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Abstract: The major event that hit Europe in summer 2021 reminds society that floods are recurrent 

and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) 

efforts preferring sole technical measures to prevent and mitigate floods have shown to be not 

sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent 

paradigm shift of FRM towards solutions that use nature-derived features, processes and management 

options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of 

NBS across various settings remains fragmented and their implementation faces a series of 

institutional barriers. In this paper, we adopt a community expert perspective drawing upon 

LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order 

to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. 

The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups 

of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, 

Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on results, we define avenues for 
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further research, connecting hydrology and soil science, on the one hand, and land use planning, social 

geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in 

the research of NBS in FRM.  

Key words: flood risk management, nature-based solution, implementation barrier, Europe 

 

 

1. Introduction 

The recent major flood that hit vast regions of Belgium, the Netherlands, Germany, and Austria 

reminds society that floods are recurrent and among the costliest natural hazards in Europe 

(MunichRe, 2021; Cornwall, 2021). Despite the existing flood risk management (FRM) strategies and 

initiatives implemented over the last decades, flood hazard is expected to increase in some European 

regions due to climate change (Blöschl et al., 2019; IPCC, 2021) and increasing human pressure on river 

systems (Hein et al., 2016; Ferreira et al., 2018; EEA, 2018). 

The long-term FRM efforts relying on technical measures to prevent and mitigate floods have shown 

to be not sufficiently effective (Ellis et al., 2021) and to have some adverse environmental impacts (Xu 

et al., 2021). Indeed, the implementation of technical measures can cause unintended consequences 

that  lead to increased exposure of societal assets, denoted as the safe development paradox (Haer et 

al., 2020), or may negatively affect floodplain connectivity and its ecological functions (Keesstra et al., 

2020, Jakubínský et al., 2021). Therefore, FRM strategies have recently shifted towards solutions that 

use nature-derived features, processes and management options to improve water retention in 

catchments and floodplains (Jakubínský et al., 2021). Nature-Based Solutions (NBS; Kabisch et al., 2016; 

Hartmann et al., 2019, for definitions of overlapping terms), are measures and actions that are inspired 

and supported by natural processes, although their implementation and maintenance may also require 

technical interventions. The intended function of these measures range from reducing runoff and 

instream flow by water storage, to de-synchronizing spatio-temporal patterns of peak flows during 

extreme hydrological events. For settings such as urban landscapes with limited availability of land to 

retain water, NBS are also combined with engineered infrastructure to form hybrid solutions (Alves et 
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al., 2020). However, regardless of the setting, a catchment-wide perspective is essential to mobilise 

co-benefits of various NBS and to support water sensitive spatial planning (Hartmann, 2018; Albrecht 

and Hartmann, 2021).   

While there is an increasing number of initiatives and projects implementing NBS worldwide and the 

reviews of NBS effects for enhancing ecosystem services are available (Jones et al., 2012; Kabisch et 

al., 2016; Keesstra et al., 2018), there is a persisting lack of empirical data documenting the 

effectiveness and efficacy of NBS in FRM at various spatiotemporal scales (Dadson et al., 2017; Ellis et 

al., 2021). In addition, the existing evidence from the implementation of NBS in FRM is rather 

fragmented and with contrasting results, leading to a lack in wider policy considerations (Wingfield et 

al., 2019). These factors limit our understanding of suitable design and implementation of different 

types of NBS in various environmental and institutional settings. 

The research on effects and implementation barriers of NBS is mostly diverted in the two following 

avenues employing different concepts, epistemologies and methodologies. First, for hydrological 

processes, the evidence on effects related to NBS is mainly collected through ongoing field 

experiments and modelling (e.g., Ferreira et al., 2020; Nicholson et al., 2020). Second, for the policy 

domain, the research has mostly focused on developing new planning instruments, negotiation 

approaches and stakeholder engagement schemes (e.g., Bark et al., 2021; Zingraff-Hamed et al., 2021). 

This drives an urgent need to adopt an integrated approach for exploring the cascading and compound 

interactions among various implementation barriers related to NBS and their combinations. Moreover, 

as the empirical evidence is poorly validated and it will take considerable time to provide more robust 

results, expert-based approaches should be employed to inform policy- and decision-makers in using 

NBS for FRM.  

