018 exhibit low F1-score, precision and recall, although sample471

sizes are larger than their respective class 3. We observe a low precision for472

grazing intensity class 2 in 2017 and class 3 in 2018. In 2017, the confusion473

matrix of the model with highest OA (see Supplementary Material, Table474

S.2) reveals an overestimation in pixels with low grazing intensity (class 0475
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Figure 4: Overall accuracies of 100 runs with CNN, shown as blue boxes, and RF models,

shown as green boxes, with whiskers extending to the full range of accuracies. The models

were trained and validated with grazing, mowing or fertilisation data of the years 2017

and 2018 (70% training, 30% validation).
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and 1) and an underestimation in pixels with grazing intensity class 2. In476

2018, the confusion matrix shows an underestimation of grazing intensity477

class 3 and mowing class 2. Mowing class 2 in 2017 and fertilisation class478

1 in 2018 exhibit substantially lower recall than precision values. In both479

cases, the confusion matrix also shows an overestimation of the lower classes480

with respectively higher sample size, resulting in a decreased recall. Further,481

standard deviation of mowing model accuracy is high for classes with low482

sample sizes.483

The overall r2 between LUIsatelliteregion and LUIgroundregion is slightly higher for484

CNN, with 0.82, compared to RF, with 0.75 and 0.76 for 2017 and 2018,485

respectively (Figure 5). r2 of observatory SCH in year 2018 is much lower486

than for the observatories ALB and HAI, as well as SCH in 2017. Root487

mean squared errors (RMSE) of SCH are higher compared to ALB and HAI,488

whereas median absolute errors (MedAE) are lower, except for CNN in 2017,489

where HAI shows the lowest MedAE (Table 7).490

491

4.2. Variable importance of CNN models492

Variable importance evaluation (see Figure 6) reveals an at least moderate493

importance of all spectral bands of Sentinel-2 for one or the other component494

model. Composite periods of winter months November, December, January495

and February show a low importance for all models. The most important496

composite periods are late spring and early summer, followed by late summer497

and autumn.498
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Table 6: Class statistics of 100 runs with CNN for data of 2017 and 2018 showing mean

(µ) and standard deviation (σ) of user (precision) and producer accuracy (recall), F1 score

and number of samples (ns) for each management class, namely the four grazing classes

(G), six mowing count classes (M) and two fertilisation classes (F), as well as the total

weighted F1 score, user and producer accuracy.

F1-score Precision Recall

Year Variable Class µ σ µ σ µ σ ns

2017 G 0 59% 3.9% 66% 7.6% 53% 3.8% 108

1 66% 2.5% 72% 5.0% 62% 3.5% 171

2 17% 5.7% 13% 4.8% 28% 8.7% 108

3 41% 6.1% 45% 8.0% 37% 7.8% 18

total 50% 2.6% 53% 2.5% 49% 3.3% 405

M 0 65% 4.1% 61% 6.2% 71% 4.5% 162

1 47% 2.4% 45% 3.5% 49% 5.3% 144

2 52% 5.2% 67% 9.9% 43% 3.8% 72

3 40% 16.3% 36% 20.7% 43% 17.4% 27

4 & 5 0

total 54% 3.1% 54% 2.9% 57% 3.1% 405

F 0 87% 0.9% 90% 1.6% 85% 1.6% 270

1 72% 2.7% 68% 4.3% 77% 2.3% 135

total 82% 1.4% 83% 1.3% 82% 1.3% 405

2018 G 0 68% 3.7% 69% 6.9% 68% 4.7% 126

1 66% 2.6% 64% 4.0% 70% 4.4% 162

2 48% 4.0% 56% 7.2% 42% 2.9% 81

3 34% 5.0% 26% 4.1% 53% 16.7% 36

total 60% 2.2% 60% 2.2% 62% 2.6% 405

M 0 73% 3.1% 74% 5.4% 72% 5.0% 180

1 52% 5.5% 53% 8.8% 52% 3.9% 126

2 24% 5.1% 22% 6.6% 27% 6.4% 63

3 75% 7.4% 76% 11.4% 75% 8.5% 36

4 & 5 0

total 59% 2.9% 59% 3.1% 59 2.9% 405

F 0 84% 1.7% 80% 3.4% 89% 1.8% 297

1 65% 2.9% 74% 5.8% 58% 3.5% 108

total 79% 1.8% 78% 2.0% 81% 1.6% 405
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Figure 5: Squared Pearson correlation coefficients (r2) between LUIgroundregion and LUIsatelliteregion

based on classifications of CNN, shown as blue bars, and RF models, shown as green

bars, and using data of each observatory (ALB: Schwäbische Alb, HAI: Hainich and SCH:

Schorfheide), as well as the union of all observatories (Overall). All correlations are

significant (p < 10−20).
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Table 7: Median absolute error (MedAE) and root mean square error (RMSE) between

LUIgroundregion and LUIsatelliteregion based on classifications of CNN and RF models and using data

of each observatory (ALB: Schwäbische Alb, HAI: Hainich and SCH: Schorfheide), as well

as the union of all observatories (Overall).