This paper aims to identify the barriers of NBS for FRM based on an expert community approach, which 

has been successfully employed for understanding complex problems across fields (e.g., Elliot et al. 

2020). More specifically, we identify experiences with the preferred NBS in European regions and 
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document the spectre of barriers that impair their wider implementation. Based on this evidence, we 

identify knowledge gaps and formulate research directions to streamline and facilitate further studies 

of NBS for FRM. Adding up to the existing NBS in FRM reviews (e.g., Dadson et al., 2017; Wingfield et 

al., 2019; Keestra et al., 2020; Ellis et al., 2021), we extend our focus on both the urban and rural 

settings and their interactions, and on the implementation barriers emerging at the intersect of 

hydrology and soil sciences, on the one hand, and land use planning, social geography and economics, 

on the other. We draw upon the four years of the Cost Action initiative entitled LAND4FLOOD Natural 

flood retention on private land (https://www.land4flood.eu), which has established an interdisciplinary 

community of researchers and practitioners.  

 

2. Data and methods  

The research has been conducted in three phases (Fig. 1), allowing to refine the methodological design 

upon internal and external discussions and to ensure consistency in the contributions by experts 

involved in the survey.  

 

 

[Fig. 1 Time framework of the data collection and processing] 

 

The first phase involved establishing an interdisciplinary group of experts (https://www.land4flood.eu) 

based on academia and conducting collaborative research with practitioners. The expert community 
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discussions conducted enabled drafting a research design for this study and to obtain preliminary 

empirical evidence on the use of NBS for FRM. 

The second phase started with a workshop where we collected primary data through a peering 

framework based on open questionnaires. In total, 35 experts from 32 countries, including 

hydrologists, soil scientists, environmental engineers, water resources managers, spatial planners and 

geographers, participated in the workshop in Thessaloniki, Greece (June 2019). During the workshop, 

the experts were asked to list up to five NBS relevant for FRM. Each contribution was then commented 

on by another participant randomly selected, who was asked to identify possible barriers for the listed 

NBS. This resulted in the identification of 123 NBS. Along, a list of barriers relating to NBS was compiled 

and grouped in terms of their uncertain effects, dependence on environmental conditions, institutional 

capacity and availability of resources to implement the measures. The workshop results were 

summarized in a report, which was discussed and validated within the expert group. Ambiguous inputs 

were verified with contributors, and the preliminary results were presented outside the group (Session 

on Land for Flood Risk Management; PLPR Annual Conference 2020). 

During the last phase, feedback from the outside of the group enabled us to derive the final online 

data form to collect the information from contributors about perceived barriers impeding the 

implementation of NBS across different environmental settings in Europe.In order to distinguish 

regional variances in preferred NBS and possible barriers, the regional environmental domains (REDs) 

were delimited (Fig. 2) based on a literature review of hydro-climatic and land cover variations across 

Europe (Mitchell et al., 2004; Kottek et al., 2006; Finger et al., 2016; EEA, 2021). To achieve a similar 

distribution of contributors for all REDs, four additional experts were invited to fill an online 

questionnaire (the same as distributed during the Thessaloniki workshop). Similar to the methodology 

used in the workshop, the new obtained lists of NBS were sent among the mentioned four experts to 

identify the barriers. The initial 35 contributors from the workshop were also asked to verify and 

confirm online their previous list of NBS. The NBS identified by the 39 experts (during both workshop 

and additional online survey) were aggregated into 12 groups by iterative sorting and following the 
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environmental and functional similarities among the listed NBS. The groups of NBS were compiled in 

an online form along with the types of barriers identified. All contributors were asked to list the major 

barriers for all NBS relevant for their RED, and to provide references to studies supporting their 

statements. We obtained 32 fully completed questionnaires, and the collected data were then 

processed and aggregated. Finally, all participants were invited to comment on and approve the final 

analysis and interpretation.  