ALB HAI SCH Overall

CNN 2017 MedAE 0.21 0.10 0.15 0.18

RMSE 0.66 0.68 1.87 1.21

2018 MedAE 0.10 0.15 0.09 0.11

RMSE 0.73 0.91 5.03 2.97

RF 2017 MedAE 0.16 0.32 0.12 0.19

RMSE 0.77 1.01 2.63 1.69

2018 MedAE 0.25 0.26 0.07 0.13

RMSE 0.84 0.86 5.01 2.97

The grazing intensity model is strongly influenced by the two SWIR bands499

11 and 12 and by the red-edge band 6 (in 2017) and 5 (in 2018). In 2018,500

the two near-infrared (NIR) bands 7 and 8a show a high contribution, which501

is not reflected in the feature importances of 2017. However, the green band502

3 shows a higher contribution in 2017. Grazing intensity models’ composite503

period importance shows highest values from April to June and September504

to October.505

In 2017, the mowing count model is most strongly influenced by the506

SWIR bands 11 and 12 and NIR bands 7 and 8a. In 2018, the red band507

4, SWIR band 11 and NIR bands 5 and 7 show the highest contribution.508

Composite periods in April to May and August to September stem the major509

contribution.510

The fertilisation model is most strongly influenced by band 11. All other511

bands, except band 6, contribute moderately to the predictions in 2017. In512
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2018, red-edge bands 5, 6, SWIR band 12 and blue band 2 exhibit a moderate513

contribution. The composite periods from April to first half of July exhibit514

the highest variable importance.515
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Figure 6: Feature importance: Summary of CNN feature contribution on predictions

using data from 2017 (left) and 2018 (right) generated by using the mean absolute SHAP

values of features grouped by satellite band (first and third column) or composite period

(second and fourth column) for each variable (by row from top to bottom). Mean absolute

feature contribution is shown on the ordinate, the abscissa shows the respective bands and

composite periods.
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4.3. Spatial transferability of land-use intensity component models517

The spatial 3-fold CV reveals varying performance depending on obser-518

vatory, year and LUI component (see Figure 7). The grazing model is robust519

against leaving out the observatory HAI for training. Leaving out the obser-520

vatory ALB leads to high accuracy loss in 2018, but not in 2017. Accuracy521

decreases more than 20% when leaving out the observatory SCH. The mow-522

ing model shows a low CV accuracy loss in 2017 and a high accuracy loss523

in 2018 for all observatories. The fertilisation model is robust against leav-524

ing out ALB in 2017 and SCH in 2018. Consequently, all training areas are525

valuable and leaving out one of them reduces the accuracy of at least one of526

the models.527

528

The delineation of AOA reveals varying spatial transferability for different529

years and LUI components. Out of a total number of 146.4 million grassland530

pixels, we found 29.3% outside AOALUI in 2017. In 2018, the number of531

pixels outside AOALUI decreased to 6.9%. The grazing intensity model is not532

applicable for 19.7% and 4.1% of pixels in 2017 and 2018, respectively. The533

mowing model is not applicable for 17.4% and 5.4% of pixels, respectively.534

The fertilisation model shows the highest amount of pixels outside AOA, with535

27.3% and 5.9% in 2017 and 2018, respectively. The spatial distribution of536

areas outside AOALUI varies between our regions (a)-(d) (see Figure 8). We537

observe the lowest amount of pixels outside AOALUI in region (b) and (c),538

a moderate amount in region (a) and a high amount in region (d). Pixels539

outside AOALUI show spatial small scale patterns resembling fields or parcels540

with respective management.541
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Figure 7: Spatial 3-fold cross-validation: CNN models, 100 per fold, were trained and

validated on different spatial subsets for the observation years 2017 (blue) and 2018 (green).

Training was done with data from two regions, e.g. Schwäbische Alb (ALB) and Hainich

(HAI), and validation with the remaining third region, e.g. Schorfheide (SCH). Boxplots

show the OA∗ of the resulting 100 models per fold. The bars show the accuracy loss (or,

in one case, gain) of the CV model with the highest OA∗ compared to the highest OA of

the models applied on data of all observatories.
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Figure 8: The maps of the four regions (a)-(d) show land cover information with colours

respective to the bottom-right legend (© GeoBasis-DE / Bundesamt für Kartographie

und Geodäsie, 2015), whereas grassland pixels are overlaid by AOALUI of 2018, with

areas inside AOALUI in green and areas outside AOALUI in magenta colours.

542

4.4. Germany-wide extrapolation of land-use intensity and its components543

The dataset of national extent prototype results was made available online544

(Lange et al., 2021) and provided in a web service (www.ufz.de/land-use-545

intensity) enabling visual exploration. The maps within the web service show546

regional patterns, such as a high land-use intensity in the Alpine Foothills547

with a high grazing intensity and a high share of fertilised grasslands, a high548
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grazing intensity in north-western Germany in vicinity to the Northern Sea,549

and divers regional patterns of mowing counts. Further, the share of pixels550

outside AOA is highest for the Alpine regions and, in 2017, for north-western551

Germany. Here, we show results from the four regions (a)-(d) of 2018, where552

data availability was high and thus a larger share of pixels within the AOA.553

(a) (b)

(c) (d)

n
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Other

Background

Figure 9: The maps of the four regions (a)-(d) show land cover information with colours

respective to the bottom-right legend (© GeoBasis-DE / Bundesamt für Kartographie

und Geodäsie, 2015), whereas grassland pixels are overlaid by their LUIsatelliteGermany of 2018

with colours ranging from green (extensive use) to magenta (intensive use).