 

 

[Fig. 2 (A) Aggregated regional environmental domains (REDs) are considered in this study. REDs are 

named and shown in different colours. Symbols of humans indicate the main self-reported research 

focus and gender structure of experts involved in this study. (B) Average annual precipitation 

(adapted from Mitchell et al. 2004). (C) CORINE Land cover: a − coniferous forests, b − mixed forests, 

c − grasslands, d − rainfed croplands and complex agricultural paUerns, e − sparse vegetation 

(adapted from EEA 2021)] 
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3. Results and discussion 

3.1 Types of NBS 

The list of NBS (Table 1) obtained during the initial expert workshop showed that there is no common 

understanding of whether NBS denote only physically-based nature-derived measures. The results 

indicate that NBS should be understood as a broader ensemble of measures and practices that would 

also include (i) artificial measures supporting nature-based processes as well as hybrid measures 

combining technical and green interventions, such as dry polders, and (ii) management approaches, 

such as traditional environment-sensitive agricultural practices. Additionally, the experts reported that 

procedural arrangements and certain stakeholder engagement techniques building on common 

mental models about what is natural, must be studied, supporting the findings of Langergraber et al. 

(2021). 

The most-reported NBS differed among individual REDs (Fig. 3). These differences suggest distinct 

environmental conditions in each of the REDs, but they also indicate the different statuses of discourse 

on NBS and their implementation across Europe (Keesstra et al., 2018; Okruszko et al., 2019; Oral et 

al., 2020). In particular, there is a preference among the experts in Continental and Alpine-Carpathian 

Europe towards the land-use practices and catchment-scale retention measures located in the 

countryside (both listed most frequently from these REDs), whereas other REDs often reported NBS in 

urban settings as the important components of FRM. In addition, certain NBS were reported only in 

some REDs. These included institutional approaches, such as policies and planning frameworks, that 

were considered a specific type of NBS by six experts, mostly from the Atlantic region. Furthermore, 

NBS measures associated with the improvement of soil conditions were largely reported by experts 

from the Mediterranean, whereas NBS associated with coastal measures were reported mostly for the 

Atlantic region. 
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[Table 1 Groups and types of NBS identified during the expert survey] 

Group of NBS Type of NBS (the most frequently 

reported NBS are shown) 

References  

Floodplain retention and polders floodplain restoration, restoring 

fluid connectivity, retention 

basins, polders 

Macura et al. (2016); Glavan et al. 

(2020); Bezak et al. (2021); 

Jakubínský et al. (2021)  

Wetlands wetland construction, restoration 

and preservation (the actions 

refer to various wetland types 

including mainly wet woodlands, 

peat bogs and marshes) 

Acreman and Holden (2013); 

Potočki et al. (2022); Oral et al. 

(2020) 

River restoration channel restoration, re-

meandering, riverbanks 

restoration, supporting riparian 

vegetation, preserving natural 

buffer zones along rivers 

Mondal and Patel (2018); Nilsson 

et al. (2018); Jakubínský et al. 

(2021) 

Nature-based river dams  wattlets, log dams, wood check 

dams, leaky dams, sediment traps 

Thomas and Nisbet (2012); Wen 

Lo et al. (2021); Kuriqi and Hysa 

(2021) 

Small retention ponds, pools and 

lakes 

small-scale pools on agricultural 

land, stormwater retention pools 

and ponds, dry ponds  

Bezak et al. (2021); Glavan et al. 

(2020); Wilkinskon et al. (2019) 

Oral et al. (2020) 

Channel alterations and diverging 

flows  

flood moulds in forests and 

agricultural land, channel 

restoration, supporting natural 

levees, biodrainage, bioswales  

Mondal and Patel (2018); 

O’Donnel et al. (2020); Oral et al. 

(2020); Kidová et al. (2021) 

Coastal measures  restoration of coastal vegetation, 

sand motor/sand replenishment 

Temmerman et al. (2013); Bennett 

and Karunarathna (2019)  

Land use changes (re-)forestation, grassing, 

vegetation filter strips, supporting 

woodland buffer zones and 

riparian forests, delimiting 

agricultural floodable land, 

multifunctional agriculture 

Leyer et al. (2012); Hlavčová et al. 

(2012); Kapović Solomun et al. 

(2018); Halbac-Cotoara-Zamfir et 

al. (2019); Finger et al. (2019); 

Danáčová et al. (2020) 

Improving soil conditions increasing soil organic matter, 

supporting deep infiltration, 

reducing soil erosion by 

Hlavčová et al. (2012); Ristić et al. 

(2021); Halbac-Cotoara-Zamfir et 
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vegetation cover al. (2019); Finger et al. (2019) 

 

Spatial water retention in urban 

areas 

inner city green areas, rainwater 

basins and polders, river and 

channel restoration  

Banasik et al. (2009); Uzelac et al. 

(2012); Kabisch et al. (2016); 

Macura et al. (2016); Šrajdohar et 

al. (2016); Macháč and Louda 

(2019); Oral et al. (2020) 

Urban water sensitive buildings bunds, green walls, roofs and 

permeable pavings, NBS 

retrofitting, sustainable urban 

drainage systems 

Keestra et al. (2016); Kabisch et al. 

(2016); Oral et al. (2020) 

Improving policies for NBS 

coordination and planning  

spatial displacement, limiting 

reconstructions after major 

floods, low impact development, 

linking NbS with climate change 

adaptation policies 

Zingraff-Hamed et al. (2021); 

Kapović Solomun et al. (2020) 

 

 

 

[Fig. 3 The three most reported NBS for aggregated regional environmental domains (REDs)] 
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3.2 Barriers for implementation of NBS  

The assessment of barriers for each NBS resulted in a matrix of frequency distribution for each NBS-

barrier combination. Given the differences in the significance of NBS across the REDs, the original 

frequency distributions were grouped (Fig. 4) showing the frequency of the reported barriers and 

conceding with the qualitative nature of the expert community approach. In the following subsections, 

we summarize the main findings and provide examples for individual REDs. The barriers were 

aggregated into four Sections, including barriers related to (i)unknown effects of NBS, (ii) locational 

decisions on NBS, (iii) institutional settings, and (iv) the availability of (re)sources, land and physical 

capability. The individual barriers are referred to with letters within the text (see note in Fig. 4).  

 

 

[Fig. 4 The most reported barriers for NBS] 
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3.2.1 Barriers related to the unknown effect of NBS 

The survey indicated that some NBS measures have rather uncertain effects at various scales and 

across environments, as their efficiency depends on topography, vegetation type, soils and spatial 

configuration and extent (barrier A). This mainly relates to nature-based river dams, where accurate 

calculations are absent for their effects on alleviation of peak discharges as well as for their effect on 

sediment budgets in case of sediment traps and log dams (Macura et al. 2016; Kidová et al. 2021). 

Moreover, uncertainties result from temporal instabilities of nature-based river dams, such as log 

dams, which may release a substantial volume of woody debris during peak discharges and affect flow 

direction and velocities (Wen Lo et al., 2021). The barriers of unknown effects are also related to NBS 

aiming to improve soil conditions, where basic considerations on what are good soil properties don’t 

have a common understanding. Measures to be taken are vaguely defined mostly in mountainous 

environments across Europe, whereas they may pose implementation barriers in agricultural lowlands 

(see Section 3.3 and 3.4). Further examples of NBS with uncertain effects for FRM are interventions 

linked to land use management supporting water retention. Effects of forest on water retention and 

flood alleviation have been widely discussed (Calder, 2007). Using modelling approaches in a Slovenian 

watershed, Bezak et al. (2021) indicated a limited effect of afforestation on water retention and flood 

risk. This is in agreement with a review of contrasting evidence by Ellis et al. (2021). While afforestation 

is recommended for supporting water retention and decreasing surface runoff in some regions, in 

other cases (e.g. Danáčová et al. 2020) such effects are limited. Conversely, the expert community has 

shown a rather converging perspective of benefits for forest buffer zones along rivers. These are an 

important stabilization feature against erosional processes and also a buffer zone against overuse of 

agricultural land along water streams, thus limiting the alteration of soil infiltration capacity by heavy 

machinery or cattle trampling (Dunn et al., 2011). The effects of trees and forest stands are also 

conditioned by the selection of species given their differences in rainfall interception (Zabret and Šraj, 

2015) and runoff generation (Ferreira et al., 2016). Finally, uncertain and limited effects were reported 

for small retention pools, ponds and lakes, where water detention in restored pools is negatively 
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balanced by draining the surrounding land, an increase in evaporation, mineralization of organic soil 

compounds where banks are left without vegetation, and where the effects on groundwater recharge 

may be limited (barrier C; Wilkinson, 2019). These uncertain effects affect location decisions about 

land use management and the establishment of nature-based river dams and small water surfaces (see 

barriers E and F in Section 3.2.2 below). 