554
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Figure 9 reveals large scale grassland management patterns characteristic555

for each demonstration region most likely due to different abiotic conditions,556

but also high spatial variations of LUIsatelliteGermany within (a)-(d). Figures 9a and557

9b exhibit a heterogeneous small scale colouring within groups of 10 x 10558

pixels.559

Figure 10 illustrates the high variability of grassland LUI and its under-560

lying components in region (d). Please note that for mowing class 4 only one561

training data point and no validation data was available. However, we kept562

the value within the results as the predictions are not necessarily wrong. Re-563

gions with high number of mowing events exhibit lower grazing intensity and564

vice versa, e.g. in the southwestern part, suggesting a contradictory relation565

between both management types. Highest LUIsatelliteGermany is observed in areas566

with detected fertiliser application and either with three or more mowing567

events or with grazing intensity class two or three, e.g. in the eastern part,568

between village Oy-Mittelberg and lake Grüntensee. Lowest LUIsatelliteGermany are569

found in areas with steep slopes, e.g. Burgkranzegger Horn, ranging from570

south-west to north-east between the lakes, where neither mowing nor fertil-571

isation is detected.572

573

Figure 11 shows the density distribution of the spatial patterns visible in574

Figure 9 and Figure 10. Region (b) exhibits lowest overall LUIsatelliteGermany due to575

a low grazing intensity, zero to one mowing events in 2018 and a low number576

of fertilised pixels. Nature reserve core zones are located in the southwestern577

part of the extracted extent and exhibit lowest LUIsatelliteGermany (see Figure 9b).578
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Figure 10: Subsets of national extent maps: (a)-(d) grazing classes, mowing counts, fer-

tilisation and LUIsatelliteGermany, respectively, of 2018 for an area of 10 km x 10 km in the

district Oberallgäu (see Figure 9d) in the federal state Bavaria. All non-grassland pixels

use colours respective to the legend of background values in the right. Grazing classes

range from zero (low grazing intensity, green) to three (high grazing intensity, magenta)

and mowing counts from zero (green) to four (magenta). Fertilisation (no/yes) is indi-

cated in green and light magenta, respectively. LUIsatelliteGermany values are aggregated into

five classes with colours ranging from green (extensive use) to magenta (intensive use).

Map (e) displays the digital elevation model of the region based on NASA’s Shuttle Radar

Topographic Mission (SRTM; Jarvis et al., 2008) and highlights specific locations.
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Region (a) shows a moderate LUIsatelliteGermany with a comparably high grazing579

intensity, a low number of mowing events and lowest number of fertilised580

areas. However, a moderate number of pixels shows distinctively higher581

LUIsatelliteGermany values, reflected in high small scale variations of respective maps582

(see Figure 9a). Region (c) shows a high LUIsatelliteGermany based on high grazing583

intensity and around 70% of fertilised pixels, as well as a moderate number of584

mowing events. Although the shown extent is situated in a biosphere reserve,585

most of the pixels are in transition areas and not in core or buffer zones.586

Further, the histogram reveals a contrasting partition with fields either of587

high or of low LUIsatelliteGermany, which translate into spatially coherent respective588

areas in map 9c. Analysis of region (d) reveals highly diverse LUIsatelliteGermany589

values based on a high grazing intensity, a high number of mowing events590

and around 40% of fertilised pixels.591

592

National scale statistics of LUIsatelliteGermany and its components (see Figure 12)593

reveal ample differences between years and classes. We observe an increase in594

grazing intensity in 2018, with the majority of pixels in class two compared595

to class one in 2017. Contrarily, the number of mowing events decreased.596

We detected mowing events on 66% of all grassland pixels in 2017 compared597

to only 38% in 2018. We found one mowing event in 45% of pixels in 2017598

and in 27% in 2018, and two mowing events in 13% resp. 8%. 9% and 3%599

of pixels were mown three times in 2017 and 2018, and less than 0.1% and600

0.05% four or more times, respectively. Fertilisation was detected on around601

39% and 31% of all pixels in 2017 and 2018, respectively. LUIsatelliteGermany values602
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Figure 11: LUIsatelliteGermany and its components (grazing class, mowing count and fertilisation)

within the AOA for 2018 in grasslands in the four demonstration regions (a)-(d).
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mainly remain in the range from one to ten, with the majority of pixels with603

values less than three, a moderate amount with values between three and604

six, a low amount between six and ten and less than 1% above ten. The605

amount of pixels with LUIsatelliteGermany between zero and one increased from 3%606

in 2017 to 27% in 2018, whereas the amount of pixels with values between607

one and five decreased from 66.5% to 45.5%. Further, the number of pixels608

with LUIsatelliteGermany between five and nine decreased from 29.5% to 24.5% and609

the number of pixels with LUIsatelliteGermany above nine increased from less than610

1% to 3%.611

612

5. Discussion613

5.1. Validation of land-use intensity and its components614

We quantitatively estimated LUI of grasslands in three regions situated615

across Germany with fine spatial resolution of 20 m x 20 m with an r2 of616

0.82 and subsequently applied the methodology on national extent. Other617

studies inferring LUI on a similar scale exist (Gómez Giménez et al., 2017;618

Stumpf et al., 2020) but either focus on only one LUI component or lack619

overall quality measures. The CNN approach showed slightly higher OA es-620

timating LUI components than the state-of-the-art method Random Forest621

with significant better classifications of mowing count and fertiliser applica-622

tion. The variance in 100 training repetitions was higher for CNN than for623

RF, potentially revealing the demand for a higher number of training data624

when using CNN. However, both approaches revealed reasonable results and625
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for 2017 and 2018 in grasslands of Germany within the AOA.
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consequently demonstrate the feasibility of inferring LUI by combining re-626

mote sensing based quantifications of mowing frequency, grazing intensity627

and fertilisation.628

Each LUI component may be addressed in more detail in separate stud-629

ies, e.g. using discrete regression or ordinal classification. We dismissed630

this for the current study as i) such approaches are not readily available631

within common AI frameworks and ii) an aggregation to classes mitigated632

the high variability within the land management data. However, information633

is lost during this aggregation, potentially leading to an underestimation of634

classification model performance. Further, we did not provide uncertainty es-635

timates. Using class probabilities instead of discrete classes when modelling636

LUI components allows to assess prediction uncertainty and could potentially637

increase the accuracy of LUIsatelliteregion depictions.638

Mowing count prediction is usually done by counting local extrema or fea-639

tures in time series of optical or SAR data. However, validation data is rare.640