 

3.2.2 Barriers related to locational decisions on NBS 

Many of the uncertainties reported in Section 3.2.1 manifest themselves in locational decisions (barrier 

E) and the unknown extent of land (barrier F) that is necessary for the effective implementation of the 

individual NBS. These barriers mainly result from the expected variability of the effects of NBS across 

spatial and temporal scales. Examples from Czechia and Slovenia show that small retention pools and 

ponds may locally support water retention and biodiversity, but even if employing a large number of 

small retention ponds in the catchment, their upscaling potential is limited even in countries where 

these measures are among the preferred NBS (Nester et al., 2017; Wilkinson, 2019). On the other hand, 

based on modelling approaches, Ferreira et al. (2020) reported that a network of small water retention 

areas implemented at the catchment scale is more effective for flood mitigation than larger isolated 

areas. The role of water retention areas in significantly reducing surface runoff and alleviating flood 

peaks downstream, however, has not been clearly evinced. Similarly, the locational decisions and 

upscaling potential of river restoration efforts are limited because individual interventions which are 

often fragmented due to the limited availability of private-owned land (barrier N). Consensus on the 

design of the restoration projects is absent and the approaches differ from sole channel restorations 

in agricultural areas of the Continental Eastern-European countries and Mediterranean region to 

spatially extensive design including restored buffer zones along the water streams in countries of the 

Atlantic RED.  
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Along with uncertain effects there are limits to applicability and transfer of NBS to other settings 

(barrier G). Such barriers are rooted in multi-scalar factors involving both the local geological and 

hydroclimatic conditions and the variable effects of global environmental change on, e.g., annual 

rainfall, humidity and average air temperatures. Typically, such variances affect suitability of regions 

and sites for restoring various types of wetlands (Acreman and Holden, 2013), diverging flows by 

channel alterations and establishing forest stands to retain water. The transferability of certain NBS, 

such as stone terracing to reduce runoff velocity during extreme events, is also limited by locally 

adopted agricultural systems (barrier H). Such NBS may necessitate certain management practices, 

and these cannot be easily implemented, e.g., in large-scale autonomous ploughing in Continental 

lowlands. The applicability and transferability of NBS may, however, involve complex links among 

forest management, agricultural practices, artificial drainage, and terracing, as reported, e.g. by Rogger 

et al. (2017), and require an approach integrating processes across temporal, spatial and institutional 

scales. 

 

3.2.3 Barriers related to institutional settings  

The ability to prove the positive effects of NBS is a legal requirement for enforcing its implementation 

on private land (Albrecht and Hartmann, 2020). Restrictions and land-use adjustments cannot be 

realized if the effects are unknown or vague. This means that cooperation of stakeholders becomes 

more imperative (Warner and Damm, 2019). However, limited information on the effects of specific 

NBS in a particular environmental setting may result in lack of stakeholders’ trust to such measures 

(barrier I). This was especially reported for water-sensitive urban design, especially if responsibilities 

for implementing measures are vague (Snel et al. 2021). Also, the epistemic lock-ins resulting from 

maintaining historical practices may undermine trust in new FRM approaches as shown by Solín (2020) 

for Slovakia. This may occur despite existing studies documenting positive effects of these measures 

(Keestra et al., 2016). However, the lack of trust can also represent a mimicry to a generally low 
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willingness to implement these efforts, e.g. due to their costs. This negative effect can be increased by 

financial flood recovery schemes that do not support adaptive measures (Slavikova et al., 2021). Since 

2007, the Czech legislation requires all new individual housing developments to implement rainfall 

infiltration measures, yet recent research shows that the motivation of home-owners is often to save 

the money for water use rather than to be based on the real trust in the effects of such measures 

(Slavíková and Macháč, 2017). Similar effects have been observed in Germany (Hartmann and Scheibel, 

2016), the Netherlands (Snel et al., 2020), Austria and Belgium (Attems et al., 2020). In addition, such 

measures are perceived by the public as water retention solutions to avoid droughts, but 

considerations on large-scale effects to reduce extremely high discharges downstream are not trusted. 