Most of these studies rely on visual interpretation of time series for validation641

data acquisition. Consequently, they lack proper ground truth. We found642

one recent study using in situ data for the validation of a SAR-based mowing643

count estimation (de Vroey et al., 2021). They correctly identified 56% of all644

parcels in terms of mowing dynamics, with grazing events as major confound-645

ing factor. Griffiths et al. (2020) did no quantitative validation due to the646

low sample size, but showed a validity check. They detected a total of 25%647

of grasslands not mown in Germany in 2016, whereas our study found 33%648

grasslands with no mowing events in 2017 and 62% in 2018. This discrepancy649

may stem from climatic differences between 2016, 2017 and 2018, as in 2018650

45



a severe drought occurred in Germany during summer potentially leading to651

lower biomass production in grasslands. However, we would expect to iden-652

tify at least one mowing event before the drought event. Consequently, the653

model seems to underestimate mowing. This is not only visible in decreased654

model precision and recall of mowing classes with increasing mowing counts,655

but also in spatial patterns in regions with intensively managed grasslands,656

e.g. the alpine foothills, where we would expect more than three mowing657

events per year. This is presumably caused by the lack of grasslands mown658

more than three times a year in our calibration data. Further, national scale659

statistics (Figure 12) show a decrease in mowing events and an increase in660

grazing intensity from 2017 to 2018, potentially reflecting a confounding of661

mowing and grazing as found in de Vroey et al. (2021). Contrarily, count-662

ing local extrema or features in time series may overestimate mowing, as663

extrema or features may stem from several reasons, such as weather effects,664

misclassification in cloud detection in satellite imagery (Lange et al., 2017),665

flooding, fire and land management or conversion (Griffiths et al., 2020). Our666

compositing approach eliminates short-term changes, such as weather effects667

and misclassifications in cloud detection, in the input data. Consequently,668

we assume a less pronounced effects of these factors on our results. However,669

long-term changes, such as fire, flooding and land conversion, alter vegetation670

vitality, structure and composition or remove vegetation completely and thus671

alter the overall reflectance properties captured by our models. Further, the672

compositing approach might also have negative impacts on our results as it673

might blur certain management activities, leading to an underestimation of674

management activities when their effect on vegetation diminishes quickly, e.g.675
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rapid regrowth after a mowing event. Estel et al. (2018) depicted mowing fre-676

quencies from MODIS data and did a quantitative validation by comparing677

predictions to visually interpreted time series. They achieved an OA of 77%678

and 80% in years 2009 and 2012, respectively. We found an OA of mowing679

count prediction of 62% and 68% in 2017 and 2018, respectively. However,680

OA comparison is limited due to different validation data, spatial resolution681

of satellite data and climatic differences between years. Kolecka et al. (2018)682

used Sentinel-2 data of 2017 to infer mowing frequency in northern Switzer-683

land, although validating results with visually interpreted time series, and684

achieved an OA of 79.7%. They found 27% of observed pixels not mown685

in this fairly intensively managed area. We found 33% of grassland pixels686

not mown in Germany in 2017, including extensively managed areas and687

pastures. Taravat et al. (2019) used a field campaign to acquire validation688

data and SAR data for the classification of mowing practices and achieved689

an OA of 85.7%. The discrepancies between literature and our results may690

be due to different approaches, regions, managements, climates and spatial691

scales. Furthermore, we used in situ ground truth for validation and applied692

the methodology to a diverse landscape. Here, we did not assess the tim-693

ing of mowing events as it is not included in the LUI definition proposed by694

Blüthgen et al. (2012). However, it is of high ecological relevance (Bernhardt-695

Römermann et al., 2011; Blüthgen et al., 2012; Franke et al., 2012) and may696

be included in future studies improving remote sensing LUI products.697

Grazing intensity is usually inferred by VI time series analysis. Validation698

data is commonly acquired in field campaigns. Li et al. (2016) depicted four699

grazing intensity classes by estimating above ground biomass from Landsat-8700
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images of a steppe region in China with 170 samples in 2014 and achieved701

an OA of 57.65%. Conception and results compare well to our approach,702

which achieved an OA of 59% and 66% in 2017 and 2018, respectively. Ma703

et al. (2019) used MODIS images of 2016 and 2017 to relate vegetation704

indices, above ground biomass and grazing intensity for grazing areas of705

three herders in China. They found a power regression model of NDVI and706

grazing intensity with an r2 of around 0.56. Studies on the classification of707

grazing intensity using more spectral information than given by vegetation708

indices are rare and our results suggest potential for large scale applications.709

However, the decrease in precision and recall of higher classes of grazing710

intensities in our models suggest an underestimation of grazing intensity,711

although patterns observed in regions (a)-(d) match our empirical knowledge.712

The potential underestimation of grazing intensity and mowing frequency is713

substantiated by the probability of each pixel to belong to the class assigned,714

which is mostly lower for grazing and mowing models than for the fertilisation715

models (see Supplementary Material, Figure S.3 and S.4).716

Although hyperspectral remote sensing is used to study plant nutrient717

status and supply on crops (Cilia et al., 2014; Xia et al., 2016), the depiction718

of grassland nutrient status or fertilisation from remote sensing data is seldom719

addressed in literature (Pellissier et al., 2015; Sibanda et al., 2015; Hollberg720

and Schellberg, 2017). However, Hollberg and Schellberg (2017) simulated721

RapidEye data from ground-based hyperspectral data to subsequently differ-722

entiate five different fertiliser treatments in grasslands and achieved OA of up723

to 91%. Sibanda et al. (2015) discriminated grasses under different fertilizer724

treatments using ground-based hyperspectral data with an OA of 85%. Our725
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approach achieved an OA of 85% differentiating between fertilised and un-726

fertilised plots, supported by respective high model precision and recall and727

an F1-score for the detection of fertilised plots of 72% in 2017 and 65% in728

2018. Consequently, this demonstrates the feasibility differentiating between729

fertilised and unfertilised plots by classifying optical satellite data in three730

geographically distinctly separated regions varying in fertilisation intensity.731

The combination of the national-extent extrapolation and the models’ AOA732

is a first step towards a large-scale grassland fertilisation assessment and con-733

sequently supports LUI depiction. Further research might include extended734

calibration data to e.g. depict different levels of fertilisation.735

Generally, the validation of LUI component models demonstrated the736

feasibility to quantify mowing frequency, grazing intensity and fertilisation737

with CNN with limitations stemming from calibration and validation data738

availability and from using a classification instead of a regression approach.739

5.2. Variable importance analysis740

The feature contribution analysis revealed reasonable functional relation-741

ships between LUI components and temporal (composite periods) as well as742

spectral (satellite bands) predictors. Satellite images outside the vegetation743

period have low impact on the predictions, whereas images at the begin-744

ning and end of the vegetation period are highly relevant. This highlights745

the strong relationship of grassland management and land-surface phenol-746

ogy, e.g. a potentially stronger increase of plant growth due to fertilisation747

in early spring or possibly multiple regrowth events due to mowing in early748

summer. However, satellite images of Germany in spring and autumn are749

often affected by cloud contamination. This could influence our results, e.g.750
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leading to an underestimation of mowing events or grazing intensity, although751

our compositing scheme was set-up to mitigate these effects. The inclusion of752

SAR data could be beneficial by providing additional predictors unaffected753

by cloud contamination.754

Grazing intensity models’ feature importance revealed a high relevance755

of composite periods from April to June and medium importance of periods756

in September to October, potentially reflecting farmers’ livestock number757

adjustments per site as fodder quantity in grasslands is highest during the758

vegetation period and fodder quality peaks in spring and fall (Gilhaus and759

Hölzel, 2016). Mowing is carried out during spring and summer months,760

with first cuts in late spring (Griffiths et al., 2020). Feature contribution761

of composite periods underpins this usage behavior: main feature contribu-762

tion stems from periods in April to May, followed by periods of August to763

September. Fertilisation, usually done in late winter or spring, accelerates764

plant growth at the beginning of the vegetation period. This is reflected in765

the two highest feature contribution values of composite periods: April and766

first half of May.767

The spectral dimension of feature contributions showed a high relevance768

of the SWIR, RED and NIR bands. SWIR bands are highly correlated with769

vegetation structural parameters, such as dry vegetation masses or cover770

fraction (Jacques et al., 2014; Jenal et al., 2021), average leaf angle (Jacque-771

moud et al., 2009) and leaf dry mass per area (LMA; Rossi et al., 2020). E.g.,772

they can be used to monitor forage mass in grasslands and semi-arid areas773

(Jacques et al., 2014; Jenal et al., 2021). Further, SWIR bands contribute774

significantly to estimations of leaf equivalent water thickness (Jacquemoud775
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et al., 2009) and leaf nitrogen (Pellissier et al., 2015; Ramoelo et al., 2015),776

and consequently plant vitality. RED and NIR bands are highly correlated777

with biophysical parameters related to vegetation vitality, such as chloro-778

phyll and carotenoid content (Tucker, 1979; Gitelson et al., 2003), but also779

to vegetation structure and structural parameters such as biomass, LMA and780

LAI (Tucker, 1979; Jacquemoud et al., 2009; Rossi et al., 2020).781

Changes in vegetation composition may not be visible within single bands,782

as many plant species feature similar reflectance characteristics. However,783

optical traits vary between different species compositions (Feilhauer et al.,784

2017). These differences may only be reliably detected by analysing whole785

time series, accounting for temporal variations of optical traits (Feilhauer786

et al., 2017; Gholizadeh et al., 2020). Contrarily, other management-induced787

short-term changes might be obvious. Fertilisation is usually carried out to788

influence plant nutrient status and to accelerate its growth, thus to increase789

vegetation structure and vitality (Gibson, D. J., 2009; Sibanda et al., 2015;790

Rossi et al., 2020). This is reflected in the high contribution of SWIR bands791

to the fertilisation assessment. Other studies discriminating fertilizer appli-792

cation (Sibanda et al., 2015) or plant nutrient status (Pellissier et al., 2015;793

Ramoelo et al., 2015) with remote sensing methods ranked red-edge or NIR794

bands more important than SWIR bands, although the latter was still found795

highly important. This discrepancy might stem from i) the mono-temporal796

approach used in the given studies, ii) different study design as two of them797

assessed plant nutrient status and not management, iii) different ecosystems798

as Sibanda et al. (2015) and Ramoelo et al. (2015) analysed a South African799

rangeland and iv) spectral composition as Sibanda et al. (2015) and Pellissier800
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et al. (2015) worked with hyperspectral data.801