Importantly, such measures should be presented and argued for in an integrative plan comprising 

various measures and their combined effects (The ‘Ekostaden Augustenborg’, 2021). Based on 

experiences and mental models, the trust can also be differentially distributed among stakeholders 

which impede their coordination towards implementation of NBS (Barrier J; Goulden et al., 2018). 

Distrust can be overcome by including both community members and stakeholders with formal roles 

in the co-design and co-implementation of NBS (Han and Kuhlicke, 2019; Almoradie et al., 2020; Finger 

et al., 2019). In this regard, studies have found that wider stakeholder participation can contribute to 

mainstreaming NBS while fulfilling the project’s ecological aim (Wamsler et al. 2015). Nevertheless, as 

Zingraff-Hamed et al. (2020) showed for Germany, existing co-creation efforts are rather targeted at 

large-scale restoration efforts, where municipalities already owned part of necessary lands. Contrarily, 

the experts indicated that stakeholders’ coordination is most challenging in urban projects, where 

many public and private land- and homeowners and initiatives interact, and also in river restoration 

efforts. The latter is often based on specific ownership models, where rivers and small water streams 

are legally designated as a property and subject to management of other bodies than those which own 

the surrounding land. Conflicts then emerge both at the intersection of private landowners and public 

institutions (Hartmann et al., 2018), as well as on different administrative bodies (e.g. municipalities 

and water management authorities; Slavíková et al., 2018). Hlavčová et al. (2019) reports a case from 
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Slovakia, where complex and combined measures including NBS were designed to reduce the flood 

risk, but their implementation was impeded by land fragmentation among too many landowners. 

Along with local interactions of stakeholders, higher-level institutional settings and a lack of financial 

(barrier K) and institutional (barrier L) supporting mechanisms are reported as the most frequent 

barriers hindering the implementation of NBS. These were the only barriers that were referred to for 

all groups of NBS. The key perceived gap is in the lack of distribution of responsibilities to design, 

incentivize, and implement NBS (Johnson and Priest, 2008; Snel et al. 2020). In countries such as the 

Netherlands, supporting mechanisms do exist, but the water management authorities may hesitate to 

incentivize NBS (e.g., implementing riparian and in-channel vegetation) because of their uncertain 

effects (Kaufmann et al., 2017). Goulden et al. (2018) recommend using incentives rather than punitive 

measures to encourage NBS implementation for stormwater management.   

Besides trust, the legal system and the constitution of property rights influence how homeowners 

respond to floods (Hartmann et al. 2019). Hence, risk communication is not just about informing 

citizens, but also clarifying public and private responsibilities (Davids et al., 2019), and the 

implementation of NBS requires strategic land policy.  

 

3.2.4 Barriers related to availability of (re)sources, land and physical capability 

Even with empirical evidence for the positive effects of NBS on flood risk reduction, and after gaining 

trust among the landowners, difficulty in acquiring the land (barrier N) remains a key barrier as 

reported by experts. This holds especially for large scale measures aiming at floodplain, wetland and 

river restoration, and for changes in land-use management practices. The reasoning is that the land-

owners will lose productive land space, which is considerable in countries with low share of agricultural 

land (e.g., only 3.5% in Norway) and small average size of plots (e.g., in Central and Eastern Europe; 

van Dijk 2003). The loss of agricultural land then requires compensation schemes. These were 

successfully implemented in the Netherlands, for example, where voluntary agreements were 
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achieved by poldering [the Dutch culture of cooperation based on compromise and consensus] 

(Kaufmann and Wiering, 2019). The difficulties to calculate the value of land for compensation (barrier 

O) for upstream-downstream effects of the implemented measures must be considered (Macháč et 

al., 2018). 