Grazing reduces vegetation biomass until regrowth occurs. Further, large802

animals such as cattle may cause structural damage by trampling (Jantunen,803

2003). Analogically, mowing leads to short-term reductions of vegetation804

biomass. This is reflected in the high contribution of SWIR and red-edge805

bands to the grazing intensity and mowing count models. Other studies as-806

sessing grazing intensity (Ma et al., 2019) and mowing count (Estel et al.,807

2018; Kolecka et al., 2018; Griffiths et al., 2020) commonly use the NDVI808

and thus red-edge and NIR bands. Li et al. (2016) assessed grazing in-809

tensity by estimating above ground biomass with artifical neural networks810

using Landsat-8 images. These images include also red-edge, NIR and SWIR811

bands. However, Li et al. (2016) does not give any variable importance mea-812

sures.813

Although grazing intensity and mowing models show fairly similar ab-814

solute values of feature contribution, the sign of their contribution may be815

contradictory: often mown grasslands are mainly used for fodder production,816

whereas fields with livestock are mown less frequently to facilitate grazing.817

This effect is visible in Figure 10. Results of Dusseux et al. (2014) sup-818

port this thesis, since they could differentiate grazing and cutting with 80%819

accuracy, suggesting major differences in the spectral signature of these man-820

agement practices.821

The variable importance analysis supports the underlying assumption822

that management practices change vegetation reflectance characteristics mainly823

by modifying the vegetation composition, structure and vitality. Generally,824

the variable importance analysis demonstrates the CNN’s ability to recognize825
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spectral and temporal patterns related to grassland management.826

5.3. Spatial transferability827

We evaluated the spatial transferability by using two different approaches:828

a spatial 3-fold CV and the delineation of the methodology’s AOA. The spa-829

tial 3-fold CV revealed the value of each of the three observatories for the830

training of our models. While removing one of the observatories from the831

training set, one or the other model’s accuracy decreased substantially. Thus,832

the low number of training areas affects the models’ robustness, as machine833

learning algorithms usually require large diverse training datasets when ap-834

plied to large scale remote sensing data (Blatchford et al., 2021). This also835

refers to the temporal dimension, as the accuracy loss for each fold varies836

between years. We can conclude that the data available to this study was837

sufficient to demonstrate the feasibility of the approach, but the national-838

extent application may be limited by the methodology’s sensitivity to the839

selection and number of training areas. Further, the sampling strategy for840

the division of data into training and validation sets is crucial. Thus, results841

should be carefully examined and interpreted. We tried to cover different842

climates and management practices by using the most comprehensive grass-843

land management data available to science in Germany and by sampling844

with a method preserving the high natural variance of environmental data.845

However, the grassland plots used here are equipped with long-term environ-846

mental monitoring units and several manipulative experiments are carried847

out within some of these plots. Although the intruments and the spatial ex-848

tent of experiments cover only a fraction of a Sentinel-2 pixel (Fischer et al.,849

2010), they potentially influence our models and the transferability to other850
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regions.851

The 3-fold CV reveals a high variance in OA* and a conspicuously high852

accuracy loss when applying grazing intensity models trained on ALB and853

HAI on SCH. We also observe a lower predictive power of LUIsatelliteregion in SCH854

(see Figure 5) and a higher RMSE than in ALB and HAI (see Table 7).855

Contrarily, MedAE in SCH are low. Further, OA of component models per856

region (see Supplementary Material, Figure S.2) are in line with OA shown857

in Figure 4. Consequently, the r2 is not related to an inferior LUI component858

prediction, but may be related to outliers in the prediction of LUIsatelliteregion . Vi-859

sual inspection of individual results reveals an overestimation of LUIsatelliteregion860

for fertilised pixels in this region. The equation proposed by Blüthgen et al.861

(2012) reacts highly sensible to the low overall number of fertilised fields (see862

Table 1) as the regional mean of fertilisation is used as denominator in the863

fertilisation term. This effect causes extremely high values in the LUIsatelliteregion864

estimate for a low number of pixels with false positives in fertilisation classifi-865

cation, subsequently hampering the validation. Blüthgen et al. (2012) found866

a similar issue when studying LUI on ground level: they found no significant867

relationship between LUIgroundregion and their five response variables (nitrogen868

indicator, nitrogen and phosphorus in plant biomass, soil phosphorus and869

soil C/N ratio) in SCH and assume a relation to low plant diversity and870

drainage effects of peat soils. This is supported by results of Socher et al.871

(2013), suggesting the explanation of regional differences in the relationship872

of land-use and plant species diversity by soil types.873

The extrapolation of machine learning algorithms is usually limited by874

only being applicable within the feature space defined by the training data.875
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Consequently, we delineated the methodology’s AOA accounting for the fea-876

ture space given by the training data and the models’ feature importances.877

Analysis of the AOA show ample differences between 2017 and 2018, po-878

tentially related to the increasing Sentinel-2 data availability. The number879

of pixels outside AOA differs substantially between regions (a)-(d) and vi-880

sual inspections reveal spatial patterns potentially reflecting fields or parcels.881

This points towards regional differences in land management practices, abi-882

otic conditions or vegetation compositions not reflected by our training data.883

However, we see no obvious relation between areas outside the AOA and884

distance to calibration plots, suggesting a comparably stronger influence of885

different land management practices than abiotic conditions on the models’886

AOA. Further research is needed to reveal the major drivers of model applica-887

bility. The AOA maps are valuable tools to determine areas where additional888

training data is required and to chose regions for data acquisition campaigns.889