Besides the uncertain effect of some NBS and their low social acceptance, the lack of institutional and 

financial mechanisms is rooted in a lack of information on appropriate design and technical guidelines 

to implement these measures (barrier Q). Typically, nature-based river dams require different 

materials, design and consideration on the degree of stabilization in mountainous and lowland water 

streams (Macura et al., 2017). Coastal measures, such as ‘sand motor’ in the Netherlands, to replenish 

sand and reduce erosion during the rainstorms and floods, were only recently experimentally 

implemented (Kaufmann et al., 2022). In an urban setting, the availability of land for spatial water 

retention measures is limited, so the current research and field experiments focus on hybrid measures 

(Alves et al., 2020). The guidelines to design these measures are yet missing in most countries, resulting 

from both their technical complexity and necessary considerations on costs and benefits in urban 

settings with high  land prices (Macháč and Louda, 2019).   

 

3.3 Cascading and compound barriers  

Here, we adopt the concepts of cascading and compound interactions to show how individual barriers 

may line up and amplify each other, finally resulting in FRM decisions that need complex and 

transdisciplinary approaches to be effectively managed. The concepts of cascading and compound 

interactions are well established in disaster risk reduction studies (Cutter, 2018; de Brito, 2021), yet 

they were mostly applied to underlying hazards and their effects rather than to barriers to risk 

management options. We understand cascading barriers as a situation where a certain barrier directly 

or indirectly amplifies spatially and temporarily related barriers. This may go beyond the simple linear 

causal chain as the effect of a primary barrier may diverge to induce multiple barriers (Fig. 5A). 
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Typically, the lacking or fragmented evidence on flood mitigating effects of a particular NBS may lead 

to a lack of trust in such measures and low willingness for its funding and implementation.  The 

compound interaction then characterizes situations where implementation of the intended NBS is 

impeded by multiple amplifying feedbacks among barriers (Fig. 5B). For instance, the lack of guidelines 

for designing a particular NBS may act together with unclear evidence of its effects to amplify the 

questions over the extent of private land necessary to implement a measure that would have effects 

at a catchment scale. All these barriers, in turn, pose a challenge for compensation measures to private 

land-owners. 

 

 

[Fig. 5 The concept and examples of (A) cascading and (B) compound interactions among the 

implementation barriers for NBS in FRM] 
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The suggested approach allows tracing out the interactions of barriers in complex FRM situations, and 

stimulates further research . Table 2 provides examples of such research problems, using the NBS 

groups for which most barriers were reported. The formulated problems may be applied across various 

NBS, while their research requires further operationalization. 

 

[Table 2 Examples of research questions formulated using the cascading and compound interaction 

approach] 

Group of NBS Example of research problems  

Floodplain retention and 

polders 

Given the designation of land for floodplains (or floodable land in general) 

involves some relevant environmental and socioeconomic trade-offs, what 

compensation schemes and mechanisms do land-owners perceive as 

suitable for specific trade-offs?  

Wetlands  Considering the regions with similar environmental settings and similar 

wetland types, which institutional frameworks (e.g., environmental law, 

property rights and land tenure schemes) limit the transferability of 

wetland restoration approaches? 

River restoration  Given the limited availability of financial resources, how can empirically-

informed locational decisions reduce the extent of necessary land and 

facilitate its acquisition (i.e. willingness of land-owners) for river 

restoration programmes? 

Water retention in urban areas Given the challenging stakeholders’ coordination, how does the spatially 

fragmented implementation and dis-connectivity of urban water retention 

measures affect their flood mitigating effects? 

 

 

Addressing these questions (Table 2) requires a transdisciplinary approach that will bring together 

different axiomatics, and allow for integrating the perspectives on natural and societal processes that 

occur at various spatial, temporal and institutional scales (Raška et al., 2019; Vanelli et al., 2021).  

 

 

 



Submitted to Journal of Environmental Management – pre-print 

20 
 

3.4 Potential study limitations  

While the study provided interdisciplinary insights on barriers to implementation of NBS for FRM, it 

has some limitations related to the expert community approach employed. First, there is bias caused 

by a limited number of experts resulting in a different composition of expert groups representing each 

RED in terms of field of expertise (e.g., hydrologists, planners), types of NBS under study (e.g., 

floodplain restoration, nature-based river dams, urban NBS), and collaborative experiences with 

stakeholders (ranging from providing the modelling and simulations to conducting the social inquiry 

and preparing spatial plans). Second, the diversity of empirical evidence and expert insights does not 

allow us to infer functional and causal links among all NBS and barriers for each RED independently. 