Our products would benefit from data from e.g. i) north-western Germany890

in vicinity of the Northern Sea and ii) the Alpine Foothills in southern Ger-891

many by increasing the feature space of the training data. Despite providing892

the AOA maps, we cannot answer our third research question entirely.893

5.4. National extent estimation of land-use intensity894

Our nation-wide LUI estimates, grazing intensity and mowing event de-895

pictions show large differences between 2017 and 2018, but only minor differ-896

ences in fertilisation (see Figure 12). This effect is also visible in the differ-897

ences in OA of land-use component models between 2017 and 2018: whereas898

grazing intensity and mowing model OA increased and their transferability899

decreased in 2018, fertilisation model OA is almost unaffected. This suggests900
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a climatic influence on recognising mowing numbers and grazing intensity.901

In 2018, Germany was effected by a drought, hampering the growth of grass902

species and thus potentially impacting the yield of grasslands, the number of903

mowing events (see Table 1) and grazing intensity. Fertilisation of grasslands904

is prohibited in Germany until January 31 (German fertiliser regulation, §905

6 VIII DüV) and thus usually carried out in late winter and spring. Con-906

sequently, the impact on vegetation is potentially most pronounced at the907

start of the vegetation period, reflected in our models by a high relevance of908

springtime satellite imagery, and droughts during the summer months may909

have less impact on fertilisation models than on mowing or grazing intensity910

models.911

Our four demonstration regions (see Figure 9a-d) exhibit different man-912

agement regimes. They revealed lowest LUIsatelliteGermany in region (d), covering913

parts of the low-intensity nature reserve Ohre-Drömling (Figure 9b; Unte-914

necker et al., 2016), and highest LUIsatelliteGermany in region (c), covering parts of915

the transition areas of the biosphere reserve Rhön, and (d), in Oberallgäu916

(see Figure 11c-d). For the former an increase in fertilisation and mowing in-917

tensity was reported (Jedicke, 2013), whereas in the latter intensive grassland918

management is common (Haas et al., 2001). In Figure 10 we could clearly919

identify livestock dominated as well as mowing-oriented regions with different920

fertilisation patterns. The maps reveal a high small scale variance, especially921

9a and 9b. Visual inspection of both regions, using satellite imagery from922

Google Earth (map data from © Google 2021 and © GeoBasis-DE / BKG923

2021) and field parcel geometry from the Integrated Administration and Con-924

trol System (IACS) of the EU provided by the respective federal state, reveals925
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field sizes below 10 ha in (a) and up to 90 ha in (b), containing up to 250 and926

2250 Sentinel-2 pixels with 20 m x 20 m resolution, respectively. Hence, the927

detected variances within 10 x 10 pixels are within common field sizes found928

in these regions and may be related to features within fields, potentially929

indicating piece-wise management practices. We witnessed these practices930

in the Biodiversity Exploratories datasets occasionally referring to meadows931

fractionally managed, as well as in our preceding field work on meadows932

and pastures in the context of the terrestrial environmental observatories933

(TERENO; Wollschläger et al., 2016). We found it challenging to work with934

such ground truth data containing piece-wise management practices, as it935

is often recorded only on field level and not on the level of pieces actually936

managed, resulting in discrepancies between high resolution satellite obser-937

vations within the field and recorded management practice. Further, data938

availability, especially cloud cover in the satellite data, may cause such het-939

erogeneities. We expect a less pronounced effect from cloud cover, especially940

in 2018 where data availability was high, as we i) discarded satellite observa-941

tions not taken under clear sky conditions, ii) applied a broad compositing942

scheme and iii) filled the remaining gaps by linear interpolation, assuming943

that changes between two composites occur gradually. These remaining gaps944

are mainly situated in winter time (see Supplementary Material, Figure S.1945

and Table S.1) where features contribution is low (see Figure 6). However, an946

effect of cloud cover cannot be ruled out completely. The highly diverse na-947

ture of grassland management demands for future studies extending ground948

truth data and analysing the generated map in detail.949
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6. Conclusion & Outlook950

We presented a framework enabling large-scale LUI mapping and verified951

its feasibility in three observatories across Germany. The products gener-952

ated (www.ufz.de/land-use-intensity; Lange et al., 2021), namely national953

scale maps of mowing frequency, grazing intensity, fertilisation and a LUI954

quantification, may contribute to the timely endeavour of continuous grass-955

land monitoring and to the scientifically valuable assessment of interactions956

of grassland management with biodiversity, hydrology and climate change.957

Thus, they support decision making in land management and conservation.958

However, the scarcity of validation data is a challenging obstacle in grassland959

remote sensing. We found a high sensitivity of our models to the selection960

of calibration areas and a resulting potential underestimation of mowing fre-961

quency and grazing intensity. Studies on grassland LUI would greatly benefit962

from ground truth data from different regions with varying climates, vegeta-963

tion, soil and topography. Inter-annual model predictions may be used to fill964

data gaps in studies relying on LUI data, such as hydro- and ecological mod-965

els, by training the machine learning algorithm on one or more observation966

years and applying it to years or regions where ground data is missing. This967

would facilitate large-scale applications by increasing the pool of available968

data. First tests of temporal transferability were promising, but a detailed969

analysis can only be done with longer time series and thus more observa-970

tion years. Further, implementing discrete regression or ordinal classification971

approaches into current machine learning frameworks would allow, together972

with an increased amount of spatially and temporally explicit ground truth973

data, for a more detailed analysis of LUI components and would improve974
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the presented methodology. Spatial resolution of satellite imagery is another975

issue in grassland remote sensing. Parcels are often small or managed piece-976

wise, thus signals are blurred when pixels cover more than one piece. Im-977

provements in positional accuracy, data fusion of different sensors and higher978

spatial resolution of upcoming satellite missions may solve this issue. Last,979

but not least, the differentiation between climate impacts, e.g. droughts,980

and management changes remains challenging and could be topic of future981

scientific studies. Combining the products of this study, especially the in-982

tegrative LUI index generalized across land-use types and unprecedented in983

spatial extent, with auxiliary climatic data may reveal knowledge about the984

interactions of land-use, environment and climate.985
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D., Korte, G., Nieschulze, J., Pfeiffer, S., Prati, D., Renner, S., Schöning,1124
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List of Figure Captions

Figure 1: Location of study areas in Germany. Calibration and validation plots from the

DFG Biodiversity Exploratories are marked with circles. We are not allowed to publish

exact parcel positions due to privacy policies. Exact positions of the four demonstration

regions chosen for visual and statistical interpretation are given as red boxes. Background

colors show simplified land cover information. State borders are shown as black lines (©

GeoBasis-DE / Bundesamt für Kartographie und Geodäsie, 2017).

Figure 2: Normalised difference vegetation index (NDVI) time series of 2018 of center

pixels in six plots (a-f) within the Biodiversity Exploratories. Pastures (b, d, f) are and

meadows (a, c, e) are not grazed.

Figure 3: CNN structure: The input was reshaped such that 16 composite periods and nine

bands per Sentinel-2 pixel serve as input for the net, which consists of two convolutional

layers, with 64 and 128 filters of kernel-size three and valid padding, respectively, a batch

normalisation layer in between, a (max-)pooling layer of size two and a subsequent dense

neural network with an input layer consisting of 768 neurons with a rectified linear unit

(ReLU) activation function, a dropout layer with a dropout rate of 0.25 and an output

layer with a softmax activation function and as many neurons as the number of classes in

the target variable.
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Figure 4: Overall accuracies of 100 runs with CNN, shown as blue boxes, and RF models,

shown as green boxes, with whiskers extending to the full range of accuracies. The models

were trained and validated with grazing, mowing or fertilisation data of the years 2017

and 2018 (70% training, 30% validation).

Figure 5: Squared Pearson correlation coefficients (r2) between LUIgroundregion and LUIsatelliteregion

based on classifications of CNN, shown as blue bars, and RF models, shown as green

bars, and using data of each observatory (ALB: Schwäbische Alb, HAI: Hainich and SCH:

Schorfheide), as well as the union of all observatories (Overall). All correlations are

significant (p < 10−20).
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Figure 6: Feature importance: Summary of CNN feature contribution on predictions

using data from 2017 (left) and 2018 (right) generated by using the mean absolute SHAP

values of features grouped by satellite band (first and third column) or composite period

(second and fourth column) for each variable (by row from top to bottom). Mean absolute

feature contribution is shown on the ordinate, the abscissa shows the respective bands and

composite periods.

Figure 7: Spatial 3-fold cross-validation: CNN models, 100 per fold, were trained and

validated on different spatial subsets for the observation years 2017 (blue) and 2018 (green).

Training was done with data from two regions, e.g. Schwäbische Alb (ALB) and Hainich

(HAI), and validation with the remaining third region, e.g. Schorfheide (SCH). Boxplots

show the OA∗ of the resulting 100 models per fold. The bars show the accuracy loss (or,

in one case, gain) of the CV model with the highest OA∗ compared to the highest OA of

the models applied on data of all observatories.

Figure 8: The maps of the four regions (a)-(d) show land cover information with colours

respective to the bottom-right legend (© GeoBasis-DE / Bundesamt für Kartographie

und Geodäsie, 2015), whereas grassland pixels are overlaid by AOALUI of 2018, with

areas inside AOALUI in green and areas outside AOALUI in magenta colours.

Figure 9: The maps of the four regions (a)-(d) show land cover information with colours

respective to the bottom-right legend (© GeoBasis-DE / Bundesamt für Kartographie

und Geodäsie, 2015), whereas grassland pixels are overlaid by their LUIsatelliteGermany of 2018

with colours ranging from green (extensive use) to magenta (intensive use).
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Figure 10: Subsets of national extent maps: (a)-(d) grazing classes, mowing counts, fer-

tilisation and LUIsatelliteGermany, respectively, of 2018 for an area of 10 km x 10 km in the

district Oberallgäu (see Figure 9d) in the federal state Bavaria. All non-grassland pixels

use colours respective to the legend of background values in the right. Grazing classes

range from zero (low grazing intensity, green) to three (high grazing intensity, magenta)

and mowing counts from zero (green) to four (magenta). Fertilisation (no/yes) is indi-

cated in green and light magenta, respectively. LUIsatelliteGermany values are aggregated into

five classes with colours ranging from green (extensive use) to magenta (intensive use).

Map (e) displays the digital elevation model of the region based on NASA’s Shuttle Radar

Topographic Mission (SRTM; Jarvis et al., 2008) and highlights specific locations.

Figure 11: LUIsatelliteGermany and its components (grazing class, mowing count and fertilisation)

within the AOA for 2018 in grasslands in the four demonstration regions (a)-(d).

Figure 12: LUIsatelliteGermany and its components (grazing class, mowing count and fertilisation)

for 2017 and 2018 in grasslands of Germany within the AOA.
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