Therefore, cascading and compound effects of implementation barriers are drawn upon the combined 

experience from various RED and must be considered as indicative. This necessitates further research 

and validation of the cascading and compound effects specifically for individual NBS and particular 

REDs. Third, we must reiterate that the expert community approach is a provisional substitute for 

empirical evidence and its major role is to define avenues stimulating future research. While some 

experts’ claims are empirically-grounded and refer to previous studies, any further inferences must be 

yet supported by field experiments and applied studies.    

 

4. Conclusions 

Current policies and strategies increasingly highlight NBS as suitable approaches to FRM. This paradigm 

shift is supported by empirical evidence that remains fragmented. In additon, an  increasing number 

of studies point out NBS limitations to effectively enhance water retention and reduce flood risk, and 

report various implementation barriers for NBS across Europe and beyond. In this paper, we 

scrutinized the research devoted to implementation barriers of NBS by conducting discussions among 

experts from various fields and regions. This allowed us to compile a comprehensive set of 17 barriers 

relevant to NBS in FRM. The most-reported barriers include a lack of financial incentives and political 
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will to implement NBS, a lack of institutional frameworks assigning responsibilities for specific actions 

regarding NBS, difficulties in acquiring a sufficient extent of the land for NBS, and unknown effects of 

particular NBS. It is suggested that the implementation barriers may line up into the cascading and 

compound sequences, creating fundamental challenges for practitioners employing NBS in FRM. The 

lack of trust among stakeholders was shown as a fundamental amplifier of the cascading and 

compound barriers. This calls for broader evidence of practice that would support drafting guidelines 

for implementing  NBS at a catchment scale.  The NBS that were associated with the highest number 

of barriers included river restoration, supporting functions of wetlands, floodplain retention and 

polders, land-use changes such as a/re-forestation, grassing, and change in agricultural practices. 

Notably, the barriers were differentially reported by experts from various fields of expertise and 

representing different regions. This urges a transdisciplinary turn in the approach to design and 

implement NBS for FRM. 
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Figures and Tables captions 

Fig. 1 Time framework of the data collection and processing 

Fig. 2 (A) Aggregated regional environmental domains (REDs) are considered in this study. REDs are 

named and shown in different colours. Symbols of humans indicate the main self-reported research 

focus and gender structure of experts involved in this study. (B) Average annual precipitation (adapted 

from Mitchell et al. 2004). (C) CORINE Land cover: a − coniferous forests, b − mixed forests, c − 

grasslands, d − rainfed croplands and complex agricultural paUerns, e − sparse vegetapon (adapted 

from EEA 2021) 

Fig. 3 The three most reported NBS for aggregated regional environmental domains (REDs). (Note: 

two groups of NBS in Mediterranean were reported with equal frequency) 

Fig. 4 The most reported barriers for NBS. Note: the barriers with the three highest scores are indicated 

in large coloured circles; the barriers with above average scores within the particular NBS are in small 

coloured circles; the barriers that have not been reported for the particular NBS are in small white 

circles. Absent circles indicate barriers below average scores. Barriers: A – Limited/uncertain/unknown 

effects, B – adverse effects for FRM, C – Involve relevant trade-offs, D – Disincentivises resilient 

practices, E – Locational decisions are too difficult, F – Extent of necessary land is unknown, G – Broad 

applicability/transferability is limited, H – Limited in certain agricultural systems, I – Lack of 

stakeholders' trust in the measure, J – Stakeholders' coordination too challenging, K – Lacking financial 

incentives and political will, L – Lacking institutional frameworks (also responsibility), M – Too 

expensive compared with benefits, N – Difficulty in acquiring the land, O – Landowner compensation 

is not clear, P – Lack of labour capacities, Q – Lack of information on design and technical details. 

Fig. 5 The concept and examples of (A) cascading and (B) compound interactions among the 

implementation barriers for NBS in FRM 

 

Table 1 Groups and types of NBS identified during the expert survey 
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Table 2 Examples of research questions formulated using the cascading and compound interaction 

approach 
